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The Bienayme´-Chebyshev Inequality pro-
vides a quantitative bound on the level of
confidence of a measurement with known
combined standard uncertainty and as-
sumed coverage factor. The result is inde-
pendent of the detailed nature of the
probability distribution that characterizes
knowledge of the measurand.
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1. Introduction

The ISOGuide to the Expression of Uncertainty in
Measurement[1] and the NIST adaption [2] recommend
that the result of a measurement of a quantity
Y = f (x1, x2,???, xN) be reported asY = y 6 U , wherey is
the estimate (or expectation) ofY andU is anexpanded
uncertainty defined by U = kuc(y). Here uc(y) is the
combined standard uncertaintyandk is acoverage fac-
tor chosen to produce an interval having a level of con-
fidence close to a desired value. For uncorrelated input
quantities, the combined standard uncertainty is the pos-
itive square root of the variance

u2
c (y) = ON

i = 1

u2
i (y), (1)

where the termsu2
i (y) ≡ (­f /­xi )2u2(xi ) are weighted

variances associated with the probability distributions
that characterize one’s knowledge of the input quantities
xi .

The level of confidence associated with a particular
choice of coverage factork is interpreted to mean that
the true value ofY may be expected to lie in the interval
y 6 kuc(y) with an integrated, or cumulative, probabil-
ity P(k). TheGuidegives an extended discussion of the
problem of establishing the relation betweenk andP, the
details of which depend on the exact (and generally
unknown) probability distribution associated with one’s
knowledge of the measurandY.

This note describes a very general and useful bound-
ing relation, long known to professional statisticians,
that is free of these details. An interesting collection of
such relations was compiled and described by I. R.
Savage [3]. Our motivation derives from the growing
acceptance and use of theGuidein engineering metrol-
ogy and industrial quality control, and a perceived need
for a wider exposure to some of the fundamental ideas
of probability theory.
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2. The Bienaymé-Chebyshev Inequality

This simple but general result was first derived by the
French mathematician I. J. Bienayme´ (1853) and redis-
covered by P. L. Chebyshev (1867). We follow the devel-
opment of Kenney and Keeping [4]. Consider a general
probability density functionp(Y) that satisfies the basic
requirements of being normalized and having finite
meany and variances2:

1 = E
+`

2`

p(Y)dY

y = E
+`

2`

Yp(Y)dY (2)

s2 = E
+`

2`

(Y 2 y)2 p(Y)dY.

Now let a be an arbitrary positive constant. The proba-
bility that Y 2 y $ a is given by:

Pr (Y 2 y $ a) = E
R

p(Y)dY, (3)

whereR denotes the set of values ofY that satisfy the
stated inequality. Now clearly

s2 $ E
R

(Y 2 y)2 p(Y)dY $ a2 E
R

p(Y)dY, (4)

so that from Eqs. (3) and (4) we have immediately:

Pr (Y 2 y $ a) #
s2

a2 . (5)

This result is known as the Bienayme´-Chebyshev In-
equality. Settinga = ks , Eq. (5) becomes:

Pr (Y 2 y $ ks ) #
1
k2 . (6)

We thus see thatindependent of the detailed nature of
the distribution p(Y), the probability that the true value
of Y will differ from its expected (or measured) valuey
by as much ask standard deviations is not more than
1/k2. Now for k # 1, this is not very informative, but for
larger values ofk it becomes quite interesting.It tells us,
for example, that not less than8/9 ø 89 %of the prob-
ability associated with a measurement of Y is contained
in the interval y6 3s, whatever the distribution p(Y).

For a probability distribution known to be normal (or
Gaussian), the corresponding result would be 99.7 %.
While this is a significant improvement in the level of
confidence, the lower value may be completely adequate
for the measurement task at hand, while avoiding the
need for nit-picking over the details of the exact form of
the distributionp(Y).
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