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We describe the use of Bayesian inference
to include prior information about the
value of the measurand in the calculation
of measurement uncertainty. Typical
examples show this can, in effect, reduce
the expanded uncertainty by up to 85 %.
The application of the Bayesian approach
to proving workpiece conformance to
specification (as given by international
standard ISO 14253-1) is presented and

a procedure for increasing the conformance
zone by modifying the expanded uncer-
tainty guard bands is discussed.
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1. Introduction

The ISOGuide to the Expression of Uncertainty in
Measurement(theGuide) [1], and the associated NIST
adaptation [2], have described a unified convention for
expressing measurement uncertainty. Application of
theGuidehas extended beyond calibration and research
laboratories and into the industrial domain of manu-
factured products. Recently, international standard
ISO 14253-1Inspection by measurement of workpieces
and measuring instruments—Part 1: Decision rules
for proving conformance or non-conformance with
specification[3], has explicitly included measurement
uncertainty in proving conformance of products. These
decision rules reward accurate metrology by increasing
the conformance zone commensurate with the
decreases in measurement uncertainty, as illustrated in
Fig. 1. In this procedure the measurement uncertainty is
defined as the expanded uncertainty of the result of
the measurement, denotedU , with a default coverage

factor ofk = 2. This technique is appropriate if no prior
measurement information is known about the workpiece
under inspection. However, if prior measurement infor-
mation which appropriately characterizes the popula-
tion of this type of workpiece is available, for example,
from historical inspection records, then this information
may be used to further increase the conformance zone.
This can be of significant economic benefit to manufac-
turers who maintain historical records of their measure-
ment results. While the use of this principle, which
involves Bayesian inference, is well known in the statis-
tical community, it is generally unknown to metrolo-
gists. It is the purpose of this paper to describe this
Bayesian approach with emphasis on the application to
acceptance and rejection of workpieces based on the
14253-1 decision rules. The paper applies the approach
to two examples and gives practical advice on the use of
the approach as well.
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2. Bayesian Approach

Bayesian inference provides a rigorous means of in-
corporating prior information into a measurement. It is
based on the mathematics of conditional probability
distributions. Although it is beyond the scope of this
paper to review Bayesian inference, the central result we
will employ is given in Eqs. (1) and (2), which assumes
that a Gaussian distribution is descriptive of both the
measurement and workpiece uncertainties [4]. Further-
more, it is crucial that the distribution embodied by the
prior information be applicable to the workpiece cur-
rently being measured (this is further discussed in Sec.
6).
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andy is the best estimate of the measurand (the quantity
subject to measurement) including prior information.

ym is the best estimate of the measurand without
including prior information; this would be the
measurement result without Bayesian analysis.

ype is the best estimate of the measurand based on prior
(historical) information of the workpiece popula-
tion; this is usually close, but in general not equal
to, the target specification value, i.e., the nominal
value.

uc is the combined standard uncertainty associated
with the measurement when prior information is
included.

ucm is the combined standard uncertainty of the
measurement without using prior information; this
includes not only the instrumentation uncertainty
but also that due to the environment, operator, and
other factors affecting the measurement value.

upe is the standard deviation of the probability distri-
bution which describes the measurand based on
prior (historical) information.

It is clear from Eqs. (1) and (2) that two effects occur
when prior information is included in the measurement
analysis. Firstly, the best estimate of the measurand
is shifted fromym toward ype. Secondly, the combined
standard uncertaintyuc decreases due to the use of prior
information. Equation (1) can be interpreted as stating
that the best estimate of the measurand is a weighted
average of the estimate from the measurement and that
from all prior information about the measurand. Similar
comments pertain to Eq. (2), which gives the combined
standard uncertainty; in particular, note that the
uncertainty is always less thanucm, i.e., the use of prior
information can only decrease the uncertainty associ-
ated with the measurand and will never increase it.

We now present two exceptional but informative
examples to illustrate the Bayesian approach. Consider
the case of measuring a characteristic of a workpiece
whose value is almost exactly known from previous
measurements. This might be typical of measuring a
calibrated gauge block with a hand-held caliper (having
a combined standard uncertainty of 10mm). The length
distribution of good quality manufactured (short) gauge
blocks is very narrow (typically having a standard

Fig. 1. A typical functional specification of a workpiece and the corresponding inspection zones;
U is the expanded uncertainty of the measurement. Workpieces are accepted if the measurement result
is within the conformance zone.
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deviation less than 0.05mm), and the calibration uncer-
tainty is even smaller; thusg << 1. Equation (1) then
yieldsy ≈ ype, and Eq. (2) yieldsuc ≈ upe, i.e., regardless
of the measuring instrument (caliper) result, the best
estimate of the gauge block length isype, with uncer-
taintyupe. Thus the best estimate of the block’s length is
based on the (accurate) historical mean value not the
current (inaccurate) measurement result, agreeing with
common sense.

Our second example considers very accurate mea-
surements of workpieces which come from a very broad
production distribution. In this case (because of the
broad workpiece distribution),upe >> ucm, so g → `,
then Eq. (1) reduces toy ≈ ym, and Eq. (2) reduces to
uc ≈ ucm, stating that the best estimate of the measurand
and its uncertainty is just the value from the measure-
ment result; this also agrees with common sense.

3. Application to Decision Rules

Equations (1) and (2) are based on Bayesian inference
and are independent of any particular decision rule
application. Applying this method to the particular
decision rule given by 14253-1 is best illustrated by
presenting some examples. For illustrative purposes in
these examples we will assume that the process is well
under control and there exist ample historical data. In
later sections, we examine these assumptions.

For application purposes it is often convenient to
consider the amount of the Bayesian adjustment to the
measurement result,Dy, and also the amount of adjust-
ment to the expanded uncertaintyDU, given by

Dy = uym – y u =
uym – ypeu

1 + g 2 (3a)

DU = U m – UB = Um 11 –Î g 2

g 2 + 1
2 . (3b)

HereUm = 2 ucm is the unadjusted expanded uncertainty,
andUB = 2 uc, is the expanded uncertainty including the
Bayesian adjustment.

First we consider a typical case of gauge recalibra-
tion. Suppose for a particular type of workpiece (e.g.,
gauge), the historical records show that 95 % of the
measurement results of the gauges returned for periodic
recalibration are within the specification zone and that
the distribution is approximately Gaussian. (In dimen-
sional metrology thismeans that 95 % of the workpieces
have a measured value within the permissible workpiece
tolerance.) The mean value of the historical data isype,
which we assume to be in the center of the specification
zone. The best estimate of the dispersion of the measur-
and, given by the standard deviation of the historical mea-
surements, isupe. Suppose further that the inspection
process uses a 4:1 gauging ratio, i.e., 2Um = (1/4)T,
whereUm = 2 ucm andT is the workpiece tolerance, i.e.,
the width of the specification zone, anducm is the
combined standard uncertainty of the measuring
instrument. Henceucm = T/16. Now to calculateupe we
must deconvolve the measurement uncertainty; there-
fore upe = [(1/4)2 – (1/16)2] 1/2 T = (Ï15/16)T. Conse-
quently, g = Ï15. If a workpiece (produced from
the same parent distribution as the historical data) is
inspected and yields a measured value ofym, then the
best estimate of the measurand isy = (15/16)ym +
(1/16)ype. Figure 2 is a schematic diagram of this
example; it shows that the best estimated expanded
uncertaintyUB (where UB = 2 uc), is slightly smaller
thanUm (the g→ ` case), and that the best estimate of

Fig. 2. Illustration showing the expanded uncertainty without Bayesian adjustmentUm,
and with Bayesian adjustmentUB, together with the best estimate of the measurandy,
using Bayesian inference.
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the measurand is shifted toward the mean value (ype) of
the historical workpiece distribution.

From this example it is clear that the only cases of
consequence are measurement values near the specifica-
tion limit, i.e., a value well outside the specification
zone will continue to be in the non-conformance zone
even after the application of the Bayesian method.

Using the values assumed in the above example,
we can calculate the combined effect of the Bayesian
adjustments to the measurement result and the expanded
uncertainty. The largest measurement result (ym), that
will prove conformance after the Bayesian adjustment is
implicitly given by the equalityy = T /2 –UB, wherey
andUB are the best estimate of the measurand and ex-
panded uncertainty after the Bayesian correction. (For
convenience we have centered the specification zone
around zero, and henceype is also zero.) Substituting the
definitions ofy andUB (whereUB = 2 uc) given by Eqs.
(1) and (2) determines the largest value ofym that will
prove conformance after the adjustment. In this exam-
ple, the effective conformance zone is increased by
7.8 %. Equivalently, the situation can be viewed asusing
a measuring instrument having only 77 % of the uncer-
tainty compared to the no Bayesian adjustment case;
either interpretation shows that the use of prior informa-
tion can have a significant effect.

A similar example typical of precision workpiece
production may have 99 % of the workpieces histori-
cally in the specification zone when using a gauging
ratio of 3:1, implying that 2Um = (1/3)T, hence
upe = [(1/6)2 – (1/12)2]1/2 T = (Ï3/12)T with g = Ï3.

In this example the conformance zone is increased by
42 %, or equivalently using a measuring instrument
having only 15.5 % of the uncertainty compared to the
no Bayesian adjustment case. As these examples show,
the significance of prior information in the uncertainty
calculation greatly increases as the ratio ofupe : ucm = g
decreases.

4. Treatment as a Pseudo-Bias

The procedure outlined above describes how each
measurement result can be corrected using prior infor-
mation. This correction is similar to that performed for
a systematic error, i.e., bias. However, it has the unusual
property that measurement results above the mean are
decreased (as would be the case for a positive bias)
whereas measurement results below the mean are
increased (as would be the case for a negative bias). In
some situations it may be desirable to account for a bias
by modifying the quoted expanded uncertainty rather
than correcting each measurement result individually
[5]. This can be accomplished by definingUIn andUOut

as shown in Fig. 3 and given by Eqs. (4a) and (4b),
where we requireUIn to be$ 0 in Eq. (4a), i.e., ifUIn

becomes negative we letUIn = 0. Equations (4a) and (4b)
require the value ofDy which depends on the difference
(ym – ype) as given in Eq. (3a). A reasonable approxima-
tion can be obtained by substitutingT /2 for (ym – ype).
The exact values can be determined by solving implicit
equalities similar to what was described in Sec. 3:

UIn = UB – Dy (4a)

and UOut = UB + Dy (4b)

The use of the pseudo-bias approach produces results
similar to correcting each individual measurement using
Eqs. (1) and (2), i.e., more workpiece measurement
results lie in the (increased) conformance zone and
fewer lie in the non-conformance zone. If we have no

Fig. 3. Modification of the expanded uncertainty to account for prior information about the workpiece
under inspection.
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prior information about the measurand, i.e.,g → `,
thenU In = UOut = Um and Fig. 3 reverts to Fig. 1. If we
have very accurate information about the mean of the
workpiece distribution and we know that the distribution
is narrow (this was the case of the previously described
example of measuring a calibrated gauge block with a
hand held caliper), theng is small and (by using the
requirement of non-negativeUIn) U In = 0, i.e., the
conformance zone equals the specification zone. In this
rather extreme situation the pseudo-bias approach
(conservatively) prevents proving conformance of a
workpiece if the measurement result lies outside the
specification zone, whereas using Eq. (1) the Bayesian
correction may be sufficiently large to shift the mea-
surement result inside the conformance zone. However,
the situation whereU In = 0 is an indication of poor
metrology andthat the measuring process should have
its uncertainty reduced.

5. Example Sensitivity and Cost Analysis

Bayesian inference provides a natural and consistent
way to make best use of all relevant information. Its
effectiveness depends to a large degree on the reliability
of the information. In this section, we consider the cost
issues associated with using decision rule 14253-1, both
with and without the Bayesian adjustment, and we also
investigate the sensitivity of the costs to the reliability of
the available information.

There are two costs that should be considered when
evaluating a workpiece acceptance rule. There is the
cost of accepting a bad workpiece (Type I cost) and the
cost of rejecting a good workpiece (Type II cost).
The cost of accepting a bad workpiece may include the
cost of a malfunctioning product, the cost of replacing
the workpiece, etc. If a good workpiece is rejected, the
cost might be the cost of reworking the workpiece
unnecessarily or the cost of the production of the
workpiece itself. We will give emphasis to the case in
which the Type I cost is larger than the Type II cost. In
addition to cost considerations, it is important to

consider the percentage of good workpieces versus
bad workpieces in the population. For example, if the
percentage of bad workpieces is small relative to that of
good workpieces, then the Type I cost is less important
than in the case in which the percentage is large.

Based on certain probabilities that are described
below, it is possible to determine the expected cost of
using a given decision rule. If the Type I and Type II
costs are expressed on a per workpiece basis, the
expected cost gives the cost per workpiece of using the
rule. Since it is impossible to make perfect decisions,
the expected cost is always positive. Mathematically, the
expectation is equal toaC1 + bC2, wherea is the prob-
ability that the workpiece is bad AND the workpiece is
accepted;b is the probability that the workpiece is good
AND the workpiece is rejected;C1 is the Type I cost per
workpiece, andC2 is the Type II cost per workpiece. We
consider a workpiece to be “good” if the value of the
measurand lies within the specification zone and “bad”
if it lies outside the specification zone. We assume a
workpiece is accepted if it is in the conformance zone
and rejected otherwise.

To calculate the probabilitiesa and b , we need to
know the true underlying distribution of workpieces, as
well as a decision rule. Table 1 gives thea andb prob-
abilities for the 14253-1 rule both with and without the
Bayesian adjustment for the two examples of the Sec. 3.
We have also included the cost of the decision rule (as a
percentage of the unit workpiece cost) for the case
where Type I costs are 15 times larger than Type II
costs. For these calculations we assumed that the under-
lying population is a Gaussian distribution and centered
in the conformance zone and with standard deviation
upe. This amounts to assuming that the prior distribution
used in the Bayesian rule is the true underlying distribu-
tion. Also note that the Type I probabilities (alpha) are
all less than 0.001. Such small probabilities are heavily
dependent on the tail behavior of the Gaussian distribu-
tion, which might not be valid in the real world. How-
ever, these small probabilities do not significantly affect
the cost estimates we present in Table 1.

Table 1. Probability of Type I errors (a ) and Type II errors (b ) and the associated costs of using the 14253-1 decision rule both with and without
Bayesian corrections, we assume Type I costs : Type II costs are 15:1

14253-1 decision rule % bad a b Cost of using rule as percentage
workpieces of cost of workpiece ( %)

Example 1 without Bayesian correction 3.9 0.000175 0.0949 9.75

Example 1 with Bayesian correction 3.9 0.000548 0.0676 7.58

Example 2 without Bayesian correction 0.053 0.000006 0.0450 4.51

Example 2 with Bayesian correction 0.053 0.000131 0.00404 0.60
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In both examplesupe is small relative to the confor-
mance zone and large relative toucm, which results in
a small percentage of bad workpieces and decreased
importance of the Bayesian adjustment. Nevertheless,
the use of the Bayesian adjustment has a significant
effect on the cost of using the decision rule. In example
1 there is a 22 % reduction in the cost of using the
decision rule, and a 87 % cost reduction in example 2.
Although these examples depend upon the specific
values ofucm, upe, T, and the ratio of Type I to Type II
costs, the use of the Bayesian adjustment will generally
have significant beneficial economic impact on imple-
menting the decision rule.

In real-life applications of using a decision rule, one
can only estimate the standard deviation of the prior
distribution of workpiecesupe and the uncertainty of the
measurement systemucm. A rule may be very good if
reliable information is available on these quantities, but
may perform badly if the information is not reliable. A
good rule in practice must be robust to reasonable errors
in the estimation of these two standard deviations.

Using the framework of the second example, we ex-
amine the sensitivity of the 14253-1 rule, both with and
without the Bayesian adjustment, to the accuracy of the
estimation ofupe anducm. We assumed that the cost of

accepting a bad workpiece is 15 times the cost of reject-
ing a good workpiece. Figures 4a and 4b summarize the
effect on the cost of various estimates. The vertical axes
give the expected cost per workpiece (as a percentage of
workpiece cost) due to various errors in the estimation of
the standard deviations. The percentages on the horizon-
tal axes correspond to estimatingucm to be 50 %, 100 %,
and 150 % of its best evaluation, i.e., 100 % is the best
evaluation of the measurement uncertainty. Likewise,
the three lines in Fig. 4b correspond to evaluatingupe by
50 %, 100 %, and 150 % of its best evaluation. Since the
case of not using the Bayesian adjustment (shown in
Fig. 4a), does not make use ofupe, only the sensitivity
to ucm is considered for it.

In this example, the use of the Bayesian adjustment is
rather robust to the errors in the estimation of bothupe

anducm. Additionally, for all three estimates ofucm, the
Bayesian adjustment procedure has lower cost than not
using the adjustment, independent of which of the three
values of upe are used. Specifically, if the Bayesian
adjustment is not employed, the decision rule is particu-
larly sensitive to overestimation ofucm. These results
depend on the values ofupe , ucm, and the ratio of the two
costs; however, we have found similar trends using a
variety of values.

(a) (b)

Fig 4. Sensitivity analysis of decision rule 14253-1 with and without the Bayesian adjustment showing the cost (as a percentage of unit workpiece
cost) incurred when using the rule. (a) without the adjustment as a function of the accuracy in estimatingucm. (b) with the adjustment as a function
of the accuracy in estimating bothucm andupe .
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6. Implementation Considerations

Central to the use of the Bayesian approach is that the
historical information is characteristic of the workpiece
under measurement. Hence, the production process
must be reasonably stable and free from drift. For exam-
ple, if the historical information is based on measure-
ments performed in summer (and have not been
corrected for thermal expansion), and the workpiece
under consideration is produced in winter, the historical
mean valueype may not represent the current production
process mean. Since the prior distribution is not repre-
sentative of the current production process, the Bayesian
adjustment is inappropriate. Additionally, whenever
|ym – ype| >> uc it is highly probable that something in
the production or measurement process (or both) has
significantly changed and the source of this discrepancy
should be investigated. Once the problem has been
resolved one must reconsider whether the historical
information still appropriately describes the current
process. Standard practices of statistical quality control
[6] may be employed to test theappropriateness of the
historical information. In particular, control charts can
detect changes in the mean, variations of the process,
and short and long term drifts. Appropriate plots may
reveal other departures such as batch effects.

Equations (1) and (2) are strictly valid when only the
prior and measurement distributions are Gaussian.
Although modifications to these equations exist for
other distributions, they become increasingly complex.
Processes which are not optimized either regarding the
workpiece production distribution or the measurement
distribution are usually not characterized by a Gaussian
distribution since one or two factors often dominate
the process. Histograms and Q-Q Plots [7] are useful
diagnostics here.

In the examples of Sec. 3, we deconvolved the mea-
surement uncertainty from the underlying workpiece
distribution. In practice, using the measured workpiece
distribution (which includes the measurement uncer-
tainty) to determineupe is advisable since it avoids the
consequences of poorly estimatingucm while usually
only slightly decreasing the magnitude of the Bayesian
adjustment.

Finally, many process capability techniques, such as
statistical process control and gauge repeatability and
reproducibility studies, often measure only the variation
in the process and do not provide accurate information
on the mean value. The use of calibrated artifacts or
measuring equipment, which yields an estimate of the
measurand, as well as the measurement variation, should

be used to ascertain the historic mean valueype. Some
processes are deliberately biased toward the specifica-
tion limits; for example, internal diameters may be
produced to have an average value close to the lower
specification limit since reworking a workpiece can
always remove material, but cannot replace it. In such
situations the benefit of the Bayesian adjustment will be
reduced since the historic mean valueype and the
measurement resultym will generally be closer together.

7. Summary

We have described the use of Bayesian inference to
include prior information in measurement uncertainty
calculations. This procedure, when combined with the
14253-1 decision rules, can result in a significant
increase in the size of the conformance zone. One
simple technique of implementing the Bayesian method
is to adjust the expanded uncertainty guard bands
which determine the conformance zone. A sample
cost sensitivity analysis demonstrated a cost savings
when using the Bayesian adjustment with the 14253-1
decision rule.
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