Volume 103, Number 2, March—April 1998

Journal of Research of the National Institute of Standards and dEgyn

[J. Res. Natl. Inst. Stand. Technd03 141 (1998)]

Uncertainty Analysis for Angle Calibrations
Using Circle Closure

Volume 103

Number 2

March—April 1998

W. Tyler Estler

National Institute of Standards and
Techrology,

We analyze two types of full-circle angle
calibrations: a simple closure in which a
single set of unknown angular segments is
sequentially compared with an unknown
reference angle, and a dual closure in
which two divided circles are simulta-

NIST. The analysis includes methods for
the quantitative evaluation of the standard
uncertainty of small angle measurement us-
ing electronic autocollimators, including the
effects of calibration uncertainty and air
turbulence.

Gaithersburg, MD 20899-0001

neously calibrated by intercomparison. In
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ables a complete calibration process without
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1. Introduction

Full-circle calibrations of the angular divisions of In this paper we analyze two types of circle closure:
polygon mirrors, indexing and rotary tables, and angle a simple closure just described, and dual closure
encoders can be accomplished without reference to sepwherein two artifacts, such as a pair of indexing tables
arately calibrated reference artifacts using comparatoror an indexing table and an optical polygon, are inter-
techniques together with the principle of circle closure. compared in such a way that each is calibrated in the
The latter is a natural conservation law for plane angle, process. The conceptual ideas here are well known and
known since the time of Euclid, expressing the fact that widely applied [2-9]; our major goal is to derive explicit
the sum of the angles around any point in a plane equalexpressions for the resulting measurement uncertainties
27 rad (360). Should a circle be divided intoangular  in a manner consistent with guidelines published by the
segmentsi, A,, . .., Ay, and the difference between International Organization for Standardization (ISO) and
each segment and an unknown reference aXgle NIST [10-11]. In the process, we show how closure
measured, closure provides a constraint on the data thatonstraints serve to reduce uncertainty in an interesting
enables a complete solution for ail+ 1 unknowns. way as a result of a basic observation: the result of a
Circle closure is one of a number of self-proving com- measurement provides information not only about the
parator techniques employing multiple measurementsmeasured quantity (i.e., the defined quantity subject to
together with suitable rearrangements of the compo-measurement, or theeasurang, but also about any
nents of a measurement system. A review of such tech-other quantities with which the measurand shares a
niques and their applications in dimensional roktyy functional relationship.
is given in Ref. [1].
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2. Simple Closure wherem; = 6, — 6;. We then re-position the dihedral
mirror to bring the first face back to a position near the
In a simple closure calibration, tleangles of interest  autocollimator null and repeat the measurement se-
are independently compared to an unknown referencequence. Continuing in this fashion, we sequentially
angleX using a difference measurement procedure. We compare the anglX with each of the indexing table
consider the common case where the angles of interestintervals, yielding the complete set of measurement

Ay, A ..., A, and the comparison angk are nomi- equations:
nally equal to Zr/n radians. Denoting the deviations _
: a—X=m
from the nominal value by, a,, . . . ,a, andx, respec- _
; . d—X=M
tively, we have: _
Az —X=1mg
A=2w/n+aq,i=1,2,...,n, : )
X = 2min+x, @) Gn =X =M.

. {—Iere we haven linear equations in tha + 1 unknown
where the deviations are assumed to be small angles tha s ) .
guantities gy, a, . . . ,a,; X}, constrained by the closure

can be conveniently measured using an accurate : . o
autocollimator. With these definitions we hafe— X = relation, Eq. (2). Adding Eqgs. (4) yields:
a—x,i=1,2,... nand the constraint of circle closure

n n
becomes: > a—-nx=> m, (5)
i=1 i=1
2r=> A= Qmwin+a) and since the first sum vanishes we have the comparator
i=1 i=1 angle deviatiorx, as an explicit function of the measure-
n n ment data: ]
n (277/n)+§1a. 27+§1a, x=—%§1m. ©)
or, finally:
n Now using Eg. (6) forx and the set of measurement
2 a=0. 2) relations Eqg. (4), we have for the deviation of tkih
i=1 segment of the indexing table:
The physical realization of the reference anglevill a=m+X
depend on the chosen measurement procedure. Two
particular procedures that lead to identical sets of mea- 1<
surement equations are (a) the calibration ohasided = Mo .21 m
optical polygon using two autocollimators, and (b) the -
calibration of an indexing table, at a subsebf its m 1
discrete positions, using a dihedral mirror or a segment L o) m
of an optical polygon. In the first cas¥ is the angle
between the optical axes of the autocollimators; for the no1 1
indexing table calibrationX is the angle between the (T)mk “hZ m. )]
i#

two mirror normals.

Figure 1 shows the setup for a simple closure calibra-
tion of an n-position indexing table using a dihedral We note from the results, Egs. (6) and (7), that the
comparator mirror (Fig. 1a) and an electronic autocolli- angular units for closure-based angle mleiyy are
mator. The mirror is aligned so as to bring one of its fixed by the scale of the small-angle measuring system,
faces near the null of the autocollimator, and a reading assumed here to be a calibrated autocollimator. The set
is taken (Fig. 1b). The table is then indexed through of Eqgs. (4) is invariant under the change of scale
angle A;, rotating the second mirror face into near- {a,x,m} - {aa&, ax,am}, i=1,2,... nwherea
normal incidence, and a second autocollimator reading is an arbitrary scale factor. Thus, while closure obviates
taken (Fig. 1c). Denoting the measured angleg:mnd the need for separately calibrated comparator artifacts,

6., we then have, for a suitable sign convention: the achievable uncertainty is limited by the degree to
which the Sl derived unit of plane angle (the radian) is
Q—X=0,—6=my. 3) realized by the small-angle measuring system.
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Dihedral comparator mirror

l‘/X/\\
|

(2)

n-position indexing table

rotate CW through 4

electronic
autocollimator

6

O

®) ©

6,-6,=m,
=4,-X

=a-x

Fig. 1. Calibration of am-position indexing table using a dihedral compara-
tor mirror and an autocollimator. The measurement sequence shown yields the
first of n difference equations.

3. Measurement Uncertainty u?(z). The positive square roots of these variances,
u(z), k=1, 2,...,n, are called thestandard uncer-

In order to evaluate the measurement uncertainty, we tainties of the quantitiesz. A first-order Taylor series
need the following result from the analysis of the propa- approximation ofY = f(z, z, . .. , z,) then yields the
gation of uncertainty [10—11]. Suppose that a measur- estimated variance of:
and of interesY is related ta independent and uncorre-
lated “influence quantities?, k=1, 2, ... ,n, via the P - ATIN
functional relation we(v) = 211 <Ek> Uz, ©)

Y=f(z, 2, ... ,2Z) . (8)
with the combined standard uncertaintf Y given by
In a procedure to determiné, the quantities, may be u.(Y). The quantitiesdf/ gz, are known assensitivity
directly measured or simply estimated; in either case our coefficientswhose squares are essentially weighting
state of knowledge of these quantities is described by afactors for the individual variancasi(z).
set of probability distributions with associated variances
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We emphasize here that the use of probability distri- 2(x) = i ( X )2 )
butions to characterize our state of knowledge should =
not be taken to imply that the quantitigsare intrinsi-
cally random in nature. A dimensional measurement in "1 w2 u
. . . L . . — 2 — 0 _ Yo

engineering metlogy is a deterministic exercise in = Z <_2> u=n-—=-—, (12)
which time and cost constraints determine the quantity
and quality of the input measurement data. The quanti-
ties z are generally a set of unknown constants whose SO that the combined standard uncertainty a:
values at the time the data were taken are not known
exactly. Certain influences, such as the effect of air U(x) = U
turbulence on the reading of an autocollimator, may Vn
appear at first sight to fluctuate randomly and unpre-
dictably. When this happens we often choose to averageEquation (13) expresses what we might intuitively
over many readings in order to approximate a mean, or €Xpect on the basis of repeated measurements in the
equilibrium, value for the measured angle. On the other presence of uncorrelated measurement “noise.” Since
hand, the time-dependent spatial distribution of the air the unknown angle has been the subject ofindepen-
density between an autocollimator and a target mirror dent and uncorrelated difference measurements, the
could, in princip|e, be measured very accurate|y using Uncertainty of the measured valuexdfas been reduced
interferometric techniques, and the result used to calcu- by Vn from the uncertainty of a single measurement.
late, and correct for, the subsequent refraction error in ~ Then, using Eq. (10) and the assumed variances
the optical signal. That we normally choose not to do so U*(m) =ug, i =1, 2, ... ,n, we have:
is a matter of economics and not a decision forced on us
because of any randomness inherent in the measurement .
process. In using a probability distribution to describe 2 — 98 \2 o

. tribution to des w2@) =X () wm)
an experimental parameter, what is “distributed” is not i \Om
the parameter itself but rather our knowledge with re-
spect to the value it had when we performed the mea-
surement. _ (n_—1>2 @+ S (%) uZ

For the comparator angbe, we then use Eg. (9) to n izk\N

compute the variance:

(13)

n o/ oox \2 o n—1>2 n—l]
2 — 2 = _—
ug(x) = 21(%) u(m). (10) uo[< - T
In Appendix A we show that for an accurately

calibrated autocollimator measuring angular artifacts of _n-1,

. L = Uo - (14)
high quality (in the sense that measured angles are rea- n
sonably small), the variana&(m) may be assumed to
be constant for all measurememts, m, ..., m,. We Thus, for the combined standard uncertaintyofve
suggest two ways in which this constant value can be have:
assigned in practice; for typical laboratory environ-

it i . n-1
ments, it is reasonable to assume that: (@) = —= -, (15)
2
u(m) = 2p° % (R) = uj = constant, (11)  with the same result for the remaining angular devia-

N tions. Equation (15) illustrates an interesting feature of

calibrations that are constrained by subsidiary condi-
Whereﬁi_s a calibration parameter on the order of unity tions such as circle closure. Given a _single measure-
and s% (R) is the experimentally measured (Type A) ment ofa,, we would expect an uncertainty equalip

variance of the meaRof aset R, R,, ... ,Ry} of N whereas the actual result is less thgrby a factor of

autocollimator readings for a fixed target mirror V(n—1)/n. Each measurement of one of the deviations

position. a # a adds a little to our knowledge @ because of
With this result, Eq. (10) becomes: the closure constraint. As the number of unknown
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deviations n increases, the factorVv(n-1)/n segmentd; andB; initially positioned as shown in the

approaches unity and the reduction in uncertainty de- top diagram of Fig. 2. The small dots locate the zero
creases, as we might expect. The closure constraint onlyindex marks on each table. In acquiring measurement
provides a single piece of information whose effect is data, the bottom table always rotates CCW while the top

diluted as the number of unknowns becomes large.
4. Dual Closure

Indexing tables are commonly calibrated at a seat of
positions using an intercomparison technique wherein
the table of interest (the test table) is mounted concentri-
cally atop a comparison table capable of indexing to the
samen positions. Typically one table is rotated clock-
wise (CW) through a chosen angle, followed by a coun-
ter-clockwise (CCW) rotation of the second table

table rotates CW, iewedfrom above.

Now consider the measurement sequence consisting
of the following moves: (1) rotate the bottom table CCW
through angleB; and then (2) rotate the top table CW
through angleT;. This sequence is illustrated in the
middle and bottom diagrams of Fig. 2. The net result
of the two moves is a CCW rotation of the bottom table
through a nominal angle oB;=27/3 rad (120)
and a rotation of the target mirror through angle
B, —T; = by —t3, for a suitable set of sign conventions.
Denoting bym; the difference between the initial and

through the same angle, so that a plane mirror targetfinal autocollimator readings, we have

mounted on the top table is returned to a nominal zero
position. Small differences in mirror position before and

after indexing are measures of differences between pairs

of nominally equal angular segments of the two index-
ing tables. These small difference angles are normally
measured using an accurate autocollimator.

By the nature of the procedure, the angular position-
ing errors of both indexing tables are simultaneously

determined by a complete set of measurement data.

Therefore, in what follows, we no longer distinguish the
“test table” from the “comparison table” but simply
refer to them as the top table (T) and the bottom table
(B), respectively. We denote threangular segments of
interest for the top and bottom tables, respectively, by
Ti=2w/n+tandB =27/n+b,,i=1,2,...n, where

(b, t;) are small angular errors. Then for alve have

B — T, = by —t;, and the circle closure constraints on the
two tables can be written, by the steps leading to Eq. (2):

(16)

ZthO.
k=1

5. Explicit Example: n =3

In order to demonstrate the calculation of measure-
ment uncertainty for indexing table calibrations using
dual closure, we will work out the results for two three-
position tables in enough detail so that all steps in the
procedure may be appreciated. We will then be in a
position to generalize to the X n case. We thus
consider the setup shown in Fig. 2, with a pair of three-
position tables.

We label the three segments of the top taliig {T»,

T3} and those of the bottom tableB{, B,, B3}, with

145

bl -t =m. (17)
We now repeat the measurement sequence two
more times, yielding two more difference equations
m, = b,—t, and ms = b; —t;. At the end of the three
measurements, the entire system is returned to its initial
configuration. We then rotate the top table through angle
T, =120 CW, re-position the target mirror near the
autocollimator null, and repeat the set of three two-move
sequences. Proceeding in this manner yields a complete
set of 3X 3 = 9 difference measurements in which the
three angles of the top table are each compared with the
three angles of the bottom table. (We note here that this
is only one of many different complete move sequences
that yield 3X 3 = 9 inrdependent differences between
pairs of table segments. For any given sequence, the
nature and numbering of the coefficient matrix and data
vector defined below will differ in detail from that
derived here but the resulting uncertainty evaluations for
the table angle deviations will be identical.)

The 3X 3 indexing table difference equations result-
ing from a complete set of segment comparisons are
given by

bi—ti=m
bo—t;=m,
bs—tz=mg
bi-t;=my
b,—t;=m
bs—t;=ms
b, —t;=ny
b,—t;=mg

bs—t;=my, (18)
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Initial Position

Autocollimator

Rotate bottom
table CCW through angle B

Rotate top table
CW through angle T

Final Position m=8,-6,
=BT
=b -t

Fig. 2. Dual closure calibration of a pair of 3-position indexing tables. The two-move
measurement sequence shown yields the first of difference equations.

wherem, ..., my are differences between pairs of L
autocollimator readings. This over-determined set of _é 2 8 ‘é _2 8_ m
nine linear relations among six unknown quantities has 001 0 0-|_ g
no unique solution. This can be seen by noting that 1 00 0-1 0 by M
set of equations is invariant under the additive transfor- 01 0 0 0-1 EZ ms
mationsh, - b +K,t - t+K,i=1,2,... n,where 0 01 -1 00 e | = me
K is an arbitrary constant. The equations are also 100 0 0-1 Ny my
not independent; we see, for example, that 0 1.0 - 00 ti me
' ' ' 0 01 0-10 my
My = My + Mg — M. 111 000 0
In order to proceed, we combine the measurement L 00 0 1 1 21| | 0|
relations, Eqgs. (18), with the two constraint Egs. (16) (19)
and express the resultant set of linear equations in
matrix form:
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or
Ax=m, (20)
whereA is an 11X 6 coefficient matrix,x is a 6X 1
column vector of indexing table angular deviations:
x = (b by bst tots) andmis an 11X 1 vector of measure-
ment data plus constraints. This is an over-determined
set of 11 equations in 6 unknowns. Such data sets are in
generalinconsistentbecause of measurement errors,
which means that there is no solution vectowhich
satisfies all eleven equations simultaneously. This is a
standard problem in linear algebra and can be solved (in
the sense of closest approximation) by the method of

fod
b3—27[7(m3+rrh+rrb)

least squares. For a detailed development see, for exam-

ple, Ref. [12]; in this paper we simply state the result.
The rank of a matrix is equal to the number of linearly

independent rows (or columns) of the matrix. Given the

set of linear equationax = m, where them X n matrix

A has rankn, then the least-squares solution=

(61 52 53 fl fz f3) is given by

X=(ATA)A™m, (21)

whereAT is the transpose of the coefficient matAix In

our 3X 3 problem, it can be shown that the rank/f

is equal to 6, as required, and so we proceed to work ou

the product matrix:

t

(ATATYIAl= 1

27

7 -2 =2 7 =2 2 7 2 -2 6 3
2 7 =2 =2 7 =2 -2 71 =2 6 3

2 2 72 =2 7-=2 =2 7 6 3

X\ 7 2 2 2 2 -1 2 -1 2 3 6
2 -7 2 -7 2 2 2 2 -7 3 6

2 2 -7 2 -1 2-1 2 2 3 6

(22)

Then, usingk andm above, with Egs. (21) and (22), and
carrying out the matrix multiplication, yields the least-
squares estimates for the angle deviations of the index-
ing tables:

b= L
bl_27[7(m1+rn4+rn7)

—2(M, + Mg + M + M + Mg + My)], (23)
By = & [7(my + M + my)
2727

— 2(My + Mg + My + M + My + My)], (24)
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— 2(my + My + My + M + My + )], (25)
= oo 7, + M + m)
1727
+2(mp + Mg + my + Mg + My + my)], (26)
f—i[—7( +my + M)
2= 57 My + My + Ny
+2(my + mg + Mg + Mg + My + my)], (27)
= 55 [-7(ms + m + my)
27
+2(my + My + My + M + Mg + my)], (28)

Equations (23)—(28) display the explicit functional rela-

tionships between the indexing table angle deviations

and the measurement data. The combined standard
uncertainties can then be calculated by taking the appro-
priate derivatives according to Eq. (9). For the variance

in the least-squares estimate bf we have, using

Eq. (23)
(

As before, the quantitiesh,/dm are the sensitivity
coefficients and here we see that measuremantsy,
andmy, have greater weight, by a factor of 7/2, than that
of the remaining measurements. This follows naturally
since these three measurements depend directly on the
value ofb; [see Egs. (18)], while the remaining mea-
surements depend dm only indirectly, by way of the
constraint relations. As in the case of simple closure, the
measurement data here consists of a set of independent
autocollimator difference readings and we again make
the reasonable assumption (see Appendix) that each
measurement has the same uncertainfym) = U,
i=1,2,...,9. Then Eq. (29) becomes

9

ué(by) = 2

i=1

&

B ) (29)

»_19

t=g1 %, (30)

us,

u2(b) :Zi72 [3 X 72+ 6 X 27U

with the combined standard uncertainty given by

V19
9

ug(by) = Uo - (31)
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The uncertainties of the remaining least-squares wherek=1, 2, ... ,n.
estimatesly, bs, T, T, T;) are also given by Eq. (31). The calculation of the combined standard uncertainty
proceeds in exactly the same way as that leading to
6. Generalization for Two n-Position In- Eqg. (31), under the reasonable assumption (see
dexing Tables Appendix A) that the combined standard uncertainty of

each measurememt is just u¥(m) = ué. Examining

The procedure described for the33 indexing table ~ Ed. (32), we see that the quantity multiplied by (3 2)
intercomparison may be generalized to the case of ancontainsn terms, while the quantity multiplied by 2

n X n calibration. The set of all difference measure- containsn(n — 1) terms. (The total number of-terms

mentsb —t,i,j= 1, 2, ... ,n between the angular is justn?, the number of measurements.) We can then
segments of the two tables will yield a setmfequa- ~ Write, using Eq. (29)

tions analogous to Egs. (18). Using the same angular

segment labeling cpnyentions, thg general problem will Wby = <i2>2 [n(3n — 2 + 4n(n — 1)

have an angle deviation vectarwith 2n components 3n

(by by .. .batito. . . t,), & coefficient matrixA of size

(n? + 2) X 2n, and a data vectom of lengthn®+ 2. 1

Using a matrix manipulation code such as MATLAB or =gnz O - 8)us

Mathematicg it is not difficult to show by induction

that A has rank 8 and that Eq. (23), for general,

becomes: - <% —9%2>u§ , (35)

= 1
b1 =5=.[(8Bn—=2)[m +m,.
P 3n? 3 Yt Moa so that the combined standard uncertainty is

+Mprsg ... +rnn(n—1)+:l)

— 1 8\
—2(Mp+ Mg+ .. My + My o+ Myyg+. ..+ uc(bl)z(ﬁ‘W) Uo - (36)

+ Mpnso+. .. +My2)], (32)

_ _ _ _ B The same result follows for the combined standard un-
with analogous expressions fby, ..., b, andt, ..., certainty of the remaining angle deviation estimates.
t,. The numbering scheme makes it unwieldy to write  Equation (36) is quite interesting. If we neglect the term
these expressions explicitly, but the general rule is in n? thenuy(b,) = u/V'n, which is what we might
simply expect intuitively, since the unknown angehas been

_ 1 independently compared with tleanglesT,, ..., T,.
be=321Bn-2) The factor 8/(9?) reduces the uncertainty slightly as a
result of the constraints due to circle closure. Since
X (2(all m's with explicit dependence oh)) there are only two closure relatlonsh|p§ for anywhile
the number of measurements grows like the reduc-
— 2 (S(remainingm’s))] , (33) f[ion in_ combined standard uncertainty becomes
insignificant for largen; for n = 12 for example, a
and common value, the correction is less than 5 %.

o1 . . .
=5 [-(3n —2) E(all m’s with explicit 7. Conclusions

(34) Angle calibrations using closure constraints are self-
proving and can be accomplished without the need for
separately calibrated reference artifacts or the services

- . . ' _ _ _— of a standards laboratory. The SI gnit of angle i;

_Ce.rtaln‘commermal eqmpment, |nstruments, qr ma_tgrlal_s are identi transferred by a Sma.“ angle meaSUrlng SyStem, typl-

fied in this paper to foster understanding. Such identification does not . - .

imply recommendation or endorsement by the National Institute of Ca”Y a calibrated electronic aUtOCOIIIm.ator_' The con-

Standards and Technology, nor does it imply that the materials or Straints lead to (usually modest) reductions in the com-

equipment identified are necessarily the best available for the bined standard uncertainties of the measured angles.
purpose.

dependence ofy)) + 2 (Z(remainingm’s))],
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These uncertainties can be readily calculated using thereading will fluctuate about a mean value. It is common

results derived in this paper. In common laboratory en- measurement practice to minimize this air path, employ-

vironments, the primary source of measurement uncer- ing shielding where possible, and to reduce the effects of

tainty for a well-characterized autocollimator is turbu- turbulence by averaging over many readings.

lence noise on the optical signal. The minimum Now suppose that a small rotation angle is measured

achievable uncertainty is limited by the degree to which by averagingN autocollimator readings at each of two

such noise can be reduced. mirror positions @i, initial, and 6., final) and then tak-
ing the difference of these averages. Denote the two sets
of readings byR; andRx, j, k=1, 2, ... ,N. Using

8. Appendix A. Autocollimator Mea- Eq. (A1), we then have for the measured angles:

surement Uncertainty

An autocollimator is an optical instrument used to _1—1
measure small rotations of a plane mirror target. The
output (reading) of a typical electronic autocollimator is 3 B
a number proportional to the angle between the normal = ﬁ > Rx = BR:, (A2)
to the target mirror and the instrument optical axis. k=1
Since there is no direct physical access to the optical
axis, a single reading with a fixed target conveys no
useful information. Autocollimators are therefore used
in either a differential mode wherein the difference be- - - B B <
tween two readings measures target mirror rotation, or m=6,— 6= N 2 Rac- N E Ry

and the measured mirror rotatiomis just

. . . . . k= =

in a nulling mode where changes in target orientation ' =t

are sensed and used for optical system alignment or

servo control. = m(ﬁ. Ro, Reg, -+, Ron; Rugy Rup, - - ,RlN). (A3)

A first-principles analysis of autocollimator measure-

ment uncertainty is by its nature very complex. The here the last expression shows the explicit dependence
measurand as defined is the angle between the normal taof m on the measurement data. We then compute the
a perfectly flat mirror and the propagation vector of a variance ofm, using Eq. (9):
perfectly plane wavefront emitted by, and subsequently
collected and focused by, a perfect optical system onto a
perfectly linear detector. In practice, all of these features o _ (M2
are realized only approximately. We are saved by the fact Ue(m) = (5_,3) u(B)
that real autocollimators, while useless for absolute
measurements of angular position, can be accurately N
calibrated to measure small rotationschangesn an- +> <a_m>2 U4(Rac)
gular orientation, even with imperfect optics and target k=1
mirrors that are not really flat.
The response of an autocollimator is in general non- om 5

linear, especially for large angles near the limits of the + 2 (ﬁ) u(Ry) - (A4)
measuring range. For calibrations typical of those con-
sidered in this work, the setup can be arranged so that
allmeasurements occur near the center of the instrumentFrom Eq. (A3), the sensitivity coefficients are given by:
range so that the response can be assumed to be linear.
Calibration data for a particular instrument will serve to
justify this assumption. For a single readiRgf such an om N 1 & S
autocollimator, the sensed angdlds given by: 9B > Rac— N jZl Ry =R —Ry (AS)

0 =BR (A2)

and

where is a proportionality constant derived from the
instrument calibration. Because of refraction caused by
turbulence in the air path between the autocollimator oJm _am B (A6)
output aperture and the target mirror, the instrument ORx  0Ry N’
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The varianceu?(B8) in Eq. (A4) characterizes the stan- measuring time and susceptibility to thermal drift.

dard uncertainty associated with the autocollimator cal- The dependence af’(m) on m? means that each
ibration; for the variances?(Rx) andu?(R;) we use the measurement in a full-circle angle calibration will, in
Type A (statistical) evaluation estimates (sample vari- general, have a different combined standard uncertainty.
ances): In practice, the set of individual variances can be ap-
proximated by a single constant value with negligible
increase in overall measurement uncertainty. There are
two ways to effect this approximation.

We first note that for an accurately calibrated autocol-
limator and typical high-quality angular artifacts, the
measurement uncertainty will often be dominated by
turbulence noise. To see this, we examine Eq. (A9) using
a representative set of measurement parameters. A
modern electronic autocollimator is adjusted by the
manufacturer to s = 1, and after calibration we could
With the results Egs. (A5)—(A7), Eqg. (A4) becomes expect a worst-case relative standard uncertainty of
u(B)/|B| = 0.1 % = 10> In the process of calibrating
an indexing table with a dihedral mirror matched to the
nominal angles of interest, the maximum angle that we
might expect to measure would be on the order of
25 wrad (1 prad = 0.2"). Thusm?u?B)/B*= 6.3 X
10 pracf. In a typical measurement setup at NIST,
with an air path of several centimeters between the auto-
collimator and the target mirror, we average over several
hundred autocollimator readings per measuring position
and commonly measure turbulence noise values near
B S7(R)/N=0.25 prach.
wheres*(R,) = s*(Rx)/N, the experimental variance of Comparing these numbers, we see that in such exper-
the meanR, and similarly fors?(R,). For a particular imental conditions the measurement uncertainty due to
environment, the measurement noise induced by turbu-turbulence noise is larger than that due to calibration
lence is normally stable in the sense that the standarderror by more than two orders of magnitude. Thus we
deviation of the mean of a sample df readings is  can, with negligible error, set?(m) = (282%/N) si(R) =
sensibly constant from sample to sample. We therefore u§, a constant for all measurements, with the actual
assume thaa*(R,) = s*(R) =s3(R) = a constant foreach  value assigned taiZ determined by locally measured
sample ofN readings. We then have for the variance of turbulence noise characteristics.
the angle measurememt A second, more conservative way of assigning a con-
stant uncertainty is to use the maximum value computed
from Eq. (A9), based on the measurement data. Setting
Muax = MAX{ my, m,, ... m,}, we then fix a constant
value forué by setting

U(Ra) = S'Re) = {27 3, (Re =R

W(R) = SR =T S Re-REL (A7)

W(m) = R~ Ry u4(B) + £ (R + $%Ry))

= R R u(B) + B[R + SR, (A9)

() = (R ~R) w'(B) + 25" $(R)

= me B 4 28 4 R), (A9)

2 2
U = Uman) = m LB+ 2 iR (A20)
where we have used Eqg. (A3) in the forlﬁz(— R)? = o ) o )
m2/ 2. Equation (A9) is the central result for an autocol- This will result in overestimating the variances and com-
limator measurement with a negligible linearity error. bined standard uncertainties of some of the measured
The first term on the right-hand side arises from calibra- @ngles, but the turbulence component will still account
tion uncertainty, as measured by the square of the for most of .the uncer.tainty in practice. Either of_thg
relative standard uncertainty(B)/|8|. The second techmql_Jes just des.crlbed.can be used for quantitative
term, arising from turbulence noise in the autocollima- uncertainty estimation. It is only necessary to give a
tor signal, can be reduced by increasing the number of COmpléete description of the estimation procedure and
autocollimator samplesN at the cost of increased any relevant approximations.
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