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Abstract.  Differences between the deliberative and reactive aspects of behaviour
have led to different scientific approaches that have divided the field of cognitive
research for at least a century. In the tradition of the behaviourist school of
psychology, many present day researchers in advanced robotics and artificial
intelligence have abandoned inquiry into the complexities of cognitive behaviour in
favour of a minimalist philosophy that focuses primarily on stimulus-response
reactivity. In contrast, the Real-time Control System (RCS) developed at NIST and
elsewhere over the past two decades provides a model for bridging the gap between
deliberative and reactive behaviours. RCS is a reference model architecture for
intelligent systems design that consists of a hierarchically layered set of processing
nodes. In each node, there are both cognitive and reactive elements. At each {ayer,
entities are recognized, tasks are deliberatively planned, and feedback from sensors
closes a reactive control loop. RCS thus integrates and distributes deliberative and
reactive functions throughout the entire hierarchical architecture, at all levels and time
frames. A comparison is made between RCS and subsumption and some illustrative
examples of RCS applications are given.

1. Introduction
In recent years, many researchers in advanced robotics and artificial intelligence have
abandoned inquiry into the complexities of cognitive behaviour in favour of a
minimalist philosophy that denies the need for complicated world models and internal
representations of knowledge, sophisticated analysis of situations and events, or
complex reasoning about the past or planning for the future. In many laboratories,
it has become fashionable instead to study machines that simply react, without resort
to explicit representations or logical reasoning (Brooks 1990). Attempts to understand
the mechanisms of perception and cognition have been replaced by the study of
systems wherein signals travel directly from sensors to actuators without mediating
cognitive processes that estimate, recognize, reason, or analyse. The study of behaviour
is reduced to that which is emergent and reactive without consideration of what is
intentional and planned. Abstract knowledge and reason play little or no role.
Differences between the deliberative and reactive aspects of behaviour have puzzied
philosophers and scientists for centuries. There have developed different schools of
inquiry that have divided the field of cognitive research for at least a century (Flanagan
1991). The current minimalist philosophy shares much in common with the
behaviourist movement that dominated the field of experimental psychology earlier
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in this century. The behaviourist school of psychology championed by Watson and
Skinner (Skinner 1953) admitted no concept of intentionality or internal represen-
tation, neither in their experiments, nor in their theories. Stimulus-response was
their entire domain of interest. Learning based on reward and punishment of
behaviour was the primary focus of experimentation. In some respects, Rodney
Brooks is to robotics what B. F. Skinner was to psychology.

The rationale given by the behaviourists for banishing notions of intent and internal
knowledge was that it was necessary to eliminate unobservable factors such as free
will, motivation, and intention, and to disallow supernatural agents such as the spirit
and soul, in order to place the study of human behaviour on a rational scientific basis.
However, in so doing, the behaviourist school alse eliminated from consideration the
most important features of intelligent behaviour, namely the ability to pursue internal
goals, to think about and plan for the future, to reason using abstract concepts, and
to imagine things that are not directly observable.

The basis for the minimalist approach to robotics research is partly a revolt against
traditional Al preoccupation with symbolic logic, and partly pragmatic. There are
fundamental problems inherent in attempting to describe the richness of the natural
world entirely in terms of symbols and lists. It is difficult to control high-performance
machines in ¢complex real-world environments using symbolic logic and predicate
calculus. There are immense practical problems in building algorithms that can
perform image processing, symbolic reasoning, and search-based planning fast enough
to incorporate these operations in a closed-loop reactive control system. It is not
uncommon to see supposedly ‘intelligent” laboratory robots moving painfully slowly,
with long pauses for image analysis, planning, and reasoning between each movement.
Image processing systems often require many seconds, even minutes or hours, of
processing time to analyse a single picture.

It is much easier to build robotic systems that react in real time if computational
complexity is kept to a minimum. Minimalist machines that react simply but
immediately to sensory input offer an attractive alternative to more complex
traditional machine intelligence. The behaviour of the minimalist robots is certainly
interesting to watch, and to many observers appears more intelligent than that of their
slower moving counterparts. It is surprising to most people how much complex
behaviour can be generated by simple machines equipped with a few sensors when
placed in a complex environment. Robots with minimal sensing and computational
power can wander about a room, avoid collisions, and acquire objects of various
kinds. Computer simulations of minimalist cooperative behaviour such as flocking, or
schooling, or even hunting in packs have shown how complex behaviours can emerge
from very simple algorithms using only primitive sensors. Studies of agent archi-
tectures have demonstrated that groups of independent agents using simple negotiating
tactics can generate mutually beneficial strategies quickly and efficiently.

There is also considerable evidence from the natural world that minimalists
strategies can be successful. Ants and termites are able to build nests consisting of
complex networks of tunnels and chambers with only the most primitive sensory
apparatus and virtually no reasoning capabilities. Spiders can build webs that are
engineering marvels, and use them skillfully to capture prey. There are many species
that have survived quite successfully for very much longer than human beings without
any significant deliberative capabilities whatsoever. Reflexive behaviour coupled with
instinct is obviously all that is needed for lower forms such as insects to succeed in
propagation of the species.
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However, this does not provide an explanation for intelligence near the top of the
evolutionary ladder. Human behaviour is strongly influenced by internal knowledge,
abstract reasoning, and goal directed intentions. Human visual observations are rich
in detail. We perceive the visual world not simply as an array of pixels or moving blobs,
but as scenes filled with complex objects in sophisticated relationships that can be
understood and subjected to reasoned analysis. Objects and situations can be evaluated
in terms of abstract knowledge retrieved from memory and not directly observable.
We routinely devise intricate strategies to pursue goals, to avoid risk, and to compete
for wealth, power, and social status. In humans, spoken and written languages can
convey abstract ideas, and can relate tales of adventure and romance that evoke
emotional feelings of love, hate, fear, and triumph.

Humans are also capable of reasoning about the past and planning for the future.
They can pursue actions based on goals that are often unrelated to current sensory
input. People can make plans for tomorrow, next week, and next year. They can
visualize the results of future actions, and estimate costs, risks, and benefits. They can
construct mental images of things that can only be imagined, such as gods and devils,
angels and ghosts, germs and galaxies, molecules and black holes. They can imagine
and dream, hope and fear. Much of human behaviour is more strongly influenced by
internal models such as career goals, or belief in future rewards in heaven, than by
current conditions that can be directly observed by sensors.

The ability to see at a distance, to recognize objects, to analyse situations, to
estimate states of the world that are not directly observable, to reason about and plan
for the future, to calculate the capabilities and intentions of an opponent, and to
communicate this kind of information with others — these are the characteristics of
higher levels of intelligence. Without accounting for these phenomena, no theory can
claim to explain intelligence. These capabilities cannot be achieved without internal
representations that are rich and complex, and that permit representation of both
iconic and symbolic (i.e. depictional and propositional) knowledge. Understanding
how such behaviours are generated should remain at the centre of advanced robotics
and artificial intelligence research.

Thus, although the minimalist approach has demonstrated that simple reflexive
mechanisms can produce complex and interesting behaviour, this important result
should not be interpreted as a shortcut to understanding intelligence or as a substitute
for the study of higher level cognitive mechanisms. Simple behaviours alone seldom
succeed except when applied in large numbers. Termites and cockroaches are
successful primarily because they reproduce so rapidly that the fate of any individual
is irrelevant, The fact is that simple strategies rarely defeat sophisticated intelligence
when applied one-on-one. The run-and-hide tactic of the mouse is only temporary
protection against a determined wait-and-pounce strategy of a hungry cat. The
schooling behaviour of fish provides no defence against a well designed fisherman’s
net. The use of sticks and clubs rarely succeeds against the bow and arrow, or the high
powered rifle. Primitive hunting and gathering societies have little chance against
agricultural or industrial technologies.

This does not mean reflexive behaviour is unimportant, even for humans. There is
often no time to plan, and even well laid plans cannot always prevent bad things from
happening. Unexpected events occur, and when they do, the ability to react quickly
may be more important than the capability of deep analysis. Even humans have, and
need, reflexes. Many human abilities to hunt prey, escape danger, and compete for
territory and social status depend on quick reaction to unexpected sensory input.
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Long-term goals and deliberative strategies often cannot be successfully carried out
without quick reaction to rapidly changing events in a competitive and unpredictable
world environment.

Therefore, the central issue in understanding intelligence is not in choosing between
deliberative OR reflexive systems, but in understanding how to combine and blend
both deliberative AND reflexive systems in a single integrated architecture that can
both plan for the future and react to unexpected events in the present so as to produce
a seamless continuum of behaviour. Truly intelligent behaviour consists of both
deliberative mechanisms that generate plans and strategies for looking ahead so as to
avoid danger and achieve desirable goals, and reflexive mechanisms that deal with
immediate reactions to sensed conditions. Human intelligence is a sophisticated
combination of goal-driven and reactive behaviours—a mixture of deliberative and
reflexive mechanisms. As species ascend the evolutionary ladder, the deliberative does
not replace the reflexive, but is added to, and overlaid on, the reflexive. Intelligence
evolves and grows as the capacity to plan and imagine the future is combined with the
more primitive capabilities to react and respond. The central issue in designing
intelligent systems is how to integrate both deliberative and reflexive capabilities into
a single efficient control system architecture.

2. Bridging the gap

The Real-time Control System (RCS) (Albus 1981, 1991, 1993) developed at NIST and
elsewhere over the past two decades provides, among other things, a model for
bridging the gap between the deliberative and the reflexive. RCS is a reference model
architecture for intelligent systems design that consists of a hierarchically layered set
of processing nodes connected together by a network of communications pathways as
shown in Figure 1. At each layer of the RCS hierarchy sensory data are processed,
entities are recognized, world model representations are maintained. At each level
there are both deliberative and reflexive elements. Tasks are deliberately decomposed
into plans for parallel and sequential subtasks, to be performed by cooperating sets of
subordinate agents. Also at each level, feedback from sensors reflexively closes a
control loop allowing each agent to respond and react to unexpected events. The result
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Figure 2. A typical node in the RCS architecture.
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is a system that combines and distributes deliberative and reflexive features throughout
the entire hierarchical architecture, with both planned and reactive capabilities tightly
integrated at all levels and time frames.

Each node in the RCS architecture can be constructed from four basic types of
processing modules: Behaviour Generating (BG), World Modelling (WM), Sensory
Processing (SP}, and Value Judgement (VJ); plus 2 Knowledge Database (KD) and
Operator Interface module. These are shown in Figure 2. The nodes are serviced by a
Communications system that communicates information between nodes, modules,
and submodules.

3. Behaviour Generation (BG) modules

Each BG module contains a job assignor (JA), a set of schedulers (SC), a plan selector
(PS), and a set of executor (EX) functions (or submodules) as shown in Figure 3. The
JA, SC, and PS submodules perform deliberative planning functions. The EX
submodules perform reactive plan execution and servoing functions.

Within the BG modules, each executor together with its supporting scheduler (plus
associated world modelling, knowledge database, and sensory perception modules)
acts as an agent. The set of executors and schedulers in the BG module make up a set
of cooperating agents. Tasks arriving at the input of the BG module are decomposed
into job assignments for the set of agents. The job assigned to each agent is further
decomposed into a series of subtasks by the corresponding scheduler (possibly in
cooperation with schedulers of other agents). Together the job assignor and schedulers
function so as to generate one or more tentative plans for accomplishing the task.
Several plans may be able to achieve the task goal. The plan selector selects the best of
the possible plans for execution and places it in a coordinated agents plan buffer. Each
Executor then executes the piece of the selected plan prepared for it by its own
scheduler.

The JA, SC, and PS functions are planning functions that deliberatively select or
generate a plan to achieve the task goal. The EX functions are reactive functions that
reflexively respond to current sensory feedback.

3.1. Planning

BG modules can accommodate a variety of planning algorithms. These can range
from simple table look-up of pre-computed plans (or scripts), to real-time search of
configuration space, or game theoretic aigerithms for multi-agent cooperating or
competitive groups.

Plans may be selected or synthesized by the job assignor (JA) and scheduler (SC)
submodules. JA functions distribute jobs and resources to agents, and transform
coordinate systems from task to subtask coordinates (e.g. from end-point, or tool,
coordinates to joint actuator coordinates). SC functions compute a temporal schedule
of subtasks for each agent and coordinate schedules between cooperating agents (e.g.
coordinate joint actuator trajectories to generate desired end-point trajectories).
Together, the assignment of jobs and resources to agents, the transformation of
coordinates, and the development of a (possibly coordinated) schedule for each agent,
constitutes the synthesis of a plan. Therefore, output from the JA and SC submodules
is a plan.
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Tentative plans are sent to the world model (shown in Figures 2 and 4) where
expected results are simulated. Expected results are sent to the value judgement (VI)
medule for cost/benefit evaluation, and evaluations are returned to the plan section
(PS) submodule for a decision as to the best plan of action. By iteration through this
planning loop, the space of possible plans can be searched, with the PS function
selecting for execution the coordinated agents plan receiving the best VJ evaluation.

RCS can accommodate a variety of planning algorithms from case-based plan
selection from a library of pre-computed scripts, to an A* search of configuration
space. Plans may be computed off-line long before execution, or in real-time as
execution is proceeding. Anytime planning algorithms can be accommodated.

In all cases, plans must be synthesized prior to execution. In highly structured and
predictable environments, plans may be computed off-line, long before execution. For
example, in manufacturing plants, shop level planning is often done off-line in a batch
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Figure 3. Behaviour generation (BG) module showing a job assignor that allocates
jobs and resources to three agents, each consisting of a scheduler and an executor.
A plan selector selects the best of several alternative plans generated by the job
assignor and schedulers for execution by the executors. The executors with their
supporting schedulers, world modelling, knowledge database, and sensory per-
ception modules comprise agents.
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mode computing environment, once a day, or once a week. However, this produces
plans that often become obsolete shortly after execution begins. As the uncertainty in
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LB B

Task commands 10 level 1



The NIST real-time control system (RCS) 165

the environment increases, plans need to be computed nearer to the time when they
will be executed, and be recomputed as execution proceeds in order to address
unexpected events.

For uncertain environments, plans must be recomputed frequently, either on
demand, or at repetitive cyclical intervals. The response time of a real-time planning
loop must be at least such that a new plan is generated at each level before the
corresponding executor finishes the old plan. In highly uncertain environments, it is
best if the planner generates a new plan before the executor completes the first step or
two in the current plan.

At each RCS level, plans are computed to a given planning horizon. The length of
the planning horizon is a distinguishing characteristic of a RCS level (see Figure 1).
The resolution of plans is such that at each level, plans contain on the order of ten
sequential subtasks for each agent. On average, planning horizons shrink by about an
order of magnitude at each lower level, and the number of subtasks to the horizon
remains constant. Thus, the temporal resolution of subtasks increases about an order
of magnitude at each lower level. Planning horizons at high levels may span months
or years, while the planning horizon at the bottom level typically is 30 milliseconds or
less. Therefore, the number of levels required in a RCS hierarchy is approximately
equal to the logarithm of the ratio between the planning horizons at the highest and
lowest levels.

At each hierarchical level, plans are expressed in a vocabulary of task commands
that can be accepted as input by the executor (EX) submodules at that level.

3.2, Execution

For each agent at each level, there is an executor {EX) function (or submoduie). The
EX function compares the desired subgoal of the current plan subtask with the current
estimated state of the world from the world model knowledge database (KD}). The
EX function then executes a control law designed to reduce the difference between the
subgoal of the current plan subtask and the current estimated state of the world. The
set of schedules of subtasks in the plan corresponds to a set of reference trajectories for
the corresponding EX submodules. The estimated state of the world in the KD
corresponds to a feedback signal. Each EX module thus functions as a servo-
mechanism, steering its agent to follow the reference trajectory synthesized by the JA
and SC submodules and selected by the PS submodule.

The repetition rate of the EX cycle corresponds to the bandwidth of the control loop
at that level. This repetition rate should be an order of magnitude faster than the
average step in the plan is completed, and hence about a hundred times the reciprocal
of the planning horizon at each level.

Qutput from each EX submodule becomes an input command to a BG module at
the next lower level. At the lowest level, the output from each EX goes to an actuator.
At all other levels, the output goes to the job assignment submodule in the BG module
at the next lower level.

by the WM module with perceived input from sensors. It has algorithms for
recognizing entitics and clustering entities into higher level entities. The value
judgement (VJ) module evaluates plans and places values on entities recognized in
the observed sensory input.
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The EX functions are reactive, or reflexive, elements that generate sensory
interactive behaviour. They are concerned with the immediate moment. The planning
functions performed by job assignment JA, scheduling SC, WM simulation, VI
evaluations, and plan selection PS functions are deliberative elements. They are
preoccupied with the future. The RCS architecture thus mixes reactive and deliberative
elements in BG modules at each level of architecture. At lower levels of the RCS
hierarchy, the reflexive execution elements predominate and the planning elements are
relatively simple. At higher levels, the reverse is true — deliberative planning elements
consume most of the computing resources, and reflexive execution elements decrease
in relative importance,

4. World Modelling (WM) modules
The WM modules perform four basic functions:

(a) WM functions maintain the knowledge database (KD), keeping it current and
consistent. They update state estimates in the knowledge databasec based on
correlations and variance between world model predictions and sensory observations
at each node. Both iconic and symbolic representations are maintained. Updating
symbolic representations requires a transformation from iconic to symbolic repre-
sentations. WM functions enter new entities into the knowledge database and
maintain the links between symbolic data structures that define relationships between
entities.

(b) WM functions generate predictions of expected sensory observations that
enable sensory processing (SP) modules to perform correlation and predictive filtering.
They use symbolic representations to generate iconic images, masks, and windows that
can support visualization, attention, and model matching.

(c} WM functions respond to queries from the BG molecules regarding the state of
the world or the state of the controller. They act as question answering systems, and
transform information into the coordinate system required by the task.

(d) WM functions perform simulations necessary to support the planning require-
ments of the BG modules. This requires dynamic models to generate expectations, and
predict the results of current and future actions. Results predicted by the WM
simulations are sent to the VJ modules for evaluations, which are returned to the BG
module for plan selection.

5. Sensory Processing (SP) modules

SP modules process data from visual, auditory, tactile, proprioceptive, taste, or smell
sensors. SP modules contain filtering, masking, differencing, correlation, matching,
and recursive estimation algorithms, as well as feature detection, clustering, and
pattern recognition algorithms. Interactions between WM and SP modules {(shown in
Figure 4) can generate a variety of filtering and detection processes such as Kalman
filtering and recursive estimation, Fourier transforms, and phase-lock loops. In the
vision system, SP modules process images to detect brightness, colour, and range
discontinuities, optical flow, and stereo disparity. They may utilize a variety of signal
detection and pattern recognition algorithms to analyse scenes, compute attributes of
entities, and provide the information needed for manipulation, locomoticn, com-
munication, attention tracking, and spatial-temporal reasoning.
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6. Value Judgment (VJ) modules

VJ modules contain algorithms for computing cost, risk, and benefit, for evaluating
states and situations, for estimating the reliability of state estimations, and for
assigning cost-benefit values to objects and events. For example, VJ modules may
compute whether an object or event is worthy of attention, or of storage in long-term
memory. VJ modules may also compute Bayesian and Dempster—Schafer statistics on
information about the world based on the correlation and variance between
observations and predictions in order to assign confidence values to data from various
sources.

7. Knowledge Database (KDD) modules

KD modules store the data that support the BG, WM, SP, and VJ processing modules
in each node. KD modules consist of data structures that contain state variables.
Types of data structures include scalars, vectors, matrices, iconic image arrays, and
symbolic characters, strings, lists, frames, and graphs. Information in the KD includes
knowledge about entities and events, and about how the world behaves, both logically
and dynamically. The KD contains both short-term (dynamic) and long-term (static}
memory elements.

Short-term memory consists of both symbolic and iconic representations:

(a) Short-term symbolic representations consist of current entities-of-attention
that have cither been specified by the current task, or are particularly
noteworthy entities observed in current sensory input. Entities are represented
by symbolic lists that contain entity attributes and pointers. Attributes describe
properties of the entities. The pointers define relationships between entities, and
indicate correspondence between current entities-of-attention and long-term
symbolic entities stored in long-term memory.

(b) Short-term iconic representations can consist of attribute images generated
directly, or by recursive estimation, from sensory observations. Short-term
iconic images can also be generated by internal imagination from short-term
symbolic representations. Short-term iconic images can be used to mask or
window incoming data, or to fuse incoming sensory observations with internally
imagined images generated from current entities-of-attention. Short-term iconic
images persist in memory only so long as they are refreshed by incoming sensory
data or by internally generated images.

Long-tern memory consists entirely of symbolic data structures. Long-term
symbolic representations include the entire dictionary of entities that the intelligent
system knows about. Attributes from long-term symbolic entity representations may
be transferred into short-term memeory, or vice versa. If a long-term symbolic entity is
specified by a task command, attributes of the long-term memory symbolic entity can
be added to the attribute list of the short-term entity-of-attention. Alternatively, if a
match is recognized between a current entity-of-attention and a long-term symbolic
entity, newly observed attributes from the short-term entity can be used to update the
attributes of the long-term entity, and attributes of the long-term memory symbolic
entity can be added to the short-term entity. If nothing in long-term memory is
recognized as corresponding to what is observed, and if the observed entity is judged
noteworthy by the value judgment function, the short-term symbolic entity will be
entered as a new entity into long-term memory.
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The KD is typically implemented in a distributed fashion, with representations at
each node corresponding to the requirements of those task decomposition and sensory
processing functions being carried out in each node.

8. Communication system

The communication system provides a network of pathways that transmit messages
between processing and database modules. The communications system conveys
commands from a BG module to its subordinates, and returns status. It conveys
tentative plans from the BG planner to the WM simulator. It transmits simulation
results to the VJ evaluator, and plan evaluations to the BG plan selector. It moves
sensory data from sensors to filters, transfers WM predictions to SP comparators. It
sets windows on SP spatial integrators and thresholds on SP detectors and recognizers.
It communicates the names of recognized entities to the WM knowledge database and
conveys correlations and variance to WM update mechanisms. It communicates
reward and punishment data to the VJ modules, and communicates evaluations to
wherever they are needed.

The communication system enables the various processing and data modules in the
RCS architecture to act as software objects, sending and receiving messages to and
from each other. These messages convey commands and requests, and return status.
RCS does not specify the communication mechanism. Messages may actually be
communicated by point-to-point message passing, network broadcast, or shared
common memory. RCS requires that any particular state variable have only one
functional source, or writer, but it may have many destinations, or readers.

9. Comparison of RCS with subsumption

The subsumption architecture is a layered collection of behaviours, or behaviour
generating modules, that tightly connect perception to action. In control terms, this
simply means that each behaviour defines a control loop, with a control function that
maps sensory feedback into actuator output. The subsumption behaviour modules are
implemented as finite state automata, so that the system maintains a first-order
Markov type of memory of past history, and this memory can be used to select among
a variety of possible behaviours, or control functions. There can be message passing,
suppression and inhibition between processes within a behaviour, or between
behaviours. When a behaviour inhibits another, and substitutes itself instead, the
inhibitor can be said to have subsumed the inhibited (Brooks 1990).

In RCS, the EX submodules are essentially identical to the behaviour modules in the
subsumption architecture. In RCS, plans can be expressed as state graphs (or state
tables), and EX submodules function as finite state automata that execute the state
tables. A substantial difference between RCS and the subsumption architecture lies in
the manner in which a choice is made between alternative behaviours, In RCS, the
choice is made by the plan selection (PS) submodule based on plan simulation by the
WM module, and evaluation of predicted results by the VI module prior to execution.
In subsumption, the choice is made between competing behaviours at execution time
by the subsumption mechanism of inhibition and substitution. Thus, although the
subsumption architecture behaviour modules perform essentially the same function as
the RCS planning submeodules, they do so without the mechanism of forethought.

The principal difference between RCS and subsumption lies not in the execution or
even the planning of behaviour, but in the representation of knowledge in the world
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model. RCS develops rich and sophisticated representations of the world in the
knowledge database that are capable of supporting cognitive reasoning and
imagination. RCS also supports sophisticated sensory perception mechanisms that are
capable of keeping the world model current and up-to-date and in spatial and
temporal correspondence with the state of the real world. Subsumption denies the
need for complex world models or sophisticated internal representations. It is
fundamentally reactive, not deliberative, in its methodology.

10. Implementation mechanisms

Each submodule in the RCS system is implemented as a cyclically executing process.
RCS processes typically are triggered by a clock at a fixed repetition rate, but may be
triggered by events. Each process consists of an augmented finite-state machine
surrounded by a set of input and output data buffers. At the beginning of each cycle,
the submodule reads from its input buffers and processes the inputs into a form
suitable for a state-table that encodes a set of state-dependent production rules of a
form that are common in expert systems. The processed input is compared with the
rules in the stable-table. The rule that matches causes the process to go to a next state,
possibly execute a procedure, and compute an appropriate output. Each submodule
also computes a set of diagnostic functions, such as the time required for the process
to complete, the maximum time the process has taken, and the average time taken.
Each submodule has an interface for an operator that provides the operator the ability
to halt, single-step, and/or display the value of any variable and the state of any
process at any time during execution. A process may be halted, parameters examined
by a programmer, variables changed, and execution resumed. Communications
between processes in the RCS systemn are designed so that all processes cycle
independently and run completely asynchronously.

Programming tools and software templates have been built that provide the system
developer an easy way to configure an RCS system. The template automatically
generates all the required utilities and diagnostic features. Software templates are
implemented in C+ +. A graphical design tool enables a programmer to define a RCS
submodule with the click of a mouse, and interconnect submodules by click and draw
techniques. These programming tools have enabled RCS systems with hundreds of
submodules to be built in a few months.

RCS has been implemented on a variety of platforms, including Sun workstations,
486 PC computers, VME systems, and MacIntosh machines using a number of
different operating systems, including Forth, pSOS, DOS, VxWorks, and Lynx. The
overhead for a RCS template running on a 486 class machine is about five
microseconds. The cycle time for a typical low-level RCS submodule is 30 milliseconds.

11. Applications
The RCS architecture has been used in the implementation of a number of
experimental projects. These include:

11.1. A horizontal machining workstation

This RCS project was part of the NBS Automated Manufacturing Research Facility
(AMRF) (Albus er al. 1982). It included an integrated sensory-interactive real-time
control system for a robot with a structured light machine vision system, a machine
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tool, an automatic fixturing system, and a pallet shuttle. The robot included a quick
change wrist, a part handling gripper with tactile sensors, and a tool handling gripper
for loading and unloading tools in the machine tool magazine. Plans were represented
as state-tables, and a wide variety of sensory interactive behaviours were demon-
strated. These included locating and recognizing parts and determining part
orientation of unoriented parts presented in trays, and automatically generating part
handling sequences for part and tool loading and unloading (Wavering and Fiala
1987).

11.2. A cleaning and deburring workstation

This RCS project was also part of the AMRF. It included two robots, a set of buffing
wheels, a part washer /dryer machine, and a variety of abrasive brushes. Part geometry
was input from a CAD database. Deburring tool paths were automatically planned
from knowledge of the part geometry plus operator input indicating which edges were
to be deburred. Deburring parameters such as forces and feed rates were also selected
from a menu by the operator. Part handling sequences were planned automatically for
loading parts in a vice, and turnings parts over to permit tocl and gripper access. Force
sensors and force control algorithms were used during task execution to modify the
planned paths se as to compensate for inaccuracies in robot kinematics and dynamics
{Murphy er al. 1988).

11.3.  An advanced deburring and chamfering system

This project is currently nearing completion. The project integrates off-line pro-
gramming, real-time control, and active tool technologies to automatically grind
precision chamfers on complex parts manufactured from hard materials such as
aircraft jet engine components. The workstation consists of a grinding toel mounted
on a micro-positioner with computer controlled force and stiffness parameters,
integrated with a six-degree-of-freedom robot, and an indexing table for part fixturing.
Part geometry is derived from standard IGES CAD data formats. Edge selection is
performed by a human operator. Required tool force is automatically generated by
formula using the cutting depth, feeds, and speeds input by the operator. Under a
cooperative research and development agreement, a prototype production cell is
currently being tested at Pratt & Whitney’s East Hartford, CT site (Stouffer er al.
1993).

11.4. NBS/NASA standard reference model architecture for the Space Station
Telerobotic Servicer (NASREM)

This project was funded by the NASA Goddard Space Flight Center. NASREM was
used by Martin Marietta to develop the control system for the space station telerobotic
servicer. Algorithms were developed for force servoing, impedance control, and real-
time image processing of telerobotic systems at NIST, Martin Marietta, Lockheed,
Goddard, and in a number of university and industry labs in the United States and
Europe (Albus et al. 1987).

11.5.  Coal mining automation

This project transferred RCS architecture and methodology to a team of researchers
in the US Bureau of Mines, and in turn, to the mining industry. A comprehensive
mining scenario was developed starting with a map of the region to be excavated, the
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machines to be controlled, and the mining procedures to be applied. Based on this
scenario, an intelligent control system with simulation and animation was designed,
built, and demonstrated. The same control system was later demonstrated with an
actual mining machine and sensors (Huang er al. 1991).

11.6. A nuclear submarine manoeuvring system

This ARPA sponsored RCS project demonstrated the design and implementation in
simulation of maneuvering and engineering support systems for a 637 class nuclear
submarine. The maneuvering system involves an automatic steering, trim, speed, and
depth control system, The maneuvering system demonstrated the ability to execute a
lengthy and complex mission involving transit of the Bering Straits under ice. Ice
avoidance sonar signals were integrated into a local map using a CMAC (Albus 1975)
neural network memory model. Steering and depth control algorithms were developed
that enabled the sub to avoid hitting either the bottom or the ice while detecting and
compensating for random salinity changes under the ice by making trim and ballast
adjustments. The engincering support system demonstrated the ability to respond to
a lubrication oil fire by reconfiguring ventilation systems, rising in depth to snorkel
level, and engaging the diesel engines for emergency propulsion (Huang et al. 1993).

11.7. A US Postal Service automated stamp distribution centre

This RCS system demonstrated the ability to route packages through a series of
carousels, conveyors, and storage bins, to maintain precise inventory control, provide
security, and generate maintenance diagnostics in the case of system failure. The
distribution centre was designed and tested first in simulation, and then implemented
as a full-scale system. The system contained over 220 actuators, 300 sensors, and ten
operator workstations. An even larger and more complex RCS system for controlling
a general mail facility is still under development.

11.8.  Multiple autonomous undersea vehicles

This system was developed for controlling a pair of experimental vehicles designed and
built by the University of New Hampshire. The RCS control system included a real-
time path planner for obstacle avoidance, and a real-time map builder for constructing
a topological map of the bottom. Tests were conducted in Lake Winnipasaki during
the fall of 1987 (Herman and Albus 1988},

11.9.  An unmanned ground vehicle

Two versions of RCS have been implemented on an Army HMMWYV light truck, One
version enables the vehicle to be driven remotely by an operator using TV images
transmitted from the vehicle to an operator control station. This version has a
retrotraverse mode that permits the vehicle to autonomously retrace paths previously
traversed under remote control, using GPS and an inertial guidance system (Szabo
et al. 1990).

A second version has demonstrated the ability to drive the HMMWYV automatically
using TV images processed through a machine vision system with a real-time model
matching algorithm for tracking lane markings. A world model estimate of the lane
markings is compared to observed edges in the image, and a new estimate is computed
every 15 milliseconds, with pipeline latency of less than 150 milliseconds. The RCS
real-time vision processing system has enabled this vehicle to drive automatically at




172 J. S. Albus

speeds up to sixty miles per hour on the highway, and at speeds up to thirty-five miles
per hour on a winding test track used by the county police for driver-training
(Schneiderman and Nashman 1994),

11.10.  Planning and control for a spray casting machine

The RCS architecture has been applied for planning and control of the automated
spray casting machine ‘OSPREY’ which has been developed and manufactured by
MTS Corporation (Minneapolis, MN) in cooperation with Drexel University. The
system has three levels of resolution (Cleveland and Meystel 1990).

11.11.  An autonomous mobile vehicle

An autonomous vehicle was assembled and tested by Drexel University over the
period 1984-1987. The goal of the effort was to investigate the RCS architecture with
four levels of resolution ‘ Planer—Navigator—Pilot’ on top of the lower level control of
steering and propulsion. The results of this research are described in Meystel (1991).

11.12.  An open architecture enhanced machine controller

The RCS reference model is being used as the basis for an open architecture enhanced
machine controller (EMC) for machine tools, robots, and coordinate measuring
machines (Proctor and Michaloski 1993). The EMC is a testbed for evaluating open
architecture interface specifications. The EMC combines NASREM with the
specification for an open system architecture standard (SOSAS) developed under the
Next Generation Controller program sponsored by the Air Force and National Center
for Manufacturing Sciences. In cooperation with the DoE TEAM (Technology for
Enabling Agile Manufacturing) programme, EMC functional modules have been
defined, and application programming interfaces (APIs) are being specified for
sending messages between the functional modules. A prototype EMC has been
installed and is being evaluated in the General Motors Powertrain prototype
production facility in Pontiac Michigan as part of a DoE-TEAM/NIST-EMC
government/industry consortium. The goal of this effort is to develop API standards
for open architecture controllers.

The EMC implemented at the GM Powertrain plant is on a four-axis horizontal
matching centre with a tool changer and pallet shuttle system. It contains a commercial
motion control board which closes the control loop on the X, Y, Z axes every 300
microseconds, At this rate, the output commands to the motor drives of the maching
tool are indistinguishable from continuous control signals.

Higher-level nodes in the EMC controller have a control cycle that runs every 20
milliseconds. These nodes provide input to the trajectory generator and spindle
controller on the motion control board, as welt as continuous motion output to the B
axis motor drive, and discrete control signals to the tool changer, pallet shuttle, and
miscellaneous actuators. The machining centre has more than 100 discrete input/
output points which must be sequenced precisely in order to effect proper loading and
unloading of tools and materials, For these processes, 20 milliseconds is short
compared to the dynamics of the system being controlled. Complete tool path
motions, tool change operations, and pallet shuttle operations require many seconds
to complete. At higher levels, events occur even less frequently. Machining tasks may
take a number of minutes to execute. Therefore, to the machine, it appears as if the
EMC is a continuous controller.

Yet the EMC can switch control modes on any 20 millisecond cycle boundary.
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During each computation cycle, the controller examines the input, matches it with the
state-transition conditions in a state table, and if a match occurs, the system switches
to a new state. In principle, each state could implement a different control algorithm.
An operator can interrupt the system, switch control modes from automatic to
manual, or give a new feed rate override command every 20 milliseconds. The RCS
system is thus a hybrid controller in which all events, both continuous and discrete, are
handled at rates that make the distinction between discrete events and continuous
processes essentially disappear.

All of the projects listed above that have used the RCS architecture have
implemented only a subset of the features of the most advanced theoretical form of the
RCS reference model architecture. This is because the RCS theoretical development
has remained well advanced over what it has been possible to implement, given
programmatic limitations in funding.

Current work at NIST and elsewhere is pursuinig more complex implementation of
RCS. For example, efforts to incorporate human operator interfaces into the RCS
architecture that began with NASREM have continued with the Air Force/JPL/NIST
Universal Telerobotic Architecture Project (UTAP), and the NIST RoboCrane. Work
is also under way to integrate the RCS architecture with the NIST manufacturing
systems integration (MSI) factory control architecture, and the NIST quality in
automation (QIA) architecture (Senehi er af. 1994). When complete, this joint
architecture will define a reference model architecture for manufacturing that extends
all the way from the servomechanism level to the enterprise integration level. Work is
also in progress to develop an engineering design methodology and a set of software
engineering tools for developing RCS systems (Quintero and Barbera 1993).
Commercial versions of the EMC are expected to appear on the market within a few
months.

12. Swummary and conclusions

The RCS reference model architecture derives from a control theory approach. It has
evolved over the past two decades from a rather simple robot control schema to a
reference model architecture for intelligent control system design. From the beginning,
work on RCS has represented a conscious attempt to emulate the function and
structure of the neurological machinery in the brain. RCS modules are arranged so as
to process sensory feedback through a variety of filters and integrators with different
time intervals so as to create servo-loop bandwidths at a hierarchy of levels. All the
functional modules in RCS are designed as independent concurrently executing
analogue, or cyclically sampled processes, that continuously monitor their inputs and
compute their outputs in a manner similar to the way that tightly coupled collections
of neurons in the brain do. Just as neurons continuously monitor their synaptic inputs
and compute axonal outputs, so RCS modules sample their inputs and compute their
outputs on a clock cycle that is short compared to the bandwidth of the process being
controlled.

RCS contains both deliberative and reactive elements at each level. This makes it
ideal as a research platform for comparing and contrasting research results from
minimalist (emergent and reactive) systems with results from deliberative (intentional
and planning) systems. The current RCS architecture is a canonical system that can
serve as a framework for integrating concepts from a variety of fields such as intelligent
control, artificial intelligence, neural nets, machine vision, robotics, computer science,
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operations research, game theory, signal processing, filtering, and communications
theory. The goal is to provide a reference model architecture for the design,
engineering, and testing of intelligent systems.
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