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We describe a gradient search method appropriate for electronic structure problems where the
energy functionals are explicitly orbital-dependent. The ground state is found by minimizing the
total energy with respect to the scalar and vector potentials that enter the Kohn-Sham equations.
The method is exact in principle and provides an alternative to the conventional procedure which
requires the numerical solution of an integral equation. We demonstrate the method for atoms
with spherical effective potentials using (i) a local spin-density functional which does not depend
explicitly depend on the orbitals and (ii) an exact exchange functional which does depend explicitly
on the orbitals.

I. INTRODUCTION

The Kohn-Sham form of density-functional theory is often the most practical method for calculating the electronic
structure of materials. This is especially true for the the local-density approximation (LDA) and its variants including
the local-spin-density approximation and generalized gradient approximations. In these approximations, the exchange-
correlation potential is easily calculated from the functional derivative of the exchange-correlation energy with respect
to the density. However, many energy functionals designed to improve on the LDA are not explicit functionals of
the density and the functional derivative can not be evaluated so easily. A notable example is the exact-exchange
functional.1–4 Functionals with self-interaction corrections5 also fall into this category.
In all of these cases, the functionals of interest depend explicitly on the non-interacting Kohn-Sham orbitals. This

is sufficient to guarantee that they are all legitimate density functionals because the Hohenberg-Kohn theorem9

asserts that the non-interacting Kohn-Sham orbitals are implicitly functionals of the density. Kohn-Sham exchange-
correlation potentials for these energy functionals exist but are difficult to evaluate. To solve this problem, one
exploits the fact that the energy is stationary with respect to the exchange-correlation scalar potential at the energy
minimum. This is the so-called optimized effective potential (OEP) method.1 The most common method for finding
the potential is by solving an integral equation,2–5 but it is also possible to find the potential by directly minimizing
the energy with respect to the potential.6–8

This paper makes two contributions to the issues outlined above. First, we generalize conventional OEP and treat
the energy as an explicit functional of an effective scalar potential VHXC(r) and an effective vector potential AHXC(r).
The latter will be needed when orbital-dependent functionals are applied to the current-density-functional theory of
Vignale and Rasolt.10 Second, we describe a gradient search algorithm to find the energy minimum in the space of
these four functions. We present a numerical test of this algorithm for the case of an effective scalar potential.
The plan of this paper is as follows. Section II reviews some basic results and establishes our notation. Section III

describes our new method. Section IV describes an application to spherical atoms for two choices of energy functional.
Section V summarizes our results.

II. BACKGROUND

We begin by deriving a few well-known results from conventional charge- and current-density functional theory. For
an electronic system coupled to external electric and magnetic fields, the total energy to be minimized is

E =

∫
d3r

∑
n

φ∗n(r)T̂ φn(r) + EHXC +
∑
α

∫
d3rAαEXT(r)j

α(r). (1)

In this formula, T̂ is the kinetic energy operator and φn(r) is a one-electron (Kohn-Sham) orbital for a non-interacting
system. EHXC is the sum of the Hartree and exchange-correlation energy functionals. The Hartree part of EHXC is
an explicit functional of the density. The exchange-correlation part of EHXC is guaranteed by the Hohenberg-Kohn
theorem to be a functional of the charge and paramagnetic current density. However this dependence need not be
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explicit. In particular, it can be implicit through an explicit dependence of the functional on the Kohn-Sham orbitals.
Such is the case for the exact exchange functional. The last term in Eq. (1)

∑
α

∫
d3rAαEXT(r)j

α(r) =

∫
d3r

[
VEXT(r) +

eA2EXT(r)

2mc2

]
ρ(r)−

1

c

∫
d3rAEXT(r) · j(r), (2)

describes the coupling between the charged particles and an external scalar and vector potential in the usual way.
The charge and current densities are written in terms of the Kohn-Sham orbitals as

jα(r) =
1

2

∑
n

φ∗n(r)ĵ
αφn(r) + h.c. (3)

where ĵ0 = e, ĵ = −i(e/m)∇, and the sum (here and below) is over all occupied orbitals. These orbitals are solutions
to the anti-commutator form of the noninteracting Kohn-Sham equation10

ĤKSφn(r) =

{
T̂ +

∑
α

1

2
[ĵα, AαEXT(r) +A

α
HXC(r)]+

}
φn(r) = enφn(r). (4)

where AαHXC(r) are effective potentials. At the minimum of Eq. (1) these orbitals reproduce the charge and current
densities of the interacting system.
The minimum of Eq. (1) is found with respect to variations in AαHXC(r). This is done by first eliminating the kinetic

energy from Eq. (1) in favor of ĤKS using Eq. (4). This gives

E = 〈KS|ĤKS|KS〉+ EHXC −
∑
α

∫
dr3AαHXC(r)j

α(r) (5)

where |KS〉 is the Kohn-Sham ground state. We now compute the gradient of E with respect to AαHXC(r). Using the
Hellmann-Feynman theorem, the first term gives

δ

δAαHXC(r)
〈KS|ĤKS|KS〉 = 〈KS|

δĤKS

δAαHXC(r)
|KS〉 = jα(r). (6)

This term cancels with one of the two terms produced when the gradient operates on the last term in Eq. (5) and we
are left with

δE

δAαHXC(r)
=
δEHXC

δAαHXC(r)
−
∑
α

∫
d3r′AαHXC(r

′)
δjα(r′)

δAαHXC(r)
(7)

The left side of this equation is zero when the energy is a minimum so we get

δEHXC

δAαHXC(r)
=
∑
α

∫
d3r′AαHXC(r

′)
δjα(r′)

δAαHXC(r)
. (8)

Since EHXC is a functional of the charge and current densities we have from the chain rule∑
α

∫
d3r′
δEHXC

δjα(r′)

δjα(r′)

δAαHXC(r)
=
∑
α

∫
d3r′AαHXC(r

′)
δjα(r′)

δAαHXC(r)
. (9)

Therefore, at the minimum we have the standard result

AαHXC(r) =
δEHXC

δjα(r)
(10)

Unfortunately, the formal definition of AαHXC in Eq. (10) is not very useful for practical calculations when EHXC
is not an explicit function of the charge density and/or the current density. One way to make progress is to regard
Eq. (8)as an integral equation for AαHXC(r) to be solved, e.g. by numerical matrix inversion. This is a non-trivial
task which, to our knowledge, has been attempted only when the vector potential is absent1–5. In that case, Eq. (8)
reduces to

δEHXC

δVHXC(r)
=

∫
d3r′VHXC(r

′)
δρ(r′)

δVHXC(r)
. (11)

More interesting cases where magnetic fields (either external or internal) are present appear to be prohibitively difficult
by this method. For this reason, we have developed an alternative.
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III. THE GRADIENT SEARCH METHOD

Our proposal is to use AαHXC(r) as the independent variable(s) in a gradient search algorithm to find the minimum
of E. This requires a practical scheme to compute the right hand side of Eq. (7) or its equivalent. For this purpose,
it turns out to be convenient to compute gradients of

E′ =

∫
d3r

∑
n

φ∗n(r)T̂ φn(r) +
∑
α

∫
d3rAαEXT(r)j

α(r) + EHXC

−

∫
d3r

∑
n

[
g∗n(r)

(
ĤKS − en

)
φn(r) + c.c.

]

−
∑
n

λn(

∫
d3r|φn(r)|

2 − 1) (12)

with respect to the independent variable set {g∗n(r), λn, φ
∗
n(r), en, A

α
HXC(r)}. The straightforward result is

∂E′

∂g∗n(r)
= (en − ĤKS)φn(r) (13)

∂E′

∂λn
= 1−

∫
d3r|φn(r)|

2 (14)

∂E′

∂φ∗n
=

{
T̂ +

∑
α

1

2
[ĵα, AαEXT(r)]+

}
φn(r) +

∂EHXC

∂φ∗n(r)
− λnφn(r) − (ĤKS − en)gn(r) (15)

∂E′

∂en
=

∫
d3r [g∗n(r)φn(r) + φ

∗
n(r)gn(r)] (16)

∂E′

∂AαHXC(r)
= −

∑
n

(
g∗n(r)ĵ

αφn(r) + c.c.
)
. (17)

Note that the Kohn-Sham equations and normalized eigenfunctions arise when we minimize with respect to the
Lagrange functions g∗n(r) and λn. Similarly, minimization with respect to φ∗n(r) and en together determine g∗n(r),
which in turn is needed in Eq. (17) to find the gradient of E′ with respect to AαHXC(r).
All the gradients above are zero when the total energy achieves its minimum value. In principle, the non-zero

gradient values away from the minimum could be used in a multi-variable search algorithm to find the energy minimum.
Alternatively, we are free to search for the minimum in a subspace where any number of the gradients are strictly zero.
In particular, if we restrict the search to the subspace where all the gradients are always zero except for ∂E′/∂AαHXC(r),
we can eliminate the kinetic energy in Eq. (15) (set to zero) and rewrite it in terms of HKS as before. The result is

(ĤKS − en)gn(r) =
∂EHXC

∂φ∗n(r)
−
∑
α

1

2

[
ĵα, AαHXC(r)

]
+
φn(r)− λnφn(r). (18)

This is an inhomogeneous Schrödinger equation for gn(r). The partial derivative ∂EHXC/∂φ
∗
n(r) is known because

EHXC is an explicit functional of the orbitals. AαHXC(r) is the independent variable for the gradient search so it
remains only to determine λn. To do so, we multiply Eq. (18) on the left by φ∗n(r) and integrate over all space. This
gives

λn =

∫
d3rφ∗n(r)

(
∂EHXC

∂φ∗n(r)
−
∑
α

1

2
[ĵα, AαHXC(r)]+φn(r)

)
. (19)

in terms of known quantities.
Notice that Eq. (18) leaves the overlap of gn(r) with φn(r) undetermined. On the other hand, setting Eq. (16) to

zero demands that this overlap must be purely imaginary and a purely imaginary overlap makes no contribution to
the right side of Eq. (17). Therefore, for convenience, the constraint obtained by setting Eq. (16) to zero may be
replaced by ∫

d3rg∗n(r)φn(r) = 0. (20)
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Our procedure is then as follows: (i) make an educated guess for AαHXC(r); (ii) calculate φn(r) from the Kohn-Sham
equations; (iii) calculate gn(r) from Eq. (18) subject to the constraint Eq. (20); (iv) calculate the gradient Eq. (17)
and use it in a minimization scheme to update AαHXC(r); (v) go back to step (ii) and repeat until the minimum of E
is reached.
This procedure is related to two previous methods. Both Bulgac et al.7 and Fritsche and Yuan8 parameterize

the potential and minimize the energy with respect to these parameters. Fritsche and Yuan use a minimization
method that does not use analytic gradients. They use their method to compute energies within the exact exchange
approximation for spherical atoms. In Section IV, we compare our results to theirs. Bulgac et al. use a gradient-based
method very similar to what we describe here, except that the gradient is computed with respect to the parameters
for the potential. They apply their method to jellium models of clusters.
For many problems, it is easiest to solve the Kohn-Sham equations using a basis set. For example,

gn(r) =
∑
m �=n

φm(r)

∫
d3r′φ∗m(r

′)gn(r
′). (21)

is an expansion of gn(r) in terms of the Kohn-Sham orbitals themselves. Notice that the sum here includes both
occupied and unoccupied orbitals. The exclusion of the m = n term guarantees that Eq. (21) satisfies Eq. (20). Using
Eq. (21), the exact solution for gn(r) is found trivially from Eq. (18) to be

gn(r) =
∑
m �=n

φm(r)

em − en

∫
d3rφ∗m(r)

(
∂EHXC

∂φ∗n(r)
−
∑
α

1

2
[ĵα, AαHXC(r)]+φn(r)

)
.

Using this result in the expression for the derivative of EHXC in Eq. (17) gives

∂E

∂AαHXC(r)
=
∑
n

∑
m �=n

φ∗n(r)ĵ
αφm(r)

em − en∫
d3r′φ∗m(r

′)

(
∂EHXC

∂φ∗n(r
′)
−
∑
α

1

2
[ĵα, AαHXC(r

′)]+φn(r
′)

)
+ c.c. (22)

This equation is identical to Eq. (7). We derived it variationally, but it can also be obtained from perturbation theory.

IV. APPLICATION TO SPHERICAL ATOMS

In this section, we demonstrate our method for free atoms using two choices for the total energy functional. For
simplicity, we put AHXC(r) = 0 and restrict ourselves to an effective spin-dependent scalar potential VHXCσ(r) that
is spherically symmetric. In that case, the Kohn-Sham orbitals take the form

φn�mσ(r, θ, φ) = φn�σ(r)Y�m(θ, φ). (23)

Despite the fact that the effective potential is spherically symmetric, the resulting density

ρσ(r, θ) =
∑
�

ρ�σ(r)Y�0(θ, φ), (24)

need not be. Here, the different contributions to the density are

ρ�σ(r) =
∑
n�′m

|φn�′σ(r)|
2

∫
d2ΩY ∗l′m(θ, φ)Yl′m(θ, φ)Yl0(θ, φ). (25)

For a given effective potential, the energy is evaluated from

E =

∫
drr2

∑
nlmσ

φ∗nlσ [T̂l + VEXT(r)]φnlσ + EHXC (26)

where Tl = P
2
r /2m+ l(l + 1)/2mr2 and the sum is over occupied states only.
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The gradient of the energy with respect to the effective potential is evaluated from the relevant special case of
Eq. (17)

∂E

∂VσHXC(r)
= −

∑
nlσ

Mnlσ (g
∗
nlσ(r)φnlσ(r) + φ

∗
nlσ(r)gnlσ(r)) , (27)

where gnlσ(r) is the solution to a one-dimensional version of Eq. (18):

(Hl − enlσ)gnlσ(r) =
1

Mnlσ

∂EHXC

∂φ∗nlσ(r)
− (VσHXC(r) + λnlσ)φnlσ(r), (28)

Mnlσ is the occupancy of the subshell with quantum numbers {nlσ}. We solved Eq. (28) numerically subject to the
constraint Eq. (20).

We have implemented the foregoing for two choices of
energy functionals. The first is a conventional local spin
density approximation (LSDA) functional.11 The second,
the so-called exact-exchange (EEX) functional, evaluates
the Hartree-Fock energy with Kohn-Sham orbitals. For
this functional, there is no correlation contribution. All
calculations were done with radial meshes adequate to
converge the total energy to an accuracy of 1 × 10−6

Hartree (1 Hartree = 27.211396 eV).12 For a represen-
tative set of atoms, He, Ca, Cr, Sr, Mo, Tc, Pd, and
Pt, we find that our gradient search LSDA calculations
converge to the same ground-state energy as the self-
consistent LSDA calculations to within 4×10−7 Hartree.
In addition, the exchange-correlation energy, which is not
variational, agrees to within 7×10−6 Hartree in all cases.
This agreement gives us confidence that our numerical
mesh and convergence are quite accurate. Similarly, our
gradient search EEX calculations are in good agreement
with the results of Engel and Vosko,4 as seen in Table
I. The worst agreement is for Pt, where the difference
in total energy is 4 × 10−4 Hartree. For all systems, the
difference in exchange energy between the two calcula-
tions is the same (to within ±1 × 10−4 Hartree) as the
difference in total energy. Given the level of convergence
we have demonstrated with the LSDA calculations, we
suspect that the disagreement is due to different radial
meshes. There are slightly larger differences with the cal-
culations of Fritsche and Yuan.8 These differences may
be due to a different level of self-consistency, or the pa-
rameterization of the potential in those calculations. For
the EEX calculations, there is an additional convergence
test. In completely self-consistent EEX calculations, the
virial theorem states that the kinetic energy is exactly
equal to the negative of the total energy. In the present
calculations, the kinetic energy differed from the negative
of the total energy by less than 5× 10−4 Hartree.

One drawback of this method is that it does not accu-
rately treat the asymptotic (large r) part of the potential.
Since the total energy is not very sensitive to the asymp-
totic part of the potential, the gradient of the energy with
respect to that part of the potential is quite small. Since
the gradient is small, the asymptotic part of the poten-
tial does not get updated very quickly. The problem with

this insensitivity is compounded because this method is
not sensitive to an overall shift of the potential. During
minimization, the potential close to the core shifts up
and down relative to the zero of the potential. Thus, the
potential far from the nucleus is quite poorly behaved.
Because the potential can shift relative to vacuum, the
absolute values of the eigenvalues are ill-defined. On the
other hand, eigenvalues differences agree well with fully
self-consistent calculations. The poor convergence of the
asymptotic part of the potential is in contrast to the work
of Fritsche and Yuan.8 In their approach the potential is
parameterized in a way that forces it to have the cor-
rect asymptotic form. For our intended application, the
electronic structure of solids, the poor convergence of the
asymptotic potential will not be an issue.

To test the convergence of this method both in terms
of accuracy and in terms of speed, we carried out addi-
tional tests using the LSDA functional. In Figure 1, we
show the convergence of the total energy as a function
of the number of evaluations of the atomic energy. The
figure compares the convergence properties of a typical
self-consistent mixing scheme13 and a gradient search im-
plemented using a quasi-Newton method.14 As expected
for a situation where the output potential is easy to cal-
culate, the mixing scheme is much faster. On the other
hand, for functionals where the output potential is time-
consuming to compute compared to the gradient (such
as the integral equation method), a gradient search can
achieve good accuracy with a reasonable number of gra-
dient evaluations.

Also shown in Figure 1 is the convergence of the
exchange-correlation energy (dotted lines). Since only
the total energy is variational, the convergence of any of
its parts is much slower, and non-monotonic. For any
convergence scheme, converging individual contributions
to the total energy to a given accuracy requires more iter-
ations than converging the total energy to that accuracy.

The calculations shown in Figure 1 used a modified
Thomas-Fermi potential as a starting approximation. In
Figure 2, we show that starting with a better approxi-
mation leads to faster convergence. The results in Fig-
ure 2 are for the exact-exchange functional using the fully
self-consistent LSDA potential as a starting approxima-
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tion. The difference between the initial energy and the
converged result is more than two orders of magnitude
smaller than starting with the modified Thomas Fermi
potential used to generate the results in Figure 1.
With the quasi-Newton method, it is possible to vary

the number of previous iterations that are kept. Fig-
ure 2 shows how the convergence varies as this num-
ber is varied. In the limit that only the previous it-
eration is saved, the results are comparable to the re-
sults of a conjugate-gradient minimization (dotted line).
The conjugate-gradient results could be significantly im-
proved with use of a better preconditioner. Unfortu-
nately, we were not able to find a better one. It may be
that there is no good diagonal approximation to the Hes-
sian. In that case the advantage of constructing a non-
diagonal approximation as is done in the quasi-Newton
method is clear. Figure 2 shows that at least for this sys-
tem, it is possible to find the total energy to an accuracy
of 1 × 10−3 eV with about 10 iterations using about 15
calculations of the gradient.
Ultimately, we are interested in using this method

to study crystalline magnetic systems. To check how
well the EEX functional reproduces magnetic effects,
we calculated the energy of several single-determinant
multiplets for the Ti atom. Table I compares our re-
sults with the corresponding energies obtained from a
Hartree-Fock calculation. The agreement is surpris-
ingly good considering that the Hartree-Fock calcula-
tions use orbital-dependent, non-local potentials and the
exact-exchange Kohn-Sham calculations use a single,
orbital-independent, local, and spherical effective poten-
tial. Since the 3d-level is partially filled in all multiplets
we have considered, the atomic density is non-spherical.
While it is known that the EEX gives ground state ener-
gies for atoms that are close to those found by Hartree-
Fock, we are unaware of any such test of excited states for
non-spherical atoms. This agreement gives us hope that
functionals based on EEX (with appropriate correlation
functionals) will properly describe the exchange interac-
tions that in atoms give rise to Hund’s second rule for
partially filled levels. The exclusion of these interactions
from LSDA is thought to responsible for some of the in-
accuracies in the description of magnetic systems.15

V. SUMMARY

In this paper, we described a new method for use
in electronic structure calculations where the energy
functionals of interest are expressed explicitly in terms
of Kohn-Sham orbitals. The method uses an effective
scalar potential VHXC(r) and an effective vector poten-

tial AHXC(r) as the independent variables in a gradient
search algorithm to find the minimum of E. We demon-
strated the method for atoms with spherical effective po-
tentials using a local spin-density functional and an exact
exchange functional. The results were encouraging and
suggest that further development of the method is war-
ranted.
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Etot Ex
Present Reference 4 Reference 8 Present Reference 4 Reference 8

He -2.8617 -2.8617 -1.0258 -1.0258
Ca -676.7519 -676.7520 -676.7519 -35.1990 -35.1991 -35.2018
Cr -1043.3457 -1043.3458 -47.7554 -47.7555
Sr -3131.5334 -3131.5336 -3131.5330 -101.9262 -101.9264 -101.9223
Mo -3975.5371 -3975.5373 -119.8941 -119.8943
Tc -4204.7793 -4204.7795 -124.3767 -124.3769
Pd -4937.9060 -4937.9062 -139.1135 -139.1136
Pt -17331.0931 -17331.0935 -331.3387 -331.3390

TABLE I. Comparison of EEX calculations. All energies are in Hartrees (1 Hartree = 27.211396 eV).

Configuration HF EEX Difference
3d24s2 3F (M = 3) -848.4059 -848.3974 0.0085
3d24s2 3F (M = 2) -848.4059 -848.3974 0.0085
3d24s2 1G -848.3321 -848.3227 0.0094
3d34s1 5F -848.3863 -848.3758 0.0105

TABLE II. Single determinant multiplet energies for Ti. All energies are in Hartrees (1 Hartree = 27.211396 eV), HF
are Hartree-Fock calculations16 and EEX are Kohn-Sham calculations using an “exact-exchange” formalism with a spherical
effective potential.

NG

∆
E

 
 (

eV
)

∆
E

 
 (

H
ar

tr
ee

)

0 20 40 60 80 100
10

−6

10
−4

10
−2

10
0

10
2

10
−6

10
−4

10
−2

10
0

Mixing

Quasi-Newton

FIG. 1. Convergence of total energy calculations. For
spin-polarized, spherical atomic Cr using the LSDA, the
solid curves give the difference between the total energy and
the fully self-consistent total energy and the dotted curves
give the absolute value of the difference between the ex-
change-correlation energy and the fully self-consistent ex-
change-correlation energy as a function of number of energy
computations, NG. Two convergence schemes are considered,
a method based on “mixing” input and output potentials
and a gradient based, “quasi-Newton” method. Since the ex-
change-correlation energy is not variational, it varies between
being greater than and less than the fully self-consistent re-
sult.
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FIG. 2. Convergence of total energy calculations. For
spin-polarized, spherical atomic Cr using the exact-exchange
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ergy and the fully converged total energy as a function of
number of energy computations, NG. The solid curves show
results for a quasi-Newton method, and are labeled by the
number of previous iterations stored. The dotted curve shows
results for a conjugate gradient method.
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