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Spin-transfer torques occur in magnetic heterostructures because the transverse component of a
spin current that flows from a non-magnet into a ferromagnet is absorbed at the interface. We
demonstrate this fact explicitly using free electron models and first principles electronic structure
calculations for real material interfaces. Three distinct processes contribute to the absorption: (1)
spin-dependent reflection and transmission; (2) rotation of reflected and transmitted spins; and
(3) spatial precession of spins in the ferromagnet. When summed over all Fermi surface electrons,
these processes reduce the transverse component of the transmitted and reflected spin currents to
nearly zero for most systems of interest. Therefore, to a good approximation, the torque on the
magnetization is proportional to the transverse piece of the incoming spin current.

I. INTRODUCTION

When a current of polarized electrons enters a ferro-
magnet, there is generally a transfer of angular momen-
tum between the propagating electrons and the magne-
tization of the film. This concept of “spin transfer” was
proposed independently by Slonczewski1 and Berger2 in
1996. Experiments soon followed where anomalies in the
current-voltage characteristics of magnetic heterostruc-
tures were interpreted as evidence for spin transfer.3 Un-
ambiguous confirmation came when the phenomenon of
giant magnetoresistance4 was used to detect magnetiza-
tion reversal in ferromagnetic multilayers with large cur-
rent densities flowing perpendicular to the plane of the
layers.5–7 Subsequently, spin transfer has been implicated
to explain the observation of spin precession for high-
energy, spin-polarized electrons that traverse a magnetic
thin film8 and enhanced Gilbert damping in magnetic
multilayers compared to one-component magnetic films.9

More experiments may be expected in the future because
spin transfer is expected to play an important role in the
nascent field of “spin electronics”.10

Theoretical work on spin transfer generally falls into
one of three categories. One group of articles focuses
on deriving and solving classical equations of motion
for the magnetization.11–16 These studies generalize the
Landau-Lifshitz equation to take account of spin cur-
rents, spin accumulation,17 and the mechanical torques
which necessarily accompany (spin) angular momentum
transfer. A second group of articles generalizes charge
transport theory to take account of spin currents and
spin relaxation.18–22 These theories compute the spin-
transfer torques that serve as input to the magnetiza-
tion calculations. The torque can be computed phe-
nomenologically, or from the Boltzmann, Kubo or Lan-
dauer formalisms that incorporate quantum mechanical
information explicitly. Finally, there are articles that re-
port quantum mechanical calculations of the parameters
that serve as input to the transport theories. The model
studies of Slonczewski1 and Berger2 are of this sort, as

are the first-principles, electronic structure calculations
of Xia and co-workers.23

In a previous paper,22 the present authors used a 2×2
matrix Boltzmann equation to compute spin currents,
spin accumulation, magnetoresistance, and spin-transfer
torques in a Co/Cu/Co multilayer with non-collinear
magnetization. The physics of spin transfer entered this
semi-classical, kinetic theory calculation through quan-
tum mechanically derived matching conditions imposed
at each ferromagnet/non-magnet interface. Specifically,
we took account of a reflection mechanism1 that arises
because the interface reflection and transmission ampli-
tudes for polarized electrons are spin dependent. We also
took account of an averaging mechanism2 that arises be-
cause conduction electron spins precess around the mag-
netization vector in each ferromagnet. The present work
was motivated originally by two assumptions we made
to simplify the Co/Cu/Co calculations. First, we set to
zero the transverse component of the spin of the conduc-
tion electron ensemble in each ferromagnet. Second, we
disregarded the phase of the reflection and transmission
amplitudes. As best we can determine, the same assump-
tions are implicit in the Landauer-type model calcula-
tions reported in Ref. 19 and Ref. 20. Therefore, before
calculations of this sort are carried very much further, it
seemed appropriate to look more carefully into the cor-
rectness of these assumptions. As we will see the spin
transfer process is more subtle and complex than previ-
ously managed.

In this paper, we analyze quantum mechanically the
fate of a polarized current that enters a ferromagnet
from a metallic non-magnet. Using both the free elec-
tron model and first principles electronic structure cal-
culations, we conclude that the assumptions in question
are largely justified. An important point is that the spin
of an electron generally rotates when it is reflected or
transmitted at an interface. This separates the reflection
mechanism into two pieces. A spin-filter effect reduces
the transverse spin component of each electron individ-
ually. A further reduction occurs when we sum over all
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Fermi surface electrons because substantial phase can-
cellation occurs when the distribution of spin rotation
angles is broad. As for the mechanism we called “aver-
aging” in Ref. 22, cancellation occurs because electrons
have different precession frequencies.24 This leads to an
asymptotic, oscillatory, power-law (rather than exponen-
tial) decay of the transmitted transverse spin component.
Putting everything together, we find that (except in very
exceptional cases) the transverse spin current is almost
completely absorbed within a few lattice constants of the
interface. None, or very little, is reflected or transmit-
ted. As a result, the spin-transfer torque is very nearly
proportional to the transverse piece of the incident spin
current.
The plan of this paper is as follows. In Section II, we

define the basic variables of spin transport and estab-
lish our notation. Section III analyzes the spin current
and spin-transfer torque near a magnetic/non-magnetic
interface using a free electron model for both materials.
Section IV generalizes the analysis of Section III to the
case of real materials. We summarize our results in Sec-
tion V.

II. BACKGROUND

To help introduce the theory of spin transport, it is
useful first to set down the familiar equations of particle
transport. These involve the number density,

n(r) =
∑
iσ

ψ∗iσ(r)ψiσ(r), (1)

and the number current density,

j(r) = Re
∑
iσ

ψ∗iσ(r) v̂ψiσ(r), (2)

where v̂ = −(ih̄/m)∇ is the velocity operator and ψi,σ(r)
is an occupied single particle wave function with state
index i and spin index σ. The continuity equation,

∇ · j+
∂n

∂t
= 0, (3)

expresses the conservation of particle number. In this
paper, we will be interested exclusively in steady-state
situations where the time derivative in (3) is zero. Not far
from equilibrium, the current takes the phenomenological
form,

j = (σ/e)E−D∇δn, (4)

where δn = n−neq is the deviation of the number density
from its equilibrium value, E is an electric field, σ is the
conductivity, and D is a diffusion constant. The latter
two are second rank tensors in the general case.
For the spin degree of freedom, the analogs to (1) and

(2) are the spin density,

m(r) =
∑
iσσ′

ψ∗iσ(r) sσ,σ′ ψiσ′(r), (5)

and the spin current density

Q(r) =
∑
iσσ′

Re [ψ∗iσ(r) sσ,σ′ ⊗ v̂ψiσ′ (r)] , (6)

where s = (h̄/2)σ and σ is a vector whose Cartesian
components are the three Pauli matrices. The spin cur-
rent is a tensor quantity. The left index of Qij(r) is in
spin space and the right index is in real space. Spin is
not conserved so the analog of (3) generally has non-zero
terms on the right hand side. For our problem,

∇ ·Q+
∂m

∂t
= −
δm

τ↑↓
+ next (7)

where next is an external torque density, ∇ · Q =
∂kQik and δm = (|m| − meq)m̂ is the so-called spin
accumulation.17 The first term on the right side of (7)
accounts for the transfer of angular momentum between
the spin current and the lattice due to spin-flip. This
process, with relaxation time τ↑↓, changes the magni-
tude of the local spin density, but not its direction. The
second term on the right side of (7) describes all exter-
nal torques that act to change the direction of the local
magnetization.For example, the Landau-Lifshitz-Gilbert
torque density,

next = −(gµB/h̄)m×Beff + α m̂× ṁ (8)

includes an effective field Beff and phenomenological
damping. The effective field is due to exchange,
anisotropies, and any external fields that might be
present.
To study magnetization dynamics, we merely rear-

range (7) to

∂m

∂t
= nc + next (9)

where

nc = −
δm

τ↑↓
−∇ ·Q (10)

is the current-induced contribution to the torque den-
sity. The divergence theorem then shows that, apart from
spin-flip, the torque on the total magnetization in a vol-
ume V arises from the net flux of spin current into and
out of the surface S that bounds V . Phenomenologically,
the spin current is driven by drift and diffusion:

Qik = σ̄iEk − Λ̄i∂kδn− D̄∂kδmi (11)

As in (4), we assume the simplest form for the spin
transport coefficients. That is, we use the vectors σ̄ =
(σ↑ − σ↓) m̂ and Λ̄ (also proportional to σ↑ − σ↓) rather
than third rank tensors and the scalar D̄ rather than a
fourth rank tensor. The conductivities σ↑ and σ↓ refer to
majority and minority electrons, respectively.
In a non-magnet, σ↑ = σ↓ and the first two terms on

the right side of (11) are zero. A spin current arises
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only if there are regions of the metal where there is a
gradient in the spin accumulation, δm(r). This implies
that the spin density m(r) and the spin current density
Q(r) are only indirectly related to each other. For ex-
ample, the projection of spin current along the current
Q(r) · j(r), a vector proportional to the “polarization” of
the current, need not be collinear with the spin accumu-
lation δm(r). In a ferromagnet, an electric field and/or a
number density gradient produce a current of polarized
spins simply because σ↑ �= σ↓. This spin current is mod-
ified by gradients in spin accumulation also. However,
the transport equations (4) and (11) are valid (at most)
when the direction of the ferromagnetic magnetization
is uniform in space. Corrections are necessary when the
magnetization rotates continuously in space, e.g., inside
a domain wall.11 Finally, a comparison of (11) with (4)
suggests that gradients in spin accumulation ought to in-
duce a conventional particle current as well. We account
for this possibility by amending (4) to read

ji = (σ/e)Ei −D∂iδn− Λk∂iδmk. (12)

With this background, the remainder of this paper is
devoted to a detailed analysis of the fate of a spin po-
larized current that flows from a metallic non-magnet
into a metallic, single-domain ferromagnet through an
ideal, flat interface. Specifically, we point the particle
current density vector j along positive x̂, we point the
ferromagnetic magnetization vector M along positive ẑ,
and we fix the interface at x = 0. Figure 1 shows three
possible steady states of pure current polarization in the
non-magnet and the associated non-zero component of
the spin current density tensor. For each case, we let
only one component of Qαx be non-zero. Qzx �= 0 corre-
sponds to longitudinal (parallel to M) current polariza-
tion. Qxx �= 0 or Qyx �= 0 correspond to transverse (per-
pendicular to M) current polarization. To produce an
“incident” polarized current in the non-magnet, it is suf-
ficient that the current flow into the non-magnet from an
adjacent ferromagnet and that the thickness of the non-
magnet be small compared to the non-magnet spin-flip
diffusion length.17 For this reason, magnetic multilayer
structures are the rule in most spin-transfer experiments.
We refer the reader to Ref. 22 for some insight into the
polarization process for the Co/Cu/Co system.

Figure 1 also indicates that, of the three incident states
of pure current polarization shown, only Qzx transmits
into the bulk of the ferromagnet. The magnet absorbs
the transverse components. Furthermore (see below), al-
most none of the transverse spin current reflects from the
interface. Therefore, if we choose a rectangular pillbox
that just straddles the interface, the divergence theorem
discussion below (10) implies that a current-induced spin-
transfer torque is exerted on the interfacial magnetiza-
tion. To be more precise, Figure 2 illustrates such a pill-
box and incident, reflected, and transmitted charge cur-
rent density vectors. Integrating the steady state (ρ̇ = 0)
version of the continuity equation (3) over the pillbox

Non-magnet Ferromagnet

x

z

y
M

Qzx

Qxx

Qyx

FIG. 1: Three states of spin current scatter from an interface.
The current flows from left-to-right, from the non-magnet into
the ferromagnet. Qzx is longitudinal (parallel) to the magne-
tization M. Qxx and Qyx are transverse to M. Only Qzx can
be non-zero in the bulk of the magnet. The transverse spin
currents are absorbed in the interfacial region.

gives

0 = (jin − jtr + jref) ·Ax̂ (13)

where A is the area of the interface. Eq. (13) says that
the incoming flux jin · Ax̂ minus the outgoing flux jtr ·
Ax̂ + jref · (−Ax̂) equals zero. The reflected flux has
a minus sign relative to the transmitted flux because it
passes through the opposing face of the pillbox.
Ignoring spin flip, the same integration applied to (10)

yields

Nc = (Qin −Qtr +Qref) · Ax̂ � Qin⊥ ·Ax̂ (14)

where Qin, Qref , and Qtr are the spin current density
(6) computed using incident state, reflected state, and
transmitted state wave functions. Eq. (14) says that the
incoming spin flux Qin ·Ax̂ minus the outgoing spin flux
Qtr ·Ax̂+Qref · (−Ax̂) equals the torque on the magne-
tization inside the pillbox.25 The torque Nc is a vector
in spin space because we have contracted the space in-
dex of the spin current density with the space vector x̂.
The approximate form on the right of Eq. (14) says that
the torque is proportional to the transverse part of Qin.
That is the main message of this paper. The following
sections are devoted to a demonstration that the trans-
verse transmitted and reflected spin currents do indeed
disappear in the immediate vicinity of the interface.

III. FREE ELECTRONS

In this section, we compute the spin current near the
interface of a non-magnet and a ferromagnet assuming
that a free electron description is adequate for the con-
duction electrons in the non-magnet and also for both
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FIG. 2: Interfacial pillbox used as the integration volume
when the divergence theorem is applied to (3) and (10) to
derive (13) and (14).

the majority and minority conduction electrons in the
ferromagnet. We do this in the interest of analytic sim-
plicity and also because some authors13,15 believe this is a
fair representation of reality for the purposes of transport
calculations.
We first work out the problem of one electron scat-

tering from a planar interface to determine the ampli-
tudes for reflection and transmission. They turn out to
be spin dependent. As first shown by Slonczewski,1 this
fact alone generates a “spin-filter” torque because the
wave function for an incident electron with a non-zero
component of spin transverse to M can always be re-
expressed in terms of up and down spin components.
The actual current polarization in the metal is ob-

tained by summing over the full distribution of conduc-
tion electrons. This introduces two effects. The first
arises because the reflection amplitude for free electron
interface scattering is complex. This means that the spin
of an incoming electron rotates upon reflection. The can-
cellation which occurs when we sum over all these spin
vectors reduces the net transverse spin current because
reflection and transmission both contribute to the outgo-
ing flux from the interface region. A second effect arises
because up and down spin electrons on the Fermi sur-
face with the same wave vector in the non-magnet no
longer have the same wave vector when they transmit
into the ferromagnet. The two states are coherent, so
precession in space (rather than time) occurs. The pre-
cession frequency is different for electrons from different
portions of the Fermi surface. Therefore, when we sum
over all conduction electrons, almost complete cancella-
tion of the transverse spin occurs after propagation into
the ferromagnet by a few lattice constants.

A. Spin currents for a single electron

Let us choose the spin quantization axis to be parallel
to the magnetization of the ferromagnet. Then, in the
non-magnet, the wave function for an electron whose spin
points in an arbitrary direction can always be written as a
linear combination of spin up and spin down components.

Specifically,

ψin =
[
cos 12θ e

−iφ/2 |↑〉+ sin 12θ e
iφ/2 |↓〉

]
eikxxeiq·R(15)

represents a free electron propagating toward the inter-
face in Figure 1 with its spin pointed in the direction
(θ, φ) with respect to M. We are interested in conduc-
tion electrons so the wave vector k = (kx,q) satisfies
h̄k2/2m = EF. The spatial variable is r = (x,R). As the
notation indicates, (15) is the incident state for a scat-
tering problem that determines the wave function for the
entire system. The latter describes a steady-state situa-
tion like current flow.26 Like the incident state (15), the
complete scattering state can also be written as a linear
combination of spin up and spin down components:

ψ = ψ↑ + ψ↓. (16)

In detail,

ψ↑ = cos
1
2θ e

−iφ/2 |↑〉

{
(eikxx +R↑e

−ikxx)eiq·R x < 0

T↑e
ik↑xxeiq·R x > 0

ψ↓ = sin
1
2θ e

iφ/2 |↓〉

{
(eikxx +R↓e

−ikxx)eiq·R x < 0

T↓e
ik↓xxeiq·R x > 0

(17)

where R↑, R↓, T↑, and T↓ are the reflection and transmis-
sion amplitudes for up and down spin electrons. These
amplitudes do not depend on the angles θ and φ. Notice
that the up and down spin components do not propa-
gate with the same wave vector for x > 0. The wave
vectors differ because their kinetic energy depends on
the exchange potential energy in the ferromagnet. The
common factor of exp(iq · R) in (17) reminds us that
scattering from a flat interface conserves the wave vector
component parallel to the interface.
The transmission and reflection amplitudes are deter-

mined by the magnitude of the potential step at the inter-
face. For a constant effective mass, this step height is pa-

rameterized by kF, k
↑
F, and k

↓
F < k↑F, the Fermi wave vec-

tors for, respectively, electrons in the non-magnet, major-
ity electrons in the ferromagnet, and minority electrons in
the ferromagnet. The usual quantum mechanical match-
ing conditions yield the real transmission amplitudes

Tσ(q) =
2kx(q)

kx(q) + kσx(q)
(18)

where kx(q) =
√
k2F − q2 and kσx (q) =

√
(kσF)

2 − q2. The
reflection amplitudes are real or complex depending on
the magnitude of the parallel wave vector. They are

Rσ(q) =
kx(q)− kσx (q)

kx(q) + kσx (q)
if q2 ≤ (kσF)

2 (19)

and

Rσ(q) =
kx(q)− iκσx(q)

kx(q) + iκσx(q)
if q2 > (kσF)

2 (20)
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where κσx(q) =
√
q2 − kσF

2. The associated transmission

and reflection probabilities,

Rσ(q) = |Rσ(q)|
2

Tσ(q) =
kσx(q)

kx(q)
|Tσ(q)|

2, (21)

satisfy Rσ + Tσ = 1 and are plotted in Figure 3 for a
slice through the free electron Fermi surfaces defined by

k↑F/kF = 1.5 and k↓F/kF = 0.5. For this case, the trans-
mission probability for majority electrons (dashed curve)
is unity near the zone center and then falls rapidly to
zero near kF. The minority electrons (solid curve) trans-

mit similarly except that T↓ falls to zero near k↓F.
It is now straightforward to compute and interpret the

incident, reflected, and transmitted number current den-
sities and spin current densities. We need only (2), (6),
and the appropriate piece of the wave function (17). The
incident current densities are

jinx = vx

Qinxx =
h̄

2
vx sin θ cosφ

Qinyx =
h̄

2
vx sin θ sinφ

Qinzx =
h̄

2
vx cos θ (22)

where vx = h̄kx/m. The reflected current densities are

jrefx = −|vx|
[
cos2 12θ |R↑|

2 + sin2 12θ |R↓|
2
]

Qrefzx = −
h̄

2
|vx|

[
cos2 12θ |R↑|

2 − sin2 12θ |R↓|
2
]

Qrefxx = −
h̄

4
|vx| sin θRe

[
R∗↑R↓e

−iφ
]

Qrefyx = −
h̄

4
|vx| sin θ Im

[
R∗↑R↓e

−iφ
]
. (23)

The transmitted current densities are

jtrx = v↑x cos
2 1
2θ |T↑|

2 + v↓x sin
2 1
2θ |T↓|

2

Qtrzx =
h̄

2
v↑x cos

2 1
2θ |T↑|

2 −
h̄

2
v↓x sin

2 1
2θ |T↓|

2

Qtrxx(r) =
h̄

4

v↑x + v↓x
2

sin θRe
[
T ∗↑ T↓e

−iφei(k
↓
x−k

↑
x)x
]

Qtryx(r) =
h̄

4

v↑x + v↓x
2

sin θ Im
[
T ∗↑ T↓e

−iφei(k
↓
x−k

↑
x)x
]
(24)

where vσx = h̄kσx/m. Using (21), it is easy to check that
jinx = jtrx − jrefx and Qinzx = Qtrzx −Qrefzx . The first relation
is consistent with (13) because there is no accumulation
of charge at the interface. Using (14), the second rela-
tion tells us that there is no torque associated with the
transport of longitudinal spin current. However, a similar
relationship does not hold for the other two components

of Q. There is a discontinuity in the transverse spin cur-
rent when a spin scatters from an interface. According
to (14), this implies that a current-induced torque acts
on the magnetization. In fact, three distinct mechanisms
contribute to the net torque.

One source of discontinuity and spin-transfer torque is
spin filtering. This occurs when the reflection probabili-
ties are spin dependent.1 To see this, note first that the
specific superposition of up and down spin components
displayed in the incident state wave function (15) cor-
responds to a specific transverse component of the spin
vector. If R↑ = R↓ and T↑ = T↓, that specific linear
combination is preserved in the reflected and transmit-
ted pieces of the scattering state and no discontinuity
occurs in the spin current. However, if the reflection and
transmission amplitudes differ for up and down spin com-
ponents, the up and down spin content of the spatially
separated reflected and transmitted states differ from one
another. This leads unavoidably to different transverse
spin components and thus to a discontinuity in the trans-
verse spin current. Given the structure of (23) and (24),
we use the reflection and transmission probabilities in the

combination
√
R↑R↓ +

√
T↑T↓ as a measure of the abil-

ity of spin filtering to provide spin-transfer torque. The
next-to-top and next-to-bottom panels in Figure 3 dis-
play the required information.

A second source of transverse spin current discontinu-
ity and spin-transfer torque is spin rotation. This oc-
curs when the product R∗↑R↓ is not positive real. Specif-

ically, (23) shows that the transverse components of the
reflected spin current contain a factor

R∗↑R↓ = |R
∗
↑R↓|e

i∆φ. (25)

The phase ∆φ evidently adds directly to the azimuthal
angle φ used to define the spin direction in the incident
state vector (15). In other words, the reflected spin direc-
tion rotates with respect to the incident spin direction.
This is an entirely quantum mechanical phenomenon for
which there is no classical analog. The bottom panel of
Figure 3 shows that the range of ∆φ can be surprisingly
large. Indeed, for this choice of Fermi surfaces, the spin
direction completely reverses when an electron reflects
from the interface at near-normal incidence. There is no
corresponding rotation for transmitted electrons because
T↑ and T↓ are positive real (for free electrons). The re-
sulting discontinuity in the transverse spin current leads
to a spin-transfer torque that is distinct from spin filter-
ing.

Finally, a glance at (24) reveals that spin precession
is a third source of spin-transfer torque. Note specially
the spatially-varying phase factors which appear in the
transmitted transverse spin currents because k↑x �= k↓x in
the ferromagnet. Their net effect is spatial precession
because Qxx and Qyx simply rotate into one another as
a function of x.27 From (10), such a spatial variation of
Q contributes a distributed torque density at every point
in the ferromagnet. The top panel of Figure 3 shows the
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FIG. 3: Slices through a set of free electron Fermi surfaces.
The two middle panels show the Fermi surface for the non-
magnet and the superimposed Fermi surfaces of the majority
(dashed) and minority (solid) states of the ferromagnet. The
panel just above the magnetic Fermi surfaces is the prob-
ability for transmission into the ferromagnet for majority
(dashed) and minority (solid) electrons. The panel just below
the non-magnetic Fermi surface is the probability for reflec-
tion back into the non-magnet for majority (dashed) and mi-
nority (solid) electrons. The bottom panel shows the phase
in (25) acquired by an electron because its spin rotates upon
reflection. The top panel shows the wave vector difference
(26) for a transmitted electron.

range of spatial precession “frequencies”

∆k = k↓x − k↑x (26)

for the free electron model of that figure.

B. Spin currents for a distribution of electrons

The spin currents relevant to experiment reflect the
combined effect of all the conduction electrons. In the
most general description of transport, it is necessary to
keep track of the quantum mechanical coherence between
all electrons in different eigenstates. However, to model
the spin-transfer torque experiments reported to date,5,6

it is not necessary to maintain the coherence between
states with different Fermi surface wave vectors. It is
sufficient to use a semi-classical theory that maintains
only the coherence between up and down spin states at
each k-point on the Fermi surface. Accordingly, we define
a 2× 2 electron occupancy distribution matrix

f(k, r) = U(k, r)

(
f↑(k, r) 0
0 f↓(k, r)

)
U †(k, r) (27)

in terms of the scalar occupancy functions for up and
down spins and the spinor rotation matrix

U(k, r) =

(
cos(θ/2)e−iφ/2 − sin(θ/2)e−iφ/2

sin(θ/2)eiφ/2 cos(θ/2)eiφ/2

)
. (28)

We have suppressed the k and r dependence of θ and φ
for simplicity.
Elsewhere, we have solved the Boltzmann equation to

find f(k,r) for a typical spin-transfer geometry.22 For the
simple scattering problem treated here, the reflected and
transmitted distributions are determined entirely by the
reflection and transmission amplitudes and the incident
electron distribution at the interface between the non-
magnet and the ferromagnet: f(k) = f(x = 0,k). For
this distribution, the semi-classical version of the spin
current (6) is

Qin =
h̄

2

∫
vx>0

d3k

(2π)3
Tr [f(k)σ]⊗ v(k). (29)

The restriction vx > 0 limits the integration to the oc-
cupied electron states that move toward the interface.
Using (27), (28) and the cyclic properties of the trace,
we get, e.g.,

Qinxx =
h̄

2

∫
vx>0

d3k

(2π)3
fp(k)vx(k) sin θk cosφk, (30)

where fp(k) = f↑(k)−f↓(k) determines the degree of po-
larization at each point on the Fermi surface. The angles
θk and φk determine the direction of the spin polariza-
tion. Electron states in the immediate vicinity of the
Fermi surface dominate the transport of charge and spin.
Therefore, we write

fσ(k)→ f0(εk) + gσ(q)
∂f0(εk)

∂εk
(31)

where f0 is the equilibrium Fermi-Dirac distribution
function and the partial derivative restricts k to the
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Fermi surface. We write gσ(q) rather than gσ(k) be-
cause |k|2 = k2x + q2 = k2F. The equilibrium term does
not contribute to the spin current. Otherwise, we let
d3k = d2q dkx and use

∫
dkx∂f0/∂εk = 1/h̄|vx(q)| in

(30). The result is

Qinxx =
1

4π

∫
vx>0

d2q

(2π)2
gp(q) sin θq cosφq (32)

where

gp(q) = g↑(q)− g↓(q). (33)

For Qinyx, change cosφq to sinφq in (32).

The reflected spin current due to all the conduction electrons is

Qref(r) =
h̄

2

∫
vx>0

d3k

(2π)3
Tr
[
R†(k, r)f(k)R(k, r)σ

]
⊗ vref(k) (34)

where

R(k) =

(
R↑(k)e

ik·r 0
0 R↓(k)e

ik·r

)
(35)

and vref(k) is the velocity of a reflected electron with wave vector k. The r-dependent phase factors in (35) cancel
out in (34) so, e.g.,

Qrefxx = −
1

4π

∫
vx>0

d2q

(2π)2
gp(q) sin θq

∣∣R∗↑(q)R↓(q)∣∣Re [e−i(φq−∆φq)] (36)

where ∆φq is the relative phase of the reflection amplitude as in (25). For Q
ref
yx , change Re to Im in (36).

Finally, the total transmitted spin current is

Qtr(r) =
h̄

2

∫
vx>0

d3k

(2π)3
Tr
[
T†(k, r)f(k)T(k, r)σ

]
⊗ vtr(k) (37)

where

T(k, r) =

(
T↑(k)e

ik↑·r 0

0 T↓(k)e
ik↓·r

)
(38)

and

vtr(k) =
v↑(k) + v↓(k)

2
. (39)

In these formulae, the wave vector for incident states, k, transforms to either k↑ or k↓ when the electron enters the
ferromagnet. The average transmitted velocity vtr(k) is defined only at values of q where both spins transmit. A
comparison of, say,

Qtrxx(x) =
1

4π

∫
vx>0

d2q

(2π)2
gp(q) sin θq

v↑x(q) + v↓x(q)

|2vx(q)|
Re
[
T ∗↑ (q)T↓(q)e

−iφqe−i(k
↑
x−k

↓
x)x
]

(40)

with (24) confirms that (37) is correct with the definitions (38) and (39). For Qtryx, change Re to Im in (40).
At this point, we must make a specific choice for gp(k) and the polarization of the incident spin current. Let us

assume the current is completely spin polarized along +x̂. This fixes θk = π/2 and φk = 0. For the distribution (33),
we begin with the approximate form

gp(q) = a+ bvx(q). (41)

The two terms account for interface and bulk effects, respectively. The velocity-dependent bulk term is familiar from
textbook treatments of electrical conductivity28 except, from (11), gradients in spin accumulation (rather than electric
potential) drive the spin current in the non-magnet. The constant term is needed because a spin-dependent chemical
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potential difference ∆µ across an interface also drives a spin current.17 In this paper, we assume that the interface
resistance is large (large reflection probability) so we use

gp(q) � a = ∆µ. (42)

This is the same approximation that is made in Landauer-type transport calculations.19–21

With these choices, the incident spin current is

Qinxx =
1

2

1

(2π)2

kF∫
0

dq q∆µ =
1

4

k2F
(2π)2

∆µ. (43)

The reflected spin currents normalized to the incident spin current are

Qrefxx
Qinxx

= −
2

k2F

kF∫
0

dq q|R∗↑(q)R↓(q)| cos∆φq (44)

and

Qrefyx

Qinxx
= −

2

k2F

kF∫
0

dq q|R∗↑(q)R↓(q)| sin∆φq. (45)

We get Qrefyx �= 0 because, as discussed earlier, many of the spins rotate upon reflection. On the other hand, the
sinusoidal factors lead to substantial self-cancellation of the integrals (44) and (45) when the range of ∆φq is large
(see bottom panel of Figure 3).23 In most cases, we find the total transverse reflected spin current to be very small.
The normalized transmitted spin currents are

Qtrxx(x)

Qinxx
=

2

k2F

k↓
F∫
0

dq q
k↓x(q) + k↑x(q)

2|kx(q)|
T↑(q)T↓(q) cos

[
(k↓x(q)− k↑x(q))x

]
(46)

and

Qtryx(x)

Qinxx
=

2

k2F

k↓
F∫
0

dq q
k↓x(q) + k↑x(q)

2|kx(q)|
T↑(q)T↓(q) sin

[
(k↓x(q)− k↑x(q))x

]
. (47)

Based on the behavior of the transverse reflected spin current, we expect (46) and (47) to decay as a function of x
because the generally wide range of ∆k = k↓x(q) − k↑x(q) (see top panel of Figure 3) ought to induce self-cancellation
of the integrals. In fact, like a similar integral that appears in the theory of oscillatory exchange coupling,29 we can
extract the asymptotic form (x → ∞) analytically using a stationary phase approximation. Only small values of q
contribute in that instance so for, say, the xx component, we find

lim
x→∞

Qtrxx(x)

Qinxx
= −2

k↑Fk
↓
F

k2F

k↓F + k↑F
2kF

T↑(0)T↓(0)
sin
[
(k↑F − k↓F)x

]
(k↑F − k↓F)x

. (48)

To understand this result, we note (see the top panel of Fig. 3) that the electron states with wave vectors in an interval
δq near q = 0 (which share the value ∆k � kF) play a special role. These states precess together (coherently) with

spatial frequency k↑F − k↓F. Slow dephasing begins only after a distance x where xδq ∼ 1.

The oscillatory, algebraic decay exhibited by (48) con-
trasts markedly with the assumption of monotonic, expo-
nential decay made by others.2,13,30 Of course, incoherent
scattering processes may be expected to superimpose an

exponential decay on the algebraic decay we find. The
solid curves in Fig. 4 illustrate the behavior of the trans-
mitted spin current (46) for three free-electron models.
The dashed curves show the asymptotic behavior from
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(48). The top panel corresponds to Fig. 3 where the
Fermi sphere of the non-magnet is significantly smaller
than the majority sphere and significantly larger than the
minority sphere. The middle panel is a situation where
the Fermi sphere of the non-magnet is identical in size
to the majority sphere and both are significantly larger
than the minority sphere. Finally, the lower panel shows
results for majority and minority spheres which are, re-
spectively, slightly larger and slightly smaller than the
Fermi sphere of the non-magnet. This corresponds to
the so-called “s-d model” where the conduction electrons
bands in the ferromagnet are regarded as slightly split by
exchange with localized moments.

The interfacial “spin-filter” makes each solid curve in
Fig. 4 differ from unity already at x = 0. The filter is
most effective when the Fermi surface of the non-magnet
is poorly matched with one or both of the Fermi surfaces
of the ferromagnet. Owing to (18), this is consistent with
our earlier discussion where we identified the transmis-
sion probability condition T↑(q) �= T↓(q) as a prerequi-
site to the action of the spin filter. The subsequent decay
of each curve in Fig. 4 to zero reflects the distribution of
spatial precession frequencies as we have indicated. We
have repeated these calculations assuming that the dis-
tribution function gp is proportional to the velocity term
in (41) alone rather than the constant term in (41) alone.
We find no significant changes from the results of Fig. 4.

We are now ready to use our computed results to find
the spin-transfer torque (14) for free electron models.
The top and bottom panels of Figure 5 show the trans-
verse spin space vectors N, Qin · x̂, Qref · x̂, and Qtr · x̂
for the Fermi surfaces used in the top and bottom panels
of Fig. 4. We have suppressed the contraction with x̂ in
the spin current labels for clarity. In fact, the vectors
for Qref and Qtr represent these quantities just at the
interface. Therefore, the reflected piece includes the de-
phasing effects of differential spin rotation whereas the
transmitted piece does not include the dephasing effects
of differential spin precession. As we have seen, the latter
reduces the transmitted spin torque to zero not far from
the interface. Therefore, we have drawn the torque vec-
tor (for a unit area of interface) so N = Qin+Qref . The
top panel of Fig. 5 (large Fermi surface mismatch) shows
a significant dephasing of the reflected spin current. The
bottom panel of Fig. 5 (small Fermi surface mismatch)
shows nearly zero reflected spin current. The reflected
spin current is exactly zero for the model (not shown)
used in the middle panel of Fig. 4. These results show
that, unless the Fermi surface mismatch is very small, the
interface effectively absorbs the entire transverse compo-
nent of incident spin current. This abrupt change in an-
gular momentum is the source of current-induced spin-
transfer torque at the interface between a ferromagnet
and a non-magnet.

The dashed arc labeled Qsf in each panel of Fig. 5
is a portion of a circle whose center is the “tail” posi-
tion for all three spin current vectors. The radius of this
circle, compared to the length of the vector Qin, gives

0 10 20 30 40 50
kF x

-1.0

0.0

1.0       
-1.0

0.0

1.0

Qxx(x)

      
-1.0

0.0

1.0

Qxx
in

tr

FIG. 4: Decay of transverse transmitted spin current as a
function of distance from the interface for three free electron
models. In each panel, the solid curve is the exact result (46)
and the dashed curve is the asymptotic result (48). Top panel:
the mismatch is very large between the sizes of the magnetic
and non-magnetic Fermi surfaces; kF↑/kF = 1.5 and kF↓/kF =
0.5. This is the model used in Fig. 3. Middle panel: the Fermi
surfaces are identical for the non-magnet and the majority
electrons in the magnet; kF↑/kF = 1.0 and kF↓/kF = 0.5.
Bottom panel: an s-d-like model where the mismatch is very
small between the sizes of the magnetic and non-magnetic
Fermi surfaces: kF↑/kF = 1.1 and kF↓/kF = 0.9.

an indication of the magnitude of the spin filter effect.
Quantitatively, the circle radius is proportional to

Qsfx
Qinxx

=
2

k2F

kF∫
0

dqq
∣∣R∗↑(q)R↓(q)∣∣

+
2

k2F

k↓
F∫
0

dqq
k↓x(q) + k↑x(q)

2|kx(q)|
|T↑(q)T↓(q)| . (49)

With this definition, Qsf measures the magnitude of the
total outgoing spin current (reflected plus transmitted)
without taking phase cancellation into account. This
scalar measure of the spin filter is truly meaningful only
when the reflection and transmission amplitudes are both
real and positive, which is not the case. Nevertheless,
the dashed arcs give some insight into the efficacy of the
spin filter mechanism for different free-electron Fermi sur-
faces.
The foregoing makes clear that free electron models
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x
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Qtr

Qref Qin

N

Qsf(a)

(b) Qtr

Qref
Qin

N

Qsf

FIG. 5: Graphical representation of the interfacial torque and
transverse spin currents for two free electron models. The
x-components are horizontal and y-components are vertical.
The horizontal arrow is the incident spin current directed
along the x-direction. The dashed arc indicates the reduc-
tion in spin current due to the “spin-filter” effect. The thick
arrow is the reflected spin current at x = 0. The dashed arrow
is the transmitted spin current at x = 0. The thin arrow is
the final torque taking account of the fact that precessional
averaging in the ferromagnet drives Qtr → 0 after a few lat-
tice constants. Panel (a) is the large Fermi surface mismatch
model of Fig. 3. Panel (b) is the s-d model of the bottom
panel of Fig. 4.

are useful for building intuition about spin currents and
spin-transfer torque. However, there is no substitute for
first-principles calculations if we are interested in specific
material interfaces. At the very least, such calculations
can be used to judge the correctness of approximate con-
structs such as the s-d model.

IV. REAL INTERFACES

In this section we repeat the calculations of Sec-
tion III B for ten lattice-matched interfaces between a

non-magnet and a ferromagnet using a more realistic
model of the electronic structure for both. Specifi-
cally, we calculate the transmission and reflection am-
plitudes using a linearized-augmented-plane-wave imple-
mentation of the local-spin-density approximation. The
details can be found in Ref. 31 and Ref. 32. Compared
to that earlier work, the calculations reported here use a
mesh in reciprocal space that is a factor of two denser in
each direction. For one case (Co/Cu), we checked that
no changes in relative spin currents greater than 10−3

occurred when the mesh was made another 2× 2 denser.
Evanescent states (which decay exponentially away from
the interface) play a crucial role in the calculation of
the reflection and transmission amplitudes. We have ig-
nored them in our spin currents computations. Their
effect is to change the wave functions in the immediate
vicinity (a few atomic layers) of the interface in such a
way that there is no true discontinuity in the transverse
spin current at the interface. As a practical matter, this
means only that the “interfacial” torque we compute is–
in reality–spread out over a few atomic spacings.

The two middle panels of Fig. 6 show a slice through
the Fermi surface of copper and the same slice through
the majority (dashed lines) and minority (solid) Fermi
surfaces of cobalt for the Co/Cu(111) system. The Fermi
surface topologies here are much more complicated than
the corresponding free electron topologies (cf. Fig. 3).
Moreover, as the Co minority Fermi surface shows, there
can be more than one pair of states for each parallel wave
vector. Consequently, we supplement every integral over
parallel wave vectors with a sum over all possible states
that move toward the interface for each parallel wave
vector. We index these states by n, refer to them as
associated with the nth sheet of the Fermi surface, and
adopt the notation knσ = {q, kxnσ} to label Fermi surface
wave functions. We drop the spin index σ in the non-
magnet.

The transverse pieces of the incident spin current for a real interface are

Qinxx =
1

4π

∫
d2q

(2π)2

∑
n

gp(kn) sin θ(kn) cosφ(kn) (50)

and

Qinyx =
1

4π

∫
d2q

(2π)2

∑
n

gp(kn) sin θ(kn) sinφ(kn). (51)

These differ from the corresponding free electron formulae by the sum over the sheet index n. That sum is restricted
to the sheets of the Fermi surface where the electrons move toward the interface.
As before, the efficacy of the spin filter can be judged from the interface transmission and reflection probabilities.

These state-to-state (n→ n′) quantities are

Tσnn′ =
vσn′

vn
|Tσnn′ |

2
(52)
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FIG. 6: Same as Fig. 3 for a real material interface: Co/Cu(111) with parallel wave vectors in the [110] direction. The two
middle panels show the Fermi surface for the non-magnet and the superimposed Fermi surfaces of the majority (dashed) and
minority (solid) states of the ferromagnet. The panel just above the magnetic Fermi surfaces is the probability for transmission
into the ferromagnet for majority (dashed) and minority (solid) electrons. The panel just below the non-magnetic Fermi surface
is the probability for reflection back into the non-magnet for majority (dashed) and minority (solid) electrons. The bottom
panel shows the phase in (56) acquired by an electron because its spin rotates upon reflection. The top panel shows the wave
vector difference (63) for a transmitted electron.

and

Rσnn′ =
|vn′ |

vn
|Rσnn′ |

2
. (53)

The absolute value is needed in (53) because vn′ < 0 and Rσnn′ must be non-negative. Fig. 6 shows the transmission
and reflection probabilities for one slice through the Co/Cu(111) Fermi surfaces.
The transverse components of the reflected spin current are

Qrefxx = −
1

4π

∫
d2q

(2π)2

∑
n

gp(kn) sin θ(kn)
∑
n′

|vx(kn′)|

|vx(kn)|
Re
[
R∗↑nn′R↓nn′e

−iφ(kn)
]

(54)
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and

Qrefyx = −
1

4π

∫
d2q

(2π)2

∑
n

gp(kn) sin θ(kn)
∑
n′

|vx(kn′)|

|vx(kn)|
Im
[
R∗↑nn′R↓nn′e

−iφ(kn)
]
. (55)

Here, the sum over n′ is restricted to the sheets of the Fermi surface where the electrons move away from the interface.
Similar to the free electron case, the dephasing of the reflected transverse spin current is determined by reflection
phases ∆φRnn′(q) where

R∗↑nn′R↓nn′ =
∣∣R∗↑nn′R↓nn′ ∣∣ ei∆φRnn′(q). (56)

The bottom panel of Fig. 6 shows that the Co/Cu(111) phases are both more complicated and exhibit greater
dispersion than the corresponding free electron results plotted in Fig. 3.
The transverse pieces of Qin and Qref written above are closely related to the mixing conductance, Gmix, introduced

by Brataas et al.19 and computed recently by Xia et al.23 In our notation,

Gmix =
e2

h
A

∫
d2q

(2π)2

∑
n

[
1−

∑
n′

|vx(kn′ )|

|vx(kn)|
R∗↑nn′R↓nn′

]
. (57)

This formula is relevant to situations where gp(kn), θ(kn), and φ(kn) in (50)-(55) are all constants–a restriction
implicit in the Landauer description of transport. In that case, the real and imaginary parts of Gmix are proportional
to the xx and yx components of Qin +Qref . From (14), the latter is proportional to the spin-transfer torque if we
neglect the transverse part of the transmitted spin current.19,22 For the systems treated by both of us, our numerical
results for spin-transfer torque agree semi-quantitatively with the mixing conductance calculations of Xia at al.
The transverse transmitted spin currents are

Qtrxx(x) =
1

4π

∫
d2q

(2π)2

∑
n

gp(kn)
sin θ(kn)

|vx(kn)|
Re


e−iφ(kn) ∑

n′′,n′

T ∗↑nn′′T↓nn′Φn′′n′(q, x)e
i(kx

n′′↑
−kx

n′↓
)x


 (58)

and

Qtryx(x) =
1

4π

∫
d2q

(2π)2

∑
n

gp(kn)
sin θ(kn)

|vx(kn)|
Im


e−iφ(kn) ∑

n′′,n′

T ∗↑nn′′T↓nn′Φn′′n′(q, x)e
−i(kx

n′′↑
−kx

n′↓
)x


 . (59)

Apart from the sums over n′ and n′′ (both restricted to sheets of the ferromagnetic Fermi surfaces where electrons
move away from the interface), these formula are less simple than the corresponding free electron results (46) and
(47) for two reasons. First, the transmission amplitudes, Tσnn′ , are complex rather than real. Second, the Bloch wave
functions ψσ(R, x,knσ) have a non-trivial dependence on the spatial variable R parallel to the interface plane. For
the latter reason, the transmitted spin currents contain a factor Φn′′n′(q, x) defined by

Φnn′(q, x)e
−i(kxn↑−k

x
n′↓
)x =

1

2A

∫
vx>0

dR
[
ψ∗↑(r,kn↑)v̂xψ↓(r,kn′↓)− ψ↓(r,kn′↓)v̂xψ

∗
↑(r,kn↑)

]
. (60)

This yields

Φnn′(q, x) =
vn

′↓
x + vn

′↓
x

2
(61)

when free electron wave functions are used in (60). Otherwise, Φn′′n′(q, x) is a complex, periodic function of x with
period equal to one layer spacing. Thus, it can be calculated once and propagated from layer to layer. A related
factor enters the reflected spin currents (58) and (59). However, because the spin up and spin down wave functions
are the same in the non-magnet, it reduces to the velocity factor in the numerator of those expressions.
Given the foregoing, it is sensible to define transmission phases ∆φTnn′ (q) so that

T ∗↑nn′T↓nn′Φn′′n′(q, x = 0) =
∣∣T ∗↑nn′T↓nn′Φn′′n′(q, x = 0)∣∣ ei∆φTnn′(q). (62)

This tells us that, unlike free electrons, the spins of Bloch electrons generally rotate when they transmit through a
real material interface. If the distribution of transmission phases is broad, substantial cancellation of the transmitted
spin current occurs at x = 0 when we sum over all transmitted electrons. This effect is independent of the spin filter,
which also acts at x = 0.

Any spin current that survives to propagate into the ferromagnet rapidly disappears due to differential spa-



13

tial precession. The (generalized) spatial precession fre-
quency is determined by the difference in wave vector
for different sheets of the majority and minority Fermi
surfaces:

∆kn′n′′ = kxn′↓ − kxn′′↑. (63)

The top panel of Fig. 6 illustrates the distribution of
∆kn′n′′ for a Fermi surface slice of Co/Cu(111). The
large dispersion seen there suggests that the spin cur-
rent decays very quickly in the ferromagnet. This is con-
firmed by Fig. 7, which shows the computed decay of the
transverse spin current for three interface orientations
of Co/Cu. The non-zero value of the dashed curves at
x = 0 shows that a large amount of rotation occurs upon
transmission. The Fermi surfaces are more complicated
than the free electron models, so the initial decay is more
complicated also. Nevertheless, both the (111) and (110)
orientations settle into behavior that is readily charac-
terized as a damped precession. The amplitude of the
precession for the (100) orientation is so small that it is
difficult to see whether it is precessing or not. In general,
there could be several decaying precessions with different
precession rates and different amplitudes.
It is worth noting that none of these curves (or analo-

gous curves for the other material pairs we have studied)
resembles the the bottom panel of Fig. 4 appropriate to
the s-d model. This lack of agreement is consistent with
the fact that essentially all the Fermi surface wave func-
tions in third-row ferromagnets contain more “localized”
3d character than “delocalized” 4s character.33

Figure 8 graphically summarizes our first-principles
spin current calculations for ten different interface com-
binations. The vectors labeled Qref and Qtr correspond
to x = 0 and reflect the effect of spin filtering and spin
rotation only. Qref is very small and, as we have empha-
sized, Qtr → 0 after a few lattice constants. Therefore,
the torque per unit area of interface is Qin+Qref � Qin.
Due to spin filtering, differential spin rotation, and differ-
ential precession, nearly all of the incident transverse spin
current is absorbed in the immediate vicinity of the inter-
face. For Co/Cu, Fe/Ag, and Fe/Au, the spin-filter ac-
counts for somewhat more than half of the effect and the
interface dephasing for the rest. For Ni/Cu and Fe/Cr
the spin filter effect is weaker. For Ni/Cu, the decay of
the precessing transmitted spin current plays a large role.
Of course, our calculations pertain to ideal, lattice-

matched interfaces. A variety of effects make the inter-
facial absorption of transverse spin even more efficient.
We have mentioned already that scattering in the fer-
romagnetic layer increases the rate of decay of the pre-
cession. Steps at the interface lead to increased dephas-
ing for both reflection and transmission. For thin layers
where the decay of the precession might not be complete,
the dephasing on passing through the second interface
generally leads to a further decay of the transverse spin
current. Thickness fluctuations further reduce the spin
current.
The interface torque we compute is interesting because
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FIG. 7: Decay of transverse transmitted spin current as a
function of distance from the interface for three orientations
of Co/Cu. For a unit incident transverse polarization, the
solid curve in each panel is Qxx(x). The dashed curve in each
panel is Qyx(x).

of the recent demonstrations of current-induced magneti-
zation switching.5,6 However, the material pair that opti-
mizes the switching is not determined by the conversion
of the spin current into a torque. This process is the
same for all of the interfaces considered. For the ideal in-
terfaces considered here, the optimum choice depends on
the ability of the material pair to generate a spin current
in the first place. This depends on the spin-dependent in-
terface resistances and the spin-dependent bulk conduc-
tivities. The Fe/Au and Fe/Ag pairs have the strongest
spin dependence of the interface resistance.34 However,
in reality the optimum combination will likely depend on
growth considerations. The general mismatch between
the body-centered-cubic Fe lattice and the face-centered-
cubic Au or Ag lattice will probably lead to poor growth,
unless the interface is forced to be (100) (where the ro-
tated lattices match quite well) and the number of steps
at the interface is kept quite small.

V. SUMMARY

In this paper, we used free electron models and first
principles electronic structure calculations to study the
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FIG. 8: Graphical representation of the interfacial torque and transverse spin currents for a series of real interfaces. The
x-components are horizontal and y-components are vertical. The horizontal arrow is the incident spin current directed along
the x-direction. The dashed arc indicates the reduction in spin current due to the “spin-filter” effect. The thick arrow is the
reflected spin current at x = 0. The dashed arrow is the transmitted spin current at x = 0. The thin arrow is the final torque
taking account of the fact that precessional averaging in the ferromagnet drives Qtr → 0 after a few lattice constants.

spin-transfer torque that occurs when a spin-polarized
current flows from a non-magnet into a ferromagnet
through a perfect interface. The origin of the torque is
a transfer of spin angular momentum from the conduc-
tion electrons to the magnetization of the ferromagnet.
The origin of the angular momentum transfer is the ab-
sorption of transverse spin current by the interface. We
identified three distinct processes that contribute to the
absorption: (1) spin-dependent reflection and transmis-
sion; (2) rotation of reflected and transmitted spins; and
(3) spatial precession of spins in the ferromagnet. When
summed over all Fermi surface electrons, these processes
reduce the transverse component of the transmitted and
reflected spin currents to nearly zero for most systems of
interest. Therefore, to a good approximation, the torque
on the magnetization is proportional to the transverse
piece of the incoming spin current.

To be more quantitative, we used the analogy between
charge current and spin current to show that a spin cur-
rent flowing in the +x̂ direction (perpendicular to the

interface) delivers a torque per unit area

Nc
A
= (Qin −Qtr +Qref) · x̂ (64)

to a microscopically small region around the interface.
Here, Qin, Qtr, and Qref are the incident, transmit-
ted, and reflected spin currents computed using incident,
transmitted, and reflected wave functions. We found the
latter by solving the one-electron stationary-state scat-
tering problem. In the quasi-classical approximation, the
total spin current is the sum of contributions from every
conduction electron.
Quite generally, the component of Nc parallel to the

ferromagnetic magnetization is zero. This is consistent
with our classical intuition. On the other hand, we found
that the transverse components of Qtr and Qref relevant
to (64) are also zero (or nearly so), except in very excep-
tional cases. This means that the entire transverse spin
current is absorbed (transferred to the magnetization)
in the immediate vicinity of the interface. As indicated
above, this is so due to spin filtering, differential spin
reflection, and differential spin precession.
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The spin-filter effect occurs because the wave function
for an incident electron with a non-zero spin component
transverse to the magnetization spin can always be writ-
ten as a linear combination of spin-up and spin-down
components. Then, because the reflection and transmis-
sion amplitudes differ for up and down spins, the up and
down spin content of the reflected and transmitted wave
functions (which are spatially separated) differ from both
each another and from the incident state. The spin cur-
rents directly encode this information. As a result, the
right side of (64) is non-zero. This is a one-electron effect
that operates independently for every electron.
The two other effects that help drive the transverse

parts of Qtr and Qref to zero occur when we sum over
the entire ensemble of conduction electrons. The first
arises because the spin of an electron generally rotates
when it is reflected or transmitted at the interface be-
tween a non-magnet and a ferromagnet. The rotation
is non-classical and the amount of rotation differs con-
siderably for electrons with wave vectors from different
portions of the Fermi surface. Phase cancellation occurs
when we sum over all electrons. In the end, we find that
very little remains of the reflected transverse spin cur-
rent. The cancellation of the transmitted spin current is
less dramatic.
Finally, due to exchange splitting, the electrons that

transmit into the ferromagnet possess spin-up and spin-
down components with the same total energy, EF, but

different kinetic energy and so different wave vectors.
This implies that each electron spin precesses (in space)
as it propagates away from the interface. However, like
the spin rotation angles, the spatial precession frequency
varies considerably over the Fermi surface. Consequently,
rapid dephasing of the transverse spin components of the
individual electrons occurs as the conduction electron en-
semble propagates into the ferromagnet. The net result
is a precessing spin current that damps out algebraically
within a few lattice constants of the interface.

Our first principles calculations show that the relative
importance of these three mechanisms differs for differ-
ent materials pairs and also for different crystallographic
orientations for the same material pair. Nevertheless, the
final result is the same in all cases: the transverse spin
current essentially disappears at the interface. The con-
comitant transfer of angular momentum delivers a torque
to the magnetization in the immediate vicinity of the in-
terface.
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