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Abstract

We report numerical and analytic results for a model of coercivity and mag-

netization reversal in an array of square monolayer-height magnetic islands

on a monolayer of magnetic material with in-plane magnetization. Reversal

nucleates at step edges where local two-fold anisotropy is present in addition

to the intrinsic four-fold anisotropy of the (001) flat surface of a cubic crystal.

Simple analytic formulae for the coercive field are derived that agree well with

numerical simulations.
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Ultrathin films always have step edges. This is significant because the magnetic

anisotropy at sites of reduced crystallographic symmetry can compete successfully with

the intrinsic anisotropy of the flat surface and thereby control coercivity and magnetization

reversal [1]. In this paper, we study magnetization reversal at T=0 for a model ultrathin fer-

romagnetic film with simple cubic crystal structure and monolayer-scale surface roughness.

We develop formulae for the coercive field that predict behaviors that compare favorably

with results from numerical simulations.

We focus on the case of in-plane magnetization and choose a simple, high symmetry,

surface morphology. The model film is composed of one complete magnetic layer on a non-

magnetic substrate with a periodic array of square monolayer-height magnetic islands with

side length L and center-to-center separation D placed on top (Figure 1). Since exchange

coupling guarantees that atomic moments remain aligned over microscopic distances, a two-

dimensional classical XY model with spin lengths Si proportional to the film thickness at

lateral atomic site i will be sufficient for our purposes. The magnetic energy is

E = −
∑
〈i,j〉

Jij cos(ϑi−ϑj)− a
2
∑
i

Ki
2 Si cos2ϑi

−a2
∑
i

Ki
4 Si cos2 2ϑi − µH

∑
i

Si cosϑi (1)

where the angles ϑi denote the directions of the vector spins Si relative to [100], Jij =

J(min[Si, Sj])
2 is the exchange energy between nearest neighbor sites i and j, Ki

2 and Ki
4

specify the strength of two-fold and four-fold magnetic surface anisotropies at site i, a is the

lattice constant, and µ = µ0m, where m is the atomic magnetic moment. We choose the

material parameters as J ∼ 10−21 J, a = 0.3 nm, and m ∼ 10−23 J/T. All sites are assigned

a small four-fold anisotropy K4 ∼ 10−2 mJ/m2 and, as suggested by the phenomenological

Néel model [2], step edges are assigned a uniaxial anisotropy. The latter is chosen here to

lay perpendicular to the local step edge with strength K2 ∼ 1 mJ/m2. These numerical

values are consistent with recent experiments [3,4].

The energy expression Eq. (1) includes magnetostatics only through constraining the
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magnetization to lie in plane and through the numerical values of the anisotropies which,

since they are taken from experiment, include some of the effects of magnetostatics. We do

this because it is useful to analyze the effect of competing anisotropies alone so that the

consequences of re-introducing the dipolar interactions can be appreciated more readily.

We study magnetization reversal by numerically following the spin configuration at the

local energy minimum as a function of applied field by using a combination of the conjugate

gradient method and spin relaxation dynamics [5]. Since the domain wall width, W '

8
√
J/2K4 ' 200a, is large on the atomic scale, atomic spins are grouped together in 20×20

blocks. This blocking allows study of much larger systems than would otherwise be feasible.

Our calculations support the view that monoatomic steps of single crystal ultrathin films

both nucleate rotated domains and impede the motion of domain walls. The combination

of these processes and coherent rotation within domains determines the changes in mag-

netization as the applied field is reversed. For surfaces with no steps, or when the island

separation D is small, our model reproduces the Stoner-Wohlfarth result that magnetization

reversal occurs by coherent rotation with a coercive fieldHC equal to HSW = 8a2K4/µ. The

magnitude of HSW (∼ 5 × 105 A/m ∼ 2π103 Oe) is much larger than typical measured

coercivities for ultrathin films. Such a discrepancy between experiment and theory for the

coercive field is known as Brown’s paradox [6]. For the geometry studied here, we suggest

that the paradox is resolved by the nucleation of domains at step edges. The competition

between this nucleation, domain expansion through constrictions due to steps, and coherent

rotation of domains leads to many types of complex hysteresis loops as a function of island

size and separation. Concentrating on the coercive field, we find that the numerical results

accord surprisingly well with simple energy balance arguments described below. In partic-

ular, we find four regimes for the coercive field where HC/HSW varies successively as W/L,

LW/D2, W/(D − L+ 2W ), and (D − L+ 4
√

2W )/D as L/D increases.

In the absence of magnetic fields and island edges, a wall between two domains with

orientations ϑ = 0 and ϑ = π/2 has energy per unit length σ ∝
√
J K4, and wall width
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W ∝
√
J/K4. The wall energy can be written in terms of the wall width as σ ∝ HSWµW/a

2.

The change in energy when a domain with spins at angle π/2 (that is, pointing in the +y

direction) is introduced in an otherwise uniform system with spins at angle 0 (pointing in

the +x direction) is

E = σP − µH A (2)

where P and A are the perimeter and area of the π/2 domain and the applied field is in

the -x direction. Eq. 2 can be minimized with the constraints imposed by island edges to

determine stable spin configurations. The critical circular domain radius in the absence of

island edges is rcrit ∝ W/h. Here and below, we use h = H/HSW to denote fields scaled by

HSW . Domains with radii shorter than rcrit shrink and domains with radii larger than rcrit

expand. The critical radius is quite large for small fields. The resolution of Brown’s paradox

requires a nucleation mechanism that can create domains with linear dimension larger than

rcrit. We suggest that the uniaxial anisotropy found at island edges can create such domains.

In the model studied here, the island edges running parallel to the applied field have

uniaxial anisotropy perpendicular to the field. This uniaxial anisotropy is strong enough

that, even before remanence, rotated domains are nucleated at these island edges. After re-

manence, a domain nucleated at an island edge of lengthL remains pinned by perpendicular

island edges with uniaxial anisotropy parallel to the applied field direction. As the applied

field is increased in the negative direction the pinned domain expands and has a lens shape

with the same curvature as a circle with radius rcrit for rcrit > L/2. While isolated domains

are unstable toward expansion or contraction depending on their radius, a domain pinned

at a step of length, L, is stable with a radius of curvature given by rcrit for rcrit > L/2. If

the radius of curvature were smaller, the domain would contract, increasing the radius until

it reaches rcrit. If it were larger, the domain would expand, decreasing the radius until that

point. For rcrit < L/2 the domain expands forever or until a barrier is reached. The four

coercivity regimes follow from this result and Stoner-Wohlfarth coherent rotation within

domains.
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When the island channels are larger than the island edges (L < D−L) the domain covers

nearly the entire terrace after it bursts at the field defined by rcrit = L/2. This field is

hL ∝W/L. (3)

This is the scaled coercive field if hL is large enough. Figure 2A shows the numerically

calculated [5] coercive field as a function of W/L for three system sizes as labeled. The

darkened region of each curve is in this scaling regime and would collapse onto a single

straight line if the formula was exact. The scaling form holds quite well for large islands

that are far apart. When the islands are small, a more general scaling form holds in which

the coercive field is given by some universal function of W/L, independent of D (for D large

enough).

If hL > 1/(3
√

6), the π/2 state is unstable and the magnetization in the expanding

domain rotates from 0 to π when the domain bursts. For smaller values of hL it only

rotates to slightly past π/2. In this case, hL is still the coercive field if the spins rotate

far enough past π/2 to compensate the remaining domain walls surrounding island edges

with anisotropy parallel to the field direction. These walls have magnetization in the +x

direction M0m2LW and area a2LW where M0 is the magnetization of a unit cell and m2

and a2 are dimensionless constants of proportionality. The magnetization for h > hL is

M2 = (M0/D
2)[m2LW − (D2 + L2 − a2LW )h]. Here, we have used the result that the

component of the magnetization parallel to the applied field for a system with four fold

anisotropy is equal to M0H/HSW for small fields. When the island edges are large enough

that the partial rotation past π/2 does not compensate the magnetization remaining around

the island edges, the coercive field is greater than hL. The magnetization, M2, is zero at the

field

h2 ∝
WL

D2 + L2 − a2LW
, (4)

so that h2 is the coercive field when h2 > hL. The crossover always occurs at a small value

of L/D, so that near the crossover we can approximate h2 by
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h2 ∝
WL

D2
. (5)

Figure 2B shows the scaled coercive field in this second scaling regime. Again, this scaling

form works quite well.

For L > D/2 the π/2 domain can’t squeeze through the terraces between islands until

the field

h3 ∝
W

D − L− a3W
(6)

is reached. The parameter a3 = 2 if each island edge is surrounded by a rectangular domain

wall of thickness W . For h3 < h2, h2 is the coercive field. For h2 < h3, h3 is the coercive

field. Figure 2C shows the scaled coercive field in the third scaling regime. This regime is

quite small. We do not know the exact value of the constant, a3, so this scaling form cannot

be expected to be completely satisfied. We have made Fig. 2C with a3 = 2.

For still larger islands, the net magnetization can be zero even when h < h3 and the π/2

domains haven’t burst through all of the channels. (However, domains can fuse across some

of the channels.) The magnetization per spin is M4 = (M0/D
2)[L(D−L+a4W )m4− (D2 +

L2 − L(D − L+ a4W ))h] so the coercive field is

h4 ∝
L(D − L+ a4W )

D2 + L2 − L(D − L+ a4W )
. (7)

For D >> W and L close to D this is

h4 ∝
D − L+ a4W

D
. (8)

When h3 < h4 then h3 is the coercive field. When h4 < h3 then h4 is the coercive field. It is

possible that h4 is always less than h3 in which case there are only three regimes and h3 is

skipped. Figure 2D shows the scaled coercive field in the last regime. The data for D = 32

does not scale because the field at which the 90◦ state becomes unstable is less than h3 and

h4 for small D. We use a4 = 4
√

2 which assumes rectangular domain walls of length
√

2W

on the islands abutting the island edges.
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There are several important considerations relevant to experiments designed to test our

analytic predictions. Our numerical results exhibit the best scaling when D is large, i.e.,

large island separations. This regime requires very slow growth (compared to diffusion times)

on very flat substrates. In addition, we have assumed that the reversal is not determined

by sample edge effects. Different behavior is expected if reversal is caused by the expansion

of domains nucleated at such edges. In this case, the coercive field will be determined by

the motion of domains through the constrictions caused by the steps. Finally, since this

calculation has not included magnetostatic effects, the films should be as thin as possible.

The relative importance of magnetostatics increases in proportion to the thickness of the

film.

R.A.H. acknowledges support from National Science Foundation Grant DMR-9531115.

R.A.H., and A.Z. thank the Electron Physics Group at NIST for hospitality and additional

support.

7



REFERENCES

[1] A.S. Arrott, J. Appl. Phys. 69, 5212 (1991); A.S. Arrott and B. Heinrich, J. Mag. Mag.

Mat. 93, 571 (1991); A.S. Arrott, in Nanomagnetism, edited by A. Hernando (Kluwer,

Dordrecht, 1993).
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FIG. 1. Schematic view of the rough ultrathin film morphology used in this work. The indicated

island geometry is repeated periodically. Arrows indicate local anisotropy axes. In the text, the

regions two layers thick are referred to as islands, and the surrounding area is referred to as the

terrace. In addition, the parts of the terrace between two islands is sometimes referred to as a

channel.
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FIG. 2. Coercive field HC/HSW as a function of several scaling forms. HC is obtained upon

quasistatic reversal of the external field in (1) for the film geometry of Figure 1 for different system

sizes as labeled. The four panels show the different scaling forms discussed in the text. If each

scaling was exact the darkened portion of each curve would collapse on a straight line.
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