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Abstract

This paper deals with vision-based closed-loop control schemes for collision avoidance as well as

maintenance of clearance in a-priori unknown textured environments. These control schemes are based on

fuzzy logic and employ a visual motion cue, we call the Visual Threat Cue (VTC) that provides some

measure for a relative change in range as well as clearance between 3D surface and a fixated observer in

motion. It is a collective measure obtained directly from the raw data of gray level images, is independent of

the 3D surface texture and needs no optical flow information, 3D reconstruction, segmentation, feature

tracking or preprocessing. This motion cue is scale-independent, rotation independent and is measured in

[time-1] units.

Design of a closed-loop conventional controller for vision based navigation tasks pose a problem as the

system is complex and ill-defined. On the other hand fuzzy control which is closer in spirit to human

thinking and can implement linguistically expressed heuristic control policies directly without any

knowledge about the dynamics of the complex process. The fuzzy controllers were tested in real time using a

486-based Personal Computer and a camera capable of undergoing 6-DOF motion. Results are highly

encouraging.
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1 Introduction

When dealing with a moving camera-based autonomous navigation system, a huge

amount of visual data is captured. For vision-based navigation tasks (such as obstacle

avoidance, maintaining safe clearance, etc.), relevant visual information needs to be

extracted from the visual data and used in real-time closed-loop perception-action control

system. In order to accomplish safe visual navigation several questions need to be

answered, including:

1. What is the relevant visual information to be extracted from a sequence of images?

2. How does one extract this information from a sequence of 2D images?

3. How to generate control commands to the vehicle based on the visual information

extracted?

This paper provides answers to all three questions with emphasis on the third one i.e.,

generation of control signals for collision avoidance and maintenance of clearance using

visual information only.

Usually the process of driving or flying in a 3D environment involves a human

operator. The operator acts in part as a sensory feedback in the perception-action closed-

loop control to ensure safe navigation in real time. It becomes a difficult problem to

replace the human operator by a vision-based system to achieve similar tasks for the

following reasons: In outdoor navigation the environment is usually unknown and

unstructured, and the same 3D scene may result in many different images due to changes

in illumination conditions, relative distances, orientation of the camera, choice of fixation

point, etc., as well as various camera parameters such as zoom, resolution, focus, etc.

There is a need for an approach, to obtain relevant visual information about relative

proximity in the presence of the above mentioned factors and employ it as a set of

sensory feedback signals to accomplish the tasks of safe navigation.

The problem of automating vision-based navigation is a challenging one and has

drawn the attention of several researchers over the past few years (see for example [1-
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14]).   Usually identifying the surrounding object is not important for such tasks, i.e., is it

a tree, mountain or another vehicle; what is more important is whether a particular object

is an obstacle or not, i.e., is the camera on a collision course with it, is there enough

clearance, etc.? For navigation tasks recovering 3D scene and its attributes may not be

necessary as it may contain information which is not relevant for the task at hand. Visual

cues such as time-to-contact [12] and looming [10, 20, 21] carry important information

about the relative proximity. These cues do not need any reconstruction process which is

usually computationally intense and in many cases are sufficient for safe navigation.

It is well established in the literature (computer vision as well as psychology) that

optical flow plays an important role in the control of human and machine behavior in the

environment [15-19]. The extraction of optical flow from a sequence of images is

sensitive to noise in images and needs pre-processing like spatio-temporal smoothing

[22-24] which may be computationally expensive. Alternatives to optical flow

information as sensory feedback for obstacle avoidance include geometrical properties

like size, shape, contour and area of image entities, imaged texture [25, 26], focus [28-

30], etc.

 A differential invariant of the image field based visual information about time-to-

collision is presented in [14]. In [26] variations in image statistics are employed to extract

the four components of an affine transformation. A qualitative view of the use of these

components as sensory feedback information for collision avoidance is also presented

[26]. In [27] it is shown that the relative changes in edgels of visible texture in a unit area

to be equal to looming described in [10]. This approach of using edge density in an image

is an alternative to the use of flow based approach to extract looming which is very

sensitive to noise.

Fuzzy control is closer in spirit to human thinking and can implement linguistically

expressed heuristic control policies directly without any knowledge about the dynamics

of the complex process.  Research in the area of fuzzy control was initiated by Mamdani's
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pioneering work [47], which had been motivated by Zadeh's seminal papers on fuzzy

algorithms [48] and linguistic analysis [49.]. In the past few years several researchers

have addressed the use of fuzzy control for ill-defined  processes for which it is difficult

to model the dynamics (see for example [46, 50, 51]).

This paper deals with vision-based closed-loop control schemes for collision

avoidance as well as maintenance of clearance in a-priori unknown textured

environments. These control schemes are based on fuzzy logic and employ a visual

motion cue, we call the Visual Threat Cue (VTC) that provides some measure for a

relative change in range as well as clearance between 3D surface and a fixated observer

in motion. It is a collective measure obtained directly from the raw data of gray level

images, is independent of the 3D surface texture and needs no optical flow information,

3D reconstruction, segmentation, feature tracking or preprocessing. This motion cue is

scale-independent, rotation independent and is measured in [time-1] units.

Design of a closed-loop conventional controller for vision based navigation tasks

pose a problem as the system is complex and ill-defined. On the other hand fuzzy control

which is closer in spirit to human thinking and can implement linguistically expressed

heuristic control policies directly without any knowledge about the dynamics of the

complex process. The fuzzy controllers were tested in real time using a 486-based

Personal Computer and a camera capable of undergoing 6-DOF motion.

This paper is organized as follows: In section 2 an overview of the VTC is presented,

details of the control schemes are presented in section 3, in section 4 we present the

experimental results,  section 5 presents experimental results and analysis and finally

section 6 presents conclusion and an overview of future work.
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2 Overview of the Visual Threat Cue (VTC)

We review a visual motion cue called  the Visual Threat Cue (VTC) [43] that

provides some measure for a relative change in range as well as for  specific clearance

between a 3D surface and a fixated observer in motion.  This cue is independent of the 3D

environment and needs no a-priori knowledge about it. It is time-based, rotation

independent and does not need 3D reconstruction. This cue can be extracted directly from

the raw gray level data of images and does not need optical flow information,

segmentation, feature tracking and pre-processing. Mathematically  the VTC (for R > R0)

is defined as follows:

 VTC R
d R dt
R R R

=
−0

0

( ) /
( )

where R is the range between the observer and a point on the 3D surface,  d(R)/dt  is

the differentiation of R w.r.t. time and R0 is the desired minimum clearance and has the

same units as R. Note that the units of the VTC are [time-1]. The VTC has been shown to

be independent of the rotational motion and can be measured without knowledge about

R [43].

The VTC corresponds to a visual field surrounding the moving observer, i.e., there

are imaginary 3D surfaces attached to the observer that are moving with it, each of which

corresponds to a value of the VTC. The points that lie on a relatively smaller surface

corresponds to a relatively larger value of VTC, indicating a relatively higher threat of

collision. The VTC value on the minimum clearance sphere of R0 centered at the location

of the observer is the maximum which is infinity, indicating that the absolute distance

between the observer and the camera is the minimum clearance. See Figure (1). Note that

this field is not a sphere.
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Figure 2: Using the VTC in Navigation.
Note the clearance sphere

Based on this knowledge about the cue, one can demarcate the region around an

observer into safe, high risk and danger zones (see Figure (2)). This can be used to

directly generate control action tasks such as collision avoidance, maintenance of

clearance, etc. The VTC is related to, but different from, the time-to-contact and the

looming concepts [10, 12, 20, 21].

A practical method to extract the VTC from a sequence of images of a 3D textured

surface obtained by a fixated, fixed-focus monocular camera in motion has been

presented in [43]. This approach is independent of the 3D surface texture and needs

almost no camera calibration. For each image in such a 2D image sequence of a textured

surface, a global variable (which is a measure for dissimilarity) called the Image Quality

Measure (IQM) is obtained directly from the raw data of the gray level images. The VTC

is obtained by calculating relative changes in the IQM. This approach by which the VTC

is extracted can be seen as a sensory fusion of focus, texture and motion at the raw data

level. The algorithm to extract this cue works better on natural images including fractal-

like images, where more details of the 3D scene are visible in the images as the range

shrinks and also can be implemented in parallel hardware. The VTC can be used to

directly maintain clearance in unstructured environments.
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2.1 Image Quality Measure (IQM)

Local spatial gray tone variations in an image give rise to a visual pattern in the image

known as texture. These spatial gray level variations are due to the visual characteristics

of the 3D scene being imaged, the illumination, the range between the scene and the

observer, as well as due to camera parameters like zoom, aperture, resolution, focus, etc.

When there is a relative motion between a textured surface and a fixated, fixed-focus

moving observer, the perceived texture in the 2D image varies. For instance, consider the

case of a camera that is initially focused to a 3D surface at a very short distance and

gradually moves away from this surface. As a result, the perceived 2D image texture

varies from one image to another, mainly due to focus, i.e., the image of the scene in

perfect focus is very sharp and has many details, then as the camera moves away from the

scene, fine details gradually get smeared and eventually disappear (see Figure (3)). When

the image is in perfect focus, the dissimilarity, i.e., spatial gray level variations is very

high, and as the details get smeared the dissimilarity gets smaller and smaller. We

describe an IQM to measure the dissimilarity of the image. Using the relative temporal

variations in this IQM we extract the VTC. Next we present a brief overview of several

possible approaches to extract the dissimilarity of images, and describe a practical way to

extract the VTC from variations in the IQM.

The area of texture classification has drawn the attention of researchers in the area of

computer vision over the past two decades (see for example [31-39]). One of the earliest

areas of interest in the texture analysis was texture segmentation and scene analysis.

These approaches may be broadly classified as statistical approaches and approaches

based on structural properties. The statistical approaches usually employ features that

measure the coarseness and the directionality of textures in terms of the averages over a

windowed portion of the image. While structural methods on the other hand describe the

geometrical properties like size, shape, area, etc. of the objects in the scene. Structural

analysis is suitable for structured environments and also needs some a-priori knowledge
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about the scene. The statistical methods that are in use are mainly classified into the

following categories:

1. Spatial gray level dependence methods [31, 33, 34]

2. Spatial frequency based methods [33, 35]

3. Stochastic model based features [36, 37]

4. Heuristic approaches [38, 39]

The most popular being the spatial gray-level dependence and the stochastic model-

based approaches. Usually spatial gray level based approaches are probabilistic,

dependent on the number of gray levels in the image and computationally expensive.

Stochastic model approaches are dependent on the model of the texture. Among several

possible approaches to describe the quality of texture in an image, we extended an

approach presented in [40] to describe the dissimilarity of images using IQM. The

advantages of using this approach over the other approaches are:

1. It gives a global measure of quality of the image, i.e., one number which

characterizes the image dissimilarity is obtained.

2. It does not need any preprocessing, i.e., it works directly on the raw gray level data

without any spatial or temporal smoothing.

3. It does not need a model of the texture and is suitable for many textures.

4. It is simple and can be implemented in real time on parallel hardware.

5 It is non-probabilistic and is independent of the number of gray levels used in the image

Mathematically, the IQM is defined as follows [43]:

IQM
D

I x y I x p y q
q L

L

p L

L

y y

y

x x

x

r

r

c

c

i

f

i

f

= − + +
F
HG

I
KJ=−=−==

∑∑∑∑1
( , ) ( , )

where  I(x,y) is the intensity at pixel (x,y) and xi and xf are the initial and final x-

coordinates of the window respectively ; yi and yf are the initial and final y-coordinates
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of the window in the image respectively and Lc and Lr are positive integer constants; and

D is a number defined as D L L x x y yc r f i f i= + × + × − × −( ) ( ) ( ) ( )2 1 2 1 .

2.2 Extraction of the VTC from relative variations of IQM

Based on our experimental results [43], we observed that relative temporal changes in

the IQM behave in a very similar fashion to the VTC , i.e.,
d IQM dt

IQM
R

d R dt
R R R

( ) / ( ) /
( )

≅
−0

0

. The VTC  is independent of the magnitude of the IQM.

The following is a sample set of five images (out of 71) that corresponds to a texture

from Brodatz album [42] (see Figure (3)) as seen by a fixating, moving, fixed-focus

camera. The graphs of the measured IQM and VTC are obtained directly from the images

without additional processing. Note that the measured IQM (Figure (4)) is a "smooth"

function, resulting in good VTC values.  Very similar results were reported in [43] for

twelve different textures of the same album [42].

d= 200 mm d = 280 mm d = 400 mm d = 550 mm d = 900 mm

Figure 3: A sample of five images of a textured surface (D110) , d is the relative distance
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2.3 Qualitative view of {d(IQM)/dt}/{IQM}

As shown in the previous sections the VTC is defined only in a region beyond a

certain desired minimum clearance R0 and is not defined when the distance between the

camera is less than R0. Though we restrict ourselves to regions beyond the desired

minimum clearance there might be situations when one is in the region for which the

distance between the camera and the surface is less than R0. Since the VTC is undefined

in this region the VTC cannot be employed when the robot is in this region. However the

IQM and relative temporal variations in IQM  ({d(IQM)/dt}/{IQM}) can be used since it

is an image measure and is defined irrespective of the distance between the camera and

the surface. In this section we present an overall qualitative behavior of the IQM as well

as {d(IQM)/dt}/{IQM}.

Consider the case of a fixed focus camera that is initially focused to a 3D surface at a

very short distance say R0. As the camera moves away from the surface (R > R0) or

moves towards the surface (R<R0) the perceived 2D image texture varies from one image

to another mainly due to focus. The details in the image get smeared when R is not equal

to R0. As the details get smeared the dissimilarity of the image becomes smaller and

smaller. A plot depicting the qualitative behavior of the IQM versus the distance between

the camera and the surface is shown in Figure (5).  Experimental results to support this

qualitative behavior of the IQM which is basically a focus measure can be found in [44,

45].  A qualitative plot of {(d(IQM)/dt)}/{IQM} for a given speed is also shown in

Figure (5).
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Figure 5: Qualitative IQM and {(d(IQM)/dt)}/{IQM}for a given speed
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3 Control Schemes

In this section we describe the vision-based fuzzy control schemes employed to

achieve the tasks of collision avoidance and maintenance of clearance using the

{(d(IQM)/dt)}/{IQM} as sensory feedback signal.

In this section we present two vision-based fuzzy control schemes to accomplish the

following tasks:

Task I: Collision Avoidance: The task is to stop a robot in motion in front of a

textured surface  when the relative distance between the robot and the surface is a desired

one using visual information only.

Task II: Maintenance of Clearance: The task is to follow a textured surface using

visual information only.

Images
Relevant
Visual

Information
Fuzzification

Rule BaseDefuzzificationSteering
Commands

Mobile
Robot

Camera
3D

Scene

 Figure 6: Block diagram of the control scheme

3.1 Control Scheme I: This control scheme has been employed to achieve  task I.

Initially the camera is focused to distance which is equal to R0. For ranges R greater than

R0, as the range increases the IQM (denoted as C from now on) value decreases and vice-

versa. Based on the relative temporal variations in the IQM value, we divide the region in

front of the mobile robot into three different regions as shown in Figure (2). Region I can
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be seen as a safe region (refer to Figure(7)) and regions II and III can be seen as danger

zones.

The control actions are based on the fuzzy relative temporal changes in IQM and can

be described by the following rules, (d(.)/dt indicates differentiation of (.) with respect to

time, {d(IQM)/dt}/{IQM} = {d(C)/dt}/{C}), (assume t2 >t1):

Rule I: This rule corresponds to the case when the robot is in the safe zone (region I

in Figure (7)). In this zone, no control action should be taken, i.e., no change in speed is

necessary. The sensing and action corresponding to this region can be expressed in the

IF-THEN format as follows.

If 
C

C
t t

•

=

F
H
GG

I
K
JJ >

2

0  and  
C

C
t t

•

=

F
H
GG

I
K
JJ >

1

0 and 
C

C

C

C
t t t t

•

=

•

=

F
H
GG

I
K
JJ >

F
H
GG

I
K
JJ

2 1

 Then No Action

Note: 
C

C
t t

•

=

F
H
GG

I
K
JJ >

2

0  and  
C

C
t t

•

=

F
H
GG

I
K
JJ >

1

0 indicates the motion of the robot towards the

surface when the robot is in the region beyond the desired minimum clearance.

Rule II: This rule corresponds to region II in Figure (7). In this region it is required to

stop the moving robot if the robot is moving towards the surface and if it crosses the

desired clearance. The motion of the robot towards the surface for this region can be

expressed in an IF-THEN format as follows.

IF  
C

C
t t

•

=

F
H
GG

I
K
JJ >

1

Threshold  and  
C

C
t t

•

=

F
H
GG

I
K
JJ <

2

0   Then Stop
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Rule III: This rule corresponds to region III in Figure (7). In this region the robot is

required to stop if it is moving towards the surface. Note that in this region 
C

C

•F
H
GG

I
K
JJ< 0 . The

motion of the robot towards the surface for this region can be expressed in the IF-THEN

format as follows:

If 
C

C
t t

•

=

F
H
GG

I
K
JJ <

2

0  and  
C

C
t t

•

=

F
H
GG

I
K
JJ <

1

0 and 
C

C

C

C
t t t t

•

=

•

=

F
H
GG

I
K
JJ >

F
H
GG

I
K
JJ

1 2

 Then Stop.

Rule IV: IF none of the above situations occur THEN take no action.

Usually this situation arises when the robot is either stationary or moving away from

the surface.

All four rules for the control scheme I can be summarized as follows:

Rul
e

                              Sensing Action

1

IF

C

C
t t

•

=

F
H
GG

I
K
JJ >

2

0  and  
C

C
t t

•

=

F
H
GG

I
K
JJ >

1

0 and

 
C

C

C

C
t t t t

•

=

•

=

F
H
GG

I
K
JJ >

F
H
GG

I
K
JJ

2 1

 (t2 > t1)
THEN No Action

2

IF

C

C
t t

•

=

F
H
GG

I
K
JJ >

1

Threshold  and

 
C

C
t t

•

=

F
H
GG

I
K
JJ <

2

0   (t2 > t1)
THEN Stop

3

IF

C

C
t t

•

=

F
H
GG

I
K
JJ <

2

0  and  
C

C
t t

•

=

F
H
GG

I
K
JJ <

1

0

and 
C

C

C

C
t t t t

•

=

•

=

F
H
GG

I
K
JJ >

F
H
GG

I
K
JJ

1 2

 (t2 > t1)
THEN Stop

4 IF ELSE THEN No Action
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Table 1: Summary of rules for vision-based collision avoidance

0

R
0

R=

R 0 Distance to which camera is focused

Distance between the camera and the surface R

Threshold

C
C

Region I

Region II

Region III

Figure 7: Qualitative plot of the relative variations of IQM {d(C)/dt}/{C}

3.2 Control Scheme II: This control scheme has been employed to accomplish task II,

i.e., maintenance of clearance. Refer to Figures (8a) and (8b).
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Figure 8a: Region A corresponds to the left of
the camera and region B corresponds to the right of

the camera

Region A Region B

C
C
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Figure 8b: The image
corresponding to Figure (8a).

In Figure (8a) the left region (region A) is closer to the camera than the right region

(region B). The camera is initially focused at a desired minimum clearance R0. As

mentioned earlier, when the distance between the camera and the surface is greater than

the desired minimum clearance, the points located at a greater distance have a relatively

smaller relative temporal variations in the IQM, i.e., {d(C)/dt}/{C} than those located at a

relatively smaller distance. The computer compares the {d(C)/dt}/{C} of the left window

as shown in Figure (8b) with the {d(C)/dt}/{C} of the right window  This is the key to

generate steering commands to the robot, i.e.,  the difference between (
C

C

•

) corresponding

to the left window (denoted as  
C

C

• Left

 )  and (
C

C

•

) corresponding to the right window

(denoted as  
C

C

• Right

)  is the control signal for control scheme II. Note that a change in the

direction of motion of the robot can be accomplished by changing forward, lateral or both

components of velocity (as shown in Figure (8a)). When the robot is in a region beyond

the desired minimum clearance the change in heading direction is generated by

controlling only the lateral component. When the robot is in the clearance zone both
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lateral as well as forward velocity components are controlled. The control scheme can be

explained by IF-THEN rules as follows (assume t2 > t1):

Rule I:  IF 
C

C

C

C

•

=

•

=

>
t t2

Left

t t1

Left

 and 
C

C

C

C

•

=

•

=

>
t t2

Right

t t1

Right

 and (
C

C

C

C

•

=

•

=

−
t t2

Left

t t2

Right

) is approximately

zero THEN no change in the velocity.

According to this rule when the robot approaches the surface and if both the left and

right regions are very far from the robot then there is no change in the current velocity.

Region A and region B are beyond the desired minimum clearance.

Rule II: IF 
C

C

C

C

•

=

•

=

>
t t2

Left

t t1

Left

 and 
C

C

C

C

•

=

•

=

>
t t2

Right

t t1

Right

 and (
C

C

C

C

•

=

•

=

−
t t2

Left

t t2

Right

) is small THEN

motion to the right is small.

Rule III: IF 
C

C

C

C

•

=

•

=

>
t t2

Left

t t1

Left

 and 
C

C

C

C

•

=

•

=

>
t t2

Right

t t1

Right

 and (
C

C

C

C

•

=

•

=

−
t t2

Left

t t2

Right

) is medium

THEN motion to the right is medium.

Rule IV: IF 
C

C

C

C

•

=

•

=

>
t t2

Left

t t1

Left

 and 
C

C

C

C

•

=

•

=

>
t t2

Right

t t1

Right

 and (
C

C

C

C

•

=

•

=

−
t t2

Left

t t2

Right

) is big THEN

motion to the right is big.

Rule V: IF 
C

C

C

C

•

=

•

=

<
t t2

Left

t t1

Left

 and 
C

C

C

C

•

=

•

=

>
t t2

Right

t t1

Right

 THEN motion to the right is big and

reverse the current direction of motion.
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According to this rule when the region A is within the desired clearance and region B

is in the region beyond the desired clearance, the desired control is to move to the right

and move backwards.

Rule VI: IF 
C

C

C

C

•

=

•

=

<
t t2

Left

t t1

Left

 and 
C

C

C

C

•

=

•

=

<
t t2

Right

t t1

Right

 THEN motion to the right is big and

reverse the current direction of motion.

According to this region both region A and region B are within the desired clearance

region. The desired control action is to move the robot backwards.

Rule VII: IF none of the above situations occur THEN take no change in the

velocity.

Usually this situation arises when the robot is either stationary or moving away from

the surface.

3.3 Membership Functions

In this section we present a qualitative view of the membership functions employed

for fuzzification.

3.3a Control Scheme I: Since only two modes of operation are necessary in this control

scheme, no membership functions are employed in this control scheme.

3.3b Control Scheme II: In this the section the membership functions used in the

Control Scheme II are described. We employ linear membership functions as shown in

Figure (9).
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3.4 Defuzzification

Defuzzification of the inferred fuzzy control action is necessary in order to produce a

crisp control action. Since monotonic membership functions are used, we use

Tsukamoto's defuzzification method, which is stated as follows:

Z
yi

i

n

i

i
i

n
∗ =

=

=
∑

∑

α

α

1

1

where Z* is the defuzzified crisp control command and αi is the weight

corresponding to the rule i; yi is the amount of control action recommended by rule i and

n is the number of rules.

We used the ratio of the shaded area in Figure (10) to the area of the triangle as the

firing strength and is derived to be:

αi = βi(2-βi)

when βi equals 1, the shaded area equals the area of the triangle, hence αi is 1
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4 Implementation Details

The control algorithms presented in the previous sections are implemented on a 6-

DOF vision-based flight simulator controlled by a 486 based Personal Computer. A CCD

video camera is used to obtain the images of the 3D textured environments. These images

are digitized by an image processing PC-board ITEX PC-VISION PLUS. A block

diagram of the experimental setup is shown in Figure (11a). Photo copies of texture

pattern (D5, D110 from [42], see Figure (12)) pasted on a flat surface is presented as the

obstacle along the path of the robot (see Figure (11b)). For both control schemes the

camera is initially focused to the desired minimum clearance (R0 = 200 mm.). We use

qualitative measures for fuzzy sensing and action (small, medium, big, etc.) rather than

the exact speeds.

  

VIDEO
MONITOR

PC
MONITOR

IMAGE PROCESSOR

486/50MHz BASED
PERSONAL

COMPUTER

SCENE
VIEW

ANALOG
OUTPUT
SIGNALS

6-DOF POSITION &
ORIENTATION

ROBOT
CONTROLLER

CCD
CAMERA

SIMULATOR

Textured Surface 

Figure 11a: Block  diagram of  implementation
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Textured 
SurfaceRobot

Camera

          Figure 11b: Camera mounted on the Robot

D5 D110
Figure 12: Textures used in the experiments

4.1 Control Scheme I

A window of size 50 X 50 pixels is chosen in the center of the image to evaluate the

visual feedback signal {d(C)/dt}/{C}. According to the rules presented in the previous

section the crisp control action is (either move or stop) is generated. Two different speeds

were employed in this control scheme (speed2 > speed1).

4.2 Control Scheme II

Two windows (left and right) each 50 X 50 pixels are opened in the image. In each of

these windows, the visual parameter {d(C)/dt}/{C} is evaluated and based on the

difference between left and right values an appropriate control signal is generated. This

control scheme was tested for four different orientations of the texture surfaces used.
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5 Results and Analysis

 In this section we present the results and analysis of the control schemes are

presented.

5.1 Control Scheme I

 Two different speeds were used to test the braking capability of the control

algorithm. We observed that the greater the speed of the robot, the greater is the error

between the desired and actual values of the clearance between the robot and the surface

(see Figure (13)). The results can be summarized as follows:

No. Texture Speed Desired. Actual Error

1 D5 Speed1 200 mm. 180 mm. 20 mm.

2 D5 Speed2 200 mm. 165 mm. 35 mm.

3 D110 Speed1 200 mm. 180 mm. 20 mm

4 D110 Speed2 200 mm. 165 mm. 35 mm.
Table 2: Summary of vision-based collision avoidance results

Desired Clearance

Time (s)

error

0Distance betweensurface and camera R

R 0

Figure 13: Control scheme I

5.2 Control Scheme II

The lateral and longitudinal components of the heading vector were recorded. The

resultant was plotted manually (see Figures (14-21)). All the four experiments in this

control scheme employed the same rule base. The error between the desired path and the

actual path is highly dependent upon the choice of fuzzy membership functions, rule-base
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and defuzzification schemes used. Addition of more rules to the existing ones may

improve the error between the desired and actual paths.

Desired 
Clearance

Textured Surface

Actual Path Desired Path

70 deg

Figure 14: Maintenance of Clearance: Actual Data for Texture D110
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Textured Surface

Desired 
Clearance

Desired PathActual Path

65 deg

Figure 15: Maintenance of Clearance: Actual Data for Texture D110
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Desired
Clearance

Textured Surface

Actual Path

Desired Path

55 deg

Figure 16: Maintenance of Clearance: Actual Data for Texture D110

Textured Surface

Desired 
Clearance

Actual Path Desired Path

45 deg

Figure 17: Maintenance of Clearance: Actual Data for Texture D110
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Actual Path 

70 deg

 Figure 18: Maintenance of Clearance: Actual Data for Texture D5



27

Textured Surface

Desired 
Clearance

Desired PathActual Path

65 deg

 Figure 19: Maintenance of Clearance: Actual Data for Texture D5
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Desired 
Clearance

Textured Surface

Actual Path Desired Path

55 deg

Figure 20: Maintenance of Clearance: Actual Data for Texture D5
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Desired
Clearance

Textured Surface

Desired PathActual Path

45 deg

Figure 21: Maintenance of Clearance: Actual Data for Texture D5
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6 Conclusions and Future Work

This paper presented two vision-based fuzzy logic control schemes using relative

temporal variations in the image dissimilarity for the tasks of collision avoidance and

maintenance of clearance. The use of relative temporal variations of image dissimilarity

needs no optical flow information, segmentation or feature tracking. These control

scheme demonstrate the use of vision as a sensory feedback signal in unknown

environments for two navigation tasks. The control schemes are approximate and do not

take into account the robot dynamics. Currently we are developing a scheme that takes

into account the temporal sampling and robot dynamics. This paper deals with linear

membership functions only. Several other monotonic functions are currently being

employed. It is also possible to implement classical control techniques like PD, PID

control and use a fuzzy logic controller as a supervisor to monitor the PD, PID control

schemes.
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