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We analyze two types of full-circle angle
calibrations: a simple closure in which a
single set of unknown angular segments is
sequentially compared with an unknown
reference angle, and a dual closure in
which two divided circles are simulta-
neously calibrated by intercomparison. In
each case, the constraint of circle closure
provides auxiliary information that (1) en-
ables a complete calibration process without
reference to separately calibrated reference
artifacts, and (2) serves to reduce measure-
ment uncertainty. We derive closed-form
expressions for the combined standard un-
certainties of angle calibrations, following
guidelines published by the International
Organization for Standardization (ISO) and

NIST. The analysis includes methods for
the quantitative evaluation of the standard
uncertainty of small angle measurement us-
ing electronic autocollimators, including the
effects of calibration uncertainty and air
turbulence.
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1. Introduction

Full-circle calibrations of the angular divisions of
polygon mirrors, indexing and rotary tables, and angle
encoders can be accomplished without reference to sep-
arately calibrated reference artifacts using comparator
techniques together with the principle of circle closure.
The latter is a natural conservation law for plane angle,
known since the time of Euclid, expressing the fact that
the sum of the angles around any point in a plane equals
2p rad (3608). Should a circle be divided inton angular
segmentsA1, A2, . . . , An, and the difference between
each segment and an unknown reference angleX be
measured, closure provides a constraint on the data that
enables a complete solution for alln + 1 unknowns.
Circle closure is one of a number of self-proving com-
parator techniques employing multiple measurements
together with suitable rearrangements of the compo-
nents of a measurement system. A review of such tech-
niques and their applications in dimensional metrology
is given in Ref. [1].

In this paper we analyze two types of circle closure:
a simple closure, just described, and adual closure
wherein two artifacts, such as a pair of indexing tables
or an indexing table and an optical polygon, are inter-
compared in such a way that each is calibrated in the
process. The conceptual ideas here are well known and
widely applied [2–9]; our major goal is to derive explicit
expressions for the resulting measurement uncertainties
in a manner consistent with guidelines published by the
International Organization for Standardization (ISO) and
NIST [10–11]. In the process, we show how closure
constraints serve to reduce uncertainty in an interesting
way as a result of a basic observation: the result of a
measurement provides information not only about the
measured quantity (i.e., the defined quantity subject to
measurement, or themeasurand), but also about any
other quantities with which the measurand shares a
functional relationship.
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2. Simple Closure

In a simple closure calibration, then angles of interest
are independently compared to an unknown reference
angleX using a difference measurement procedure. We
consider the common case where the angles of interest
A1, A2, . . . , An and the comparison angleX are nomi-
nally equal to 2p/n radians. Denoting the deviations
from the nominal value bya1, a2, . . . ,an andx, respec-
tively, we have:

Ai = 2p /n + ai , i = 1, 2, . . . ,n,

X = 2p /n + x, (1)

where the deviations are assumed to be small angles that
can be conveniently measured using an accurate
autocollimator. With these definitions we haveAi – X =
ai – x, i = 1, 2, . . . ,n and the constraint of circle closure
becomes:

2p = On

i =1

Ai = On

i =1

(2p /n + ai )

= n ? (2p /n) + On

i =1

ai = 2p + On

i =1

ai ,

or, finally:

On

i =1

ai = 0. (2)

The physical realization of the reference angleX will
depend on the chosen measurement procedure. Two
particular procedures that lead to identical sets of mea-
surement equations are (a) the calibration of ann-sided
optical polygon using two autocollimators, and (b) the
calibration of an indexing table, at a subsetn of its
discrete positions, using a dihedral mirror or a segment
of an optical polygon. In the first case,X is the angle
between the optical axes of the autocollimators; for the
indexing table calibration,X is the angle between the
two mirror normals.

Figure 1 shows the setup for a simple closure calibra-
tion of an n-position indexing table using a dihedral
comparator mirror (Fig. 1a) and an electronic autocolli-
mator. The mirror is aligned so as to bring one of its
faces near the null of the autocollimator, and a reading
is taken (Fig. 1b). The table is then indexed through
angle A1, rotating the second mirror face into near-
normal incidence, and a second autocollimator reading
taken (Fig. 1c). Denoting the measured angles byu1 and
u2, we then have, for a suitable sign convention:

a1 – x = u2 – u1 = m1 . (3)

wherem1 ≡ u2 – u1. We then re-position the dihedral
mirror to bring the first face back to a position near the
autocollimator null and repeat the measurement se-
quence. Continuing in this fashion, we sequentially
compare the angleX with each of the indexing table
intervals, yielding the complete set of measurement
equations:

a1 – x = m1

a2 – x = m2

a3 – x = m3

(4)

an – x = mn .

Here we haven linear equations in then + 1 unknown
quantities {a1, a2, . . . ,an; x}, constrained by the closure
relation, Eq. (2). Adding Eqs. (4) yields:

On

i =1

ai – nx = On

i =1

mi , (5)

and since the first sum vanishes we have the comparator
angle deviationx, as an explicit function of the measure-
ment data:

x = –
1
n On

i =1

mi . (6)

Now using Eq. (6) forx and the set of measurement
relations Eq. (4), we have for the deviation of thekth
segment of the indexing table:

ak = mk + x

= mk –
1
n On

i =1

mi

= mk –
mk

n
–

1
n O

i Þk

mi

= Sn – 1
n Dmk –

1
n O

i Þk

mi . (7)

We note from the results, Eqs. (6) and (7), that the
angular units for closure-based angle metrology are
fixed by the scale of the small-angle measuring system,
assumed here to be a calibrated autocollimator. The set
of Eqs. (4) is invariant under the change of scale
{ ai , x, mi } → { aai , ax, ami }, i = 1, 2, . . . ,n wherea
is an arbitrary scale factor. Thus, while closure obviates
the need for separately calibrated comparator artifacts,
the achievable uncertainty is limited by the degree to
which the SI derived unit of plane angle (the radian) is
realized by the small-angle measuring system.
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Fig. 1. Calibration of ann-position indexing table using a dihedral compara-
tor mirror and an autocollimator. The measurement sequence shown yields the
first of n difference equations.

3. Measurement Uncertainty

In order to evaluate the measurement uncertainty, we
need the following result from the analysis of the propa-
gation of uncertainty [10–11]. Suppose that a measur-
and of interestY is related ton independent and uncorre-
lated “influence quantities”zk, k = 1, 2, . . . ,n, via the
functional relation

Y= f (z1, z2, . . . , zn) . (8)

In a procedure to determineY, the quantitieszk may be
directly measured or simply estimated; in either case our
state of knowledge of these quantities is described by a
set of probability distributions with associated variances

u2(zk). The positive square roots of these variances,
u(zk), k = 1, 2, . . . ,n, are called thestandard uncer-
taintiesof the quantitieszk. A first-order Taylor series
approximation ofY = f (z1, z2, . . . , zn) then yields the
estimated variance ofY:

u2
c (Y) = On

k=1
S ­f

­zk
D2

u2(zk), (9)

with the combined standard uncertaintyof Y given by
uc(Y). The quantities­f/­zk are known assensitivity
coefficientswhose squares are essentially weighting
factors for the individual variancesu2(zk).
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We emphasize here that the use of probability distri-
butions to characterize our state of knowledge should
not be taken to imply that the quantitieszk are intrinsi-
cally random in nature. A dimensional measurement in
engineering metrology is a deterministic exercise in
which time and cost constraints determine the quantity
and quality of the input measurement data. The quanti-
ties zk are generally a set of unknown constants whose
values at the time the data were taken are not known
exactly. Certain influences, such as the effect of air
turbulence on the reading of an autocollimator, may
appear at first sight to fluctuate randomly and unpre-
dictably. When this happens we often choose to average
over many readings in order to approximate a mean, or
equilibrium, value for the measured angle. On the other
hand, the time-dependent spatial distribution of the air
density between an autocollimator and a target mirror
could, in principle, be measured very accurately using
interferometric techniques, and the result used to calcu-
late, and correct for, the subsequent refraction error in
the optical signal. That we normally choose not to do so
is a matter of economics and not a decision forced on us
because of any randomness inherent in the measurement
process. In using a probability distribution to describe
an experimental parameter, what is “distributed” is not
the parameter itself but rather our knowledge with re-
spect to the value it had when we performed the mea-
surement.

For the comparator anglex, we then use Eq. (9) to
compute the variance:

u2
c(x) = S

n

i =1
S ­x

­mi
D2

u2(mi ). (10)

In Appendix A we show that for an accurately
calibrated autocollimator measuring angular artifacts of
high quality (in the sense that measured angles are rea-
sonably small), the varianceu2(mi ) may be assumed to
be constant for all measurementsm1, m2, . . . , mn. We
suggest two ways in which this constant value can be
assigned in practice; for typical laboratory environ-
ments, it is reasonable to assume that:

u2(mi ) ≈ 2b2

N
s2

N (R) ≡ u2
0 = constant, (11)

whereb is a calibration parameter on the order of unity
and s2

N (R) is the experimentally measured (Type A)
variance of the meanR of a set {R1, R2, . . . , RN} of N
autocollimator readings for a fixed target mirror
position.

With this result, Eq. (10) becomes:

u2
c(x) = On

i =1
S ­x

­mi
D2

u2
0

= On

i =1
S 1
n2Du2

0 = n ?
u2

0

n2 =
u2

0

n
, (12)

so that the combined standard uncertainty ofx is:

uc(x) =
u0

Ïn
. (13)

Equation (13) expresses what we might intuitively
expect on the basis of repeated measurements in the
presence of uncorrelated measurement “noise.” Since
the unknown anglex has been the subject ofn indepen-
dent and uncorrelated difference measurements, the
uncertainty of the measured value ofx has been reduced
by Ïn from the uncertainty of a single measurement.

Then, using Eq. (10) and the assumed variances
u2(mi ) = u2

0, i = 1, 2, . . . ,n, we have:

u2
c(ak) = On

i=1
S­ak

­mi
D2

u2(mi )

= Sn – 1
n D2

u2
0 + O

i Þ k
S 1
n2D u2

0

= u 2
0FSn – 1

n D2
+

n – 1
n2 G

=
n – 1

n
u2

0 . (14)

Thus, for the combined standard uncertainty ofak we
have:

uc(ak) = În – 1
n

? u0 , (15)

with the same result for the remaining angular devia-
tions. Equation (15) illustrates an interesting feature of
calibrations that are constrained by subsidiary condi-
tions such as circle closure. Given a single measure-
ment ofak, we would expect an uncertainty equal tou0,
whereas the actual result is less thanu0 by a factor of
Ï(n – 1)/n. Each measurement of one of the deviations
ai Þ ak adds a little to our knowledge ofak because of
the closure constraint. As the number of unknown
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deviations n increases, the factorÏ(n – 1)/n
approaches unity and the reduction in uncertainty de-
creases, as we might expect. The closure constraint only
provides a single piece of information whose effect is
diluted as the number of unknowns becomes large.

4. Dual Closure

Indexing tables are commonly calibrated at a set ofn
positions using an intercomparison technique wherein
the table of interest (the test table) is mounted concentri-
cally atop a comparison table capable of indexing to the
samen positions. Typically one table is rotated clock-
wise (CW) through a chosen angle, followed by a coun-
ter-clockwise (CCW) rotation of the second table
through the same angle, so that a plane mirror target
mounted on the top table is returned to a nominal zero
position. Small differences in mirror position before and
after indexing are measures of differences between pairs
of nominally equal angular segments of the two index-
ing tables. These small difference angles are normally
measured using an accurate autocollimator.

By the nature of the procedure, the angular position-
ing errors of both indexing tables are simultaneously
determined by a complete set of measurement data.
Therefore, in what follows, we no longer distinguish the
“test table” from the “comparison table” but simply
refer to them as the top table (T) and the bottom table
(B), respectively. We denote then angular segments of
interest for the top and bottom tables, respectively, by
Ti = 2p /n + ti andBi = 2p /n + bi , i = 1, 2, . . . ,n, where
(bi , ti ) are small angular errors. Then for alli we have
Bi – Ti = bi – ti , and the circle closure constraints on the
two tables can be written, by the steps leading to Eq. (2):

On

i = 1

bi = 0

On

k = 1

tk = 0 . (16)

5. Explicit Example: n = 3

In order to demonstrate the calculation of measure-
ment uncertainty for indexing table calibrations using
dual closure, we will work out the results for two three-
position tables in enough detail so that all steps in the
procedure may be appreciated. We will then be in a
position to generalize to then 3 n case. We thus
consider the setup shown in Fig. 2, with a pair of three-
position tables.

We label the three segments of the top table {T1, T2,
T3} and those of the bottom table {B1, B2, B3}, with

segmentsT1 andB1 initially positioned as shown in the
top diagram of Fig. 2. The small dots locate the zero
index marks on each table. In acquiring measurement
data, the bottom table always rotates CCW while the top
table rotates CW, viewedfrom above.

Now consider the measurement sequence consisting
of the following moves: (1) rotate the bottom table CCW
through angleB1 and then (2) rotate the top table CW
through angleT1. This sequence is illustrated in the
middle and bottom diagrams of Fig. 2. The net result
of the two moves is a CCW rotation of the bottom table
through a nominal angle ofB1 ≈ 2p /3 rad (1208)
and a rotation of the target mirror through angle
B1 – T1 = b1 – t1, for a suitable set of sign conventions.
Denoting bym1 the difference between the initial and
final autocollimator readings, we have

b1 – t1 = m1. (17)

We now repeat the measurement sequence two
more times, yielding two more difference equations
m2 = b2 – t2 and m3 = b3 – t3. At the end of the three
measurements, the entire system is returned to its initial
configuration. We then rotate the top table through angle
T1 ≈ 1208 CW, re-position the target mirror near the
autocollimator null, and repeat the set of three two-move
sequences. Proceeding in this manner yields a complete
set of 33 3 = 9 difference measurements in which the
three angles of the top table are each compared with the
three angles of the bottom table. (We note here that this
is only one of many different complete move sequences
that yield 33 3 = 9 independent differences between
pairs of table segments. For any given sequence, the
nature and numbering of the coefficient matrix and data
vector defined below will differ in detail from that
derived here but the resulting uncertainty evaluations for
the table angle deviations will be identical.)

The 33 3 indexing table difference equations result-
ing from a complete set of segment comparisons are
given by

b1 – t1 = m1

b2 – t2 = m2

b3 – t3 = m3

b1 – t2 = m4

b2 – t3 = m5

b3 – t1 = m6

b1 – t3 = m7

b2 – t1 = m8

b3 – t2 = m9 , (18)
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Fig. 2. Dual closure calibration of a pair of 3-position indexing tables. The two-move
measurement sequence shown yields the first of difference equations.

where m1, . . . , m9 are differences between pairs of
autocollimator readings. This over-determined set of
nine linear relations among six unknown quantities has
no unique solution. This can be seen by noting that
set of equations is invariant under the additive transfor-
mationsbi → bi + K , ti → ti + K , i = 1, 2, . . . ,n, where
K is an arbitrary constant. The equations are also
not independent; we see, for example, that
m9 = m4 + m6 – m1.

In order to proceed, we combine the measurement
relations, Eqs. (18), with the two constraint Eqs. (16)
and express the resultant set of linear equations in
matrix form:

1 0 0 –1 0 0
0 1 0 0 –1 0
0 0 1 0 0 –1
1 0 0 0 –1 0
0 1 0 0 0 –1
0 0 1 –1 0 0 =
1 0 0 0 0 –1
0 1 0 –1 0 0
0 0 1 0 –1 0
1 1 1 0 0 0
0 0 0 1 1 1

(19)

–—

—

–— m1

m2

m2

m4

m5

m6

m7

m8

m9

0
0

–

–

–

–

b1

b2

b3

t1
t2
t3

— ––
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or
Ax = m, (20)

whereA is an 113 6 coefficient matrix,x is a 63 1
column vector of indexing table angular deviations:
x = (b1b2b3 t1 t2 t3) andm is an 113 1 vector of measure-
ment data plus constraints. This is an over-determined
set of 11 equations in 6 unknowns. Such data sets are in
general inconsistentbecause of measurement errors,
which means that there is no solution vectorx which
satisfies all eleven equations simultaneously. This is a
standard problem in linear algebra and can be solved (in
the sense of closest approximation) by the method of
least squares. For a detailed development see, for exam-
ple, Ref. [12]; in this paper we simply state the result.

The rank of a matrix is equal to the number of linearly
independent rows (or columns) of the matrix. Given the
set of linear equationsAx = m, where them 3 n matrix
A has rank n, then the least-squares solutionx =
(b1 b2 b3 t1 t2 t3) is given by:

x = (AT A )–1 AT m , (21)

whereAT is the transpose of the coefficient matrixA . In
our 33 3 problem, it can be shown that the rank ofA
is equal to 6, as required, and so we proceed to work out
the product matrix:

(AT AT)–1 A t =
1
27

7 –2 –2 7 –2 –2 7 –2 –2 6 3

–2 7 –2 –2 7 –2 –2 7 –2 6 3

–2 –2 7 –2 –2 7 –2 –2 7 6 3
3 –7 2 2 2 2 –7 2 –7 2 3 6

2 –7 2 –7 2 2 2 2 –7 3 6

2 2 –7 2 –7 2 –7 2 2 3 6

(22)

Then, usingx andm above, with Eqs. (21) and (22), and
carrying out the matrix multiplication, yields the least-
squares estimates for the angle deviations of the index-
ing tables:

b1 =
1
27

[7(m1 + m4 + m7)

– 2(m2 + m3 + m5 + m6 + m8 + m9)], (23)

b2 =
1
27

[7(m2 + m5 + m8)

– 2(m1 + m3 + m4 + m6 + m7 + m9)], (24)

b3 =
1
27

[7(m3 + m6 + m9)

– 2(m1 + m2 + m4 + m5 + m7 + m8)], (25)

t1 =
1
27

[–7(m1 + m6 + m8)

+ 2(m2 + m3 + m4 + m5 + m7 + m9)], (26)

t2 =
1
27

[–7(m2 + m4 + m9)

+ 2(m1 + m3 + m5 + m6 + m7 + m8)], (27)

t3 =
1
27

[–7(m3 + m5 + m7)

+ 2(m1 + m2 + m4 + m6 + m8 + m9)], (28)

Equations (23)–(28) display the explicit functional rela-
tionships between the indexing table angle deviations
and the measurement data. The combined standard
uncertainties can then be calculated by taking the appro-
priate derivatives according to Eq. (9). For the variance
in the least-squares estimate ofb1 we have, using
Eq. (23)

u2
c (b1) = O9

i=1
S­b1

­mi
D2

u2(mi ) . (29)

As before, the quantities­b1/­mi are the sensitivity
coefficients and here we see that measurementsm1, m4,
andm7 have greater weight, by a factor of 7/2, than that
of the remaining measurements. This follows naturally
since these three measurements depend directly on the
value of b1 [see Eqs. (18)], while the remaining mea-
surements depend onb1 only indirectly, by way of the
constraint relations. As in the case of simple closure, the
measurement data here consists of a set of independent
autocollimator difference readings and we again make
the reasonable assumption (see Appendix) that each
measurement has the same uncertainty:u2(mi ) = u2

0,
i = 1, 2, . . . , 9. Then Eq. (29) becomes

u2
c (bi ) =

1
272 [3 3 72 + 6 3 22]u2

0 =
19
81

u2
0 , (30)

with the combined standard uncertainty given by

uc(b1) =
Ï19

9
u0 . (31)

—

—

—

—
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The uncertainties of the remaining least-squares
estimates (b2, b3, t1, t2, t3) are also given by Eq. (31).

6. Generalization for Two n -Position In-
dexing Tables

The procedure described for the 33 3 indexing table
intercomparison may be generalized to the case of an
n 3 n calibration. The set of all difference measure-
mentsbi – tj , i , j = 1, 2, . . . ,n between the angular
segments of the two tables will yield a set ofn2 equa-
tions analogous to Eqs. (18). Using the same angular
segment labeling conventions, the general problem will
have an angle deviation vectorx with 2n components
(b1 b2 . . . bn t1 t2. . . tn), a coefficient matrixA of size
(n2 + 2) 3 2n, and a data vectorm of length n2 + 2.
Using a matrix manipulation code such as MATLAB or
Mathematica1, it is not difficult to show by induction
that A has rank 2n and that Eq. (23), for generaln,
becomes:

b1 =
1

3n2 . [(3n – 2)(m1 + mn + 1

+ m2n + 1 + . . . +mn(n – 1)+1)

– 2(m2 + m3 + . . . +mn + mn + 2 + mn + 3 +. . . +m2n

+ m2n + 2 +. . . +mn 2)], (32)

with analogous expressions forb2, . . . , bn and t1, . . . ,
tn.The numbering scheme makes it unwieldy to write
these expressions explicitly, but the general rule is
simply

bk =
1

3n2 [(3n – 2)

3 (o(all m’s with explicit dependence onbk))

– 2 (o(remainingm’s))] , (33)

and

tk =
1

3n2 [–(3n – 2) (o(all m’s with explicit

dependence ontk)) + 2(o(remainingm’s))], (34)

1 Certain commercial equipment, instruments, or materials are identi-
fied in this paper to foster understanding. Such identification does not
imply recommendation or endorsement by the National Institute of
Standards and Technology, nor does it imply that the materials or
equipment identified are necessarily the best available for the
purpose.

wherek = 1, 2, . . . ,n.
The calculation of the combined standard uncertainty

proceeds in exactly the same way as that leading to
Eq. (31), under the reasonable assumption (see
Appendix A) that the combined standard uncertainty of
each measurementmi is just u2

c (mi ) = u2
0. Examining

Eq. (32), we see that the quantity multiplied by (3n – 2)
containsn terms, while the quantity multiplied by 2
containsn(n – 1) terms. (The total number ofm-terms
is just n2, the number of measurements.) We can then
write, using Eq. (29)

u2
c (b1) = S 1

3n2D2
[n(3n – 2)2 + 4n(n – 1)]u2

0

=
1

9n2 (9n – 8)u2
0

= S1
n

–
8

9n2Du2
0 , (35)

so that the combined standard uncertainty is

uc(b1) = S1
n

–
8

9n2D1/2
u0 . (36)

The same result follows for the combined standard un-
certainty of the remaining angle deviation estimates.
Equation (36) is quite interesting. If we neglect the term
in n2, then uc(b1) = u0/Ïn, which is what we might
expect intuitively, since the unknown angleB1 has been
independently compared with then anglesT1, . . . , Tn.
The factor 8/(9n2) reduces the uncertainty slightly as a
result of the constraints due to circle closure. Since
there are only two closure relationships for anyn, while
the number of measurements grows liken2, the reduc-
tion in combined standard uncertainty becomes
insignificant for largen; for n = 12 for example, a
common value, the correction is less than 5 %.

7. Conclusions

Angle calibrations using closure constraints are self-
proving and can be accomplished without the need for
separately calibrated reference artifacts or the services
of a standards laboratory. The SI unit of angle is
transferred by a small angle measuring system, typi-
cally a calibrated electronic autocollimator. The con-
straints lead to (usually modest) reductions in the com-
bined standard uncertainties of the measured angles.
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These uncertainties can be readily calculated using the
results derived in this paper. In common laboratory en-
vironments, the primary source of measurement uncer-
tainty for a well-characterized autocollimator is turbu-
lence noise on the optical signal. The minimum
achievable uncertainty is limited by the degree to which
such noise can be reduced.

8. Appendix A. Autocollimator Mea-
surement Uncertainty

An autocollimator is an optical instrument used to
measure small rotations of a plane mirror target. The
output (reading) of a typical electronic autocollimator is
a number proportional to the angle between the normal
to the target mirror and the instrument optical axis.
Since there is no direct physical access to the optical
axis, a single reading with a fixed target conveys no
useful information. Autocollimators are therefore used
in either a differential mode wherein the difference be-
tween two readings measures target mirror rotation, or
in a nulling mode where changes in target orientation
are sensed and used for optical system alignment or
servo control.

A first-principles analysis of autocollimator measure-
ment uncertainty is by its nature very complex. The
measurand as defined is the angle between the normal to
a perfectly flat mirror and the propagation vector of a
perfectly plane wavefront emitted by, and subsequently
collected and focused by, a perfect optical system onto a
perfectly linear detector. In practice, all of these features
are realized only approximately. We are saved by the fact
that real autocollimators, while useless for absolute
measurements of angular position, can be accurately
calibrated to measure small rotations orchangesin an-
gular orientation, even with imperfect optics and target
mirrors that are not really flat.

The response of an autocollimator is in general non-
linear, especially for large angles near the limits of the
measuring range. For calibrations typical of those con-
sidered in this work, the setup can be arranged so that
all measurements occur near the center of the instrument
range so that the response can be assumed to be linear.
Calibration data for a particular instrument will serve to
justify this assumption. For a single readingRof such an
autocollimator, the sensed angleu is given by:

u =bR (A1)

whereb is a proportionality constant derived from the
instrument calibration. Because of refraction caused by
turbulence in the air path between the autocollimator
output aperture and the target mirror, the instrument

reading will fluctuate about a mean value. It is common
measurement practice to minimize this air path, employ-
ing shielding where possible, and to reduce the effects of
turbulence by averaging over many readings.

Now suppose that a small rotation angle is measured
by averagingN autocollimator readings at each of two
mirror positions (u1, initial, andu2, final) and then tak-
ing the difference of these averages. Denote the two sets
of readings byR1j andR2k, j , k = 1, 2, . . . ,N. Using
Eq. (A1), we then have for the measured angles:

u1 =
b
N ON

j = 1

R1j = bR1,

u2 =
b
N ON

k = 1

R2k = bR2 , (A2)

and the measured mirror rotationm is just

m = u2 – u1 =
b
N ON

k = 1

R2k –
b
N ON

j = 1

R1j

= m(b , R21, R22, . . . , R2N; R11, R12, . . . , R1N), (A3)

where the last expression shows the explicit dependence
of m on the measurement data. We then compute the
variance ofm, using Eq. (9):

u2
c (m) = S­m

­bD2
u2(b )

+ ON
k = 1

S ­m
­R2k

D2
u2(R2k)

+ ON
j = 1

S ­m
­R1j

D2
u2(R1j ) . (A4)

From Eq. (A3), the sensitivity coefficients are given by:

­m
­b

=
1
N ON

k = 1

R2k –
1
N ON

j = 1

R1j = R2 – R1, (A5)

and

­m
­R2k

=
­m
­R1j

=
b
N

. (A6)

149



Volume 103, Number 2, March–April 1998
Journal of Research of the National Institute of Standards and Technology

The varianceu2(b ) in Eq. (A4) characterizes the stan-
dard uncertainty associated with the autocollimator cal-
ibration; for the variancesu2(R2k) andu2(R1j ) we use the
Type A (statistical) evaluation estimates (sample vari-
ances):

u2(R2k) = s2(R2k) =
1

N – 1 ON
i = 1

(R2i – R2)2 ,

u2(R1j ) = s2(R1j ) =
1

N – 1 ON
i = 1

(R1i – R1)2 , (A7)

With the results Eqs. (A5)–(A7), Eq. (A4) becomes

u2
c (m) = (R2 – R1)2 u2(b ) +

b2

N2 [s2(R2k) + s2(R1j )]

= (R2 – R1)2 u2(b ) +
b2

N
[s2(R2) + s2(R1)] , (A8)

wheres2(R2) = s2(R2k)/N, the experimental variance of
the meanR2 and similarly fors2(R1). For a particular
environment, the measurement noise induced by turbu-
lence is normally stable in the sense that the standard
deviation of the mean of a sample ofN readings is
sensibly constant from sample to sample. We therefore
assume thats2(R2) = s2(R1) ≡ s2

N(R) = a constant for each
sample ofN readings. We then have for the variance of
the angle measurementm

u2
c (m) = (R2 – R1)2 u2(b ) +

2b2

N
s2

N(R)

= m2 u2(b )
b2 +

2b2

N
s2

N(R) , (A9)

where we have used Eq. (A3) in the form (R2 – R1)2 =
m2/b2. Equation (A9) is the central result for an autocol-
limator measurement with a negligible linearity error.
The first term on the right-hand side arises from calibra-
tion uncertainty, as measured by the square of the
relative standard uncertaintyu(b )/ub u. The second
term, arising from turbulence noise in the autocollima-
tor signal, can be reduced by increasing the number of
autocollimator samplesN at the cost of increased

measuring time and susceptibility to thermal drift.
The dependence ofu2

c (m) on m2 means that each
measurement in a full-circle angle calibration will, in
general, have a different combined standard uncertainty.
In practice, the set of individual variances can be ap-
proximated by a single constant value with negligible
increase in overall measurement uncertainty. There are
two ways to effect this approximation.

We first note that for an accurately calibrated autocol-
limator and typical high-quality angular artifacts, the
measurement uncertainty will often be dominated by
turbulence noise. To see this, we examine Eq. (A9) using
a representative set of measurement parameters. A
modern electronic autocollimator is adjusted by the
manufacturer to setb ≈ 1, and after calibration we could
expect a worst-case relative standard uncertainty of
u(b )/ub u # 0.1 % = 10–3. In the process of calibrating
an indexing table with a dihedral mirror matched to the
nominal angles of interest, the maximum angle that we
might expect to measure would be on the order of
25 mrad (1 mrad ≈ 0.2"). Thusm2u2(b )/b2 # 6.33
10–4 mrad2. In a typical measurement setup at NIST,
with an air path of several centimeters between the auto-
collimator and the target mirror, we average over several
hundred autocollimator readings per measuring position
and commonly measure turbulence noise values near
s2

N(R)/N ≈ 0.25mrad2.
Comparing these numbers, we see that in such exper-

imental conditions the measurement uncertainty due to
turbulence noise is larger than that due to calibration
error by more than two orders of magnitude. Thus we
can, with negligible error, setu2

c (m) ≈ (2b2/N) s2
N(R) ≡

u2
0, a constant for all measurements, with the actual

value assigned tou2
0 determined by locally measured

turbulence noise characteristics.
A second, more conservative way of assigning a con-

stant uncertainty is to use the maximum value computed
from Eq. (A9), based on the measurement data. Setting
mMAX = MAX{ m1, m2, . . . mn}, we then fix a constant
value foru2

0 by setting

u2
0 = u2

c (mMAX) = m2
MAX

u2(b )
b2 +

2b2

N
s2

N(R) . (A10)

This will result in overestimating the variances and com-
bined standard uncertainties of some of the measured
angles, but the turbulence component will still account
for most of the uncertainty in practice. Either of the
techniques just described can be used for quantitative
uncertainty estimation. It is only necessary to give a
complete description of the estimation procedure and
any relevant approximations.
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