
1

Proceedings of the
1999 ASME Design Engineering Technical Conferences

September 12-15, 1999, Las Vegas, Nevada

DETC99/CIE-9025

THE USE OF XML FOR DESCRIBING FUNCTIONS AND TAXONOMIES IN
COMPUTER-BASED DESIGN

Simon Szykman, Jocelyn Senfaute and Ram D. Sriram
Manufacturing Systems Integration Division

National Institute of Standards and Technology
Building 304, Room 6

100 Bureau Drive, Stop 8262
Gaithersburg, MD 20899-8262

Keywords: Design Repositories, Function, Information Modeling, Representation, Taxonomy, XML

ABSTRACT
A standardized representation of engineering function has

been developed, consisting of schemata for functions and asso-
ciated flows along with taxonomies of generic functions and
flows. This paper presents a mapping of this representation
into the Extensible Markup Language (XML), a language simi-
lar in appearance to HTML but which allows the development
of user-defined tags, various kinds of references, and other
mechanisms. The formal representation provides the means for
representing functions that have multiple input and output
flows, properties and parameters associated with these flows,
and the decomposition of functions into subfunctions each po-
tentially having its own distinct flows. This mapping has been
developed in order to support representation of artifact function
models in software systems, as well as to provide a neutral
format for exchange of function-based information among soft-
ware systems.

1 INTRODUCTION
As industry continues to increase its reliance on knowledge

and information in the product development process, the capa-
bilities of computer-aided design systems are evolving in re-
sponse to industryÕs changing needs. One of the more signifi-
cant cultural shifts in industry is a trend toward design proc-
esses that are more knowledge-based, distributed, and collabo-
rative. The increasing complexity of engineering systems,
coupled with the fact that many such systems are no longer
developed by a small group of co-located designers within a
single company, makes effective capture, retrieval, reuse, and
exchange of knowledge a critical issue.

The National Institute of Standards and Technology
(NIST), which views U.S. industry as its primary customer,
has held numerous design-related industry workshops in order
to identify and anticipate new needs. The work presented in
this paper has been motivated by input received at one such
workshop, the NIST Design Repository Workshop (held in
November, 1996), which concerned needs for representations
and technology to support more effective use and reuse of
knowledge in design. Discussion of the needs associated with
representation of engineering function arose in three different
breakout sessions. Specific statements indicated (1) a need for
representation of function in CAD, in addition to geometry, (2)
a need for a fixed representation scheme for modeling function,
and (3) a need for a commonly agreed-upon set of functions
performed by mechanical systems (Szykman et al., 1998).

Driven by these requirements, an initial specification for a
standardized representation of engineering artifact function has
been developed that includes schemata (information models) for
representation of function and associated flows, as well as an
initial attempt at developing taxonomies of functions and flows.
The objective of the latter effort is to generate taxonomies that
are as small as possible, yet generic enough to allow modeling
of a broad variety of engineering artifacts. The result is a formal
representation that provides the means for representing functions
that have multiple input and output flows, properties and pa-
rameters associated with flows, and the decomposition of func-
tions into subfunctions each potentially having its own distinct
flows. The representation also provides a mapping from the
function domain to the physical domain (via references to arti-
facts in the flow schema) and supports the representation of

2

function sharing provided that it is used with an artifact repre-
sentation that permits artifacts to have multiple functions. This
representation is described in detail in (Szykman et al., 1999b).

Capturing information about artifact function is only one
step towards realizing an impact on product development.
Equally important is the ability to share and exchange knowl-
edge with other individuals, design teams, suppliers, corporate
partners, etc., who in practice will often not be using the same
software systems. Capture of information is only of limited use
if the information cannot be effectively communicated to others.
Indeed, a major barrier to information exchange in industry
today is the proliferation of incompatible proprietary formats for
representation of artifact geometry. An analogous problem
could easily inhibit the effective use of function-based represen-
tations and models in product development. Once artifact func-
tion models are more broadly used by industry, the question of
how to exchange information between software systems will
become important. Since design knowledge is typically stored
in some kind of database rather than in plain text files, the ge-
neric schemata and taxonomies introduced in (Szykman et al.,
1999b) may not be sufficient to allow exchange of information
between software systems.

This paper presents a mapping of the schemata and tax-
onomies introduced in (Szykman et al., 1999b) into the Exten-
sible Markup Language (XML) (World Wide Web Consor-
tium, 1998), a language similar in appearance to the Hypertext
Markup Language (HTML) (World Wide Web Consortium,
1995) but which allows the development of user-defined tags,
various kinds of references, and other mechanisms. This map-
ping has been developed in order to provide a neutral format for
exchange of function-based information among software sys-
tems. The XML specification imposes guidelines on how to
structure a document (data), how to represent schemata, how to
make references, and so on. This provides advantages over,
say, a plain text file format for artifact function models.

The following section describes related work in this area,
as well as additional advantages of XML over other languages
that could have been used in its place. Section 3 describes the
XML-based schemata for the data structures used to represent
artifact function and associated flows. Section 4 discusses the
XML representation of the taxonomies of generic functions and
flows to be used in association with the function and flow
schemata. Section 5 provides a discussion of implementational
issues related to information processing and use of this repre-
sentation for knowledge retrieval and reuse. Areas for future
research are discussed in Section 6.

2 RELATED WORK
The use of function has long-since been recognized as an

important part of the design process. Formalization of ap-
proaches to representing and reasoning about function, and us-
ing this knowledge to drive design, are in comparison rela-
tively new in the engineering field. Much of the early research
in the area of function representation was performed in the artifi-
cial intelligence (AI) field. Even definitions of function have
varied, indicating that the concept is a complex one. Common
definitions include any of a number of variations on one pro-
posed by Rodenacker (1971), which defines function as a rela-

tion between the input and output of energy, material and in-
formation. Pahl and Beitz (1988) adapt this characterization
but generalize the concept, defining it as an abstract formulation
of a task, independent of any particular solution.

The variety in definitions of function have led to a variety
of uses and representations of function. Baxter (1994) distin-
guishes two types of representations: models of flows between
inputs and the outputs of products, and syntactic languages.
The first type generally follows the Pahl and Beitz paradigm of
the flow of materials, energy and signals through a hierarchy of
functions. The overall function is determined for a system and
then broken down into a set of subfunctions. This type of de-
composition yields a functional graph that roughly approxi-
mates subassembly boundaries (Shapiro and Voelcker, 1989).
Other approaches including (Kirschman and Fadel, 1998),
(Umeda and Tomiyama, 1997), and the one taken in this paper,
view the functional description of a system as being described
by an abstract functional decomposition that may, but need not,
have a direct mapping onto an isomorphic physical decomposi-
tion of assemblies and subassemblies.

Syntactic languages describe a design artifact using a
grammatical approach where a grammar is used to capture in-
formation about function. In general, these grammars consist of
combinations of verbs (functions) and nouns (parts of a design
artifact, or flows) such as Òhold liquidÓ (Lai and Wilson,
1989), Òcrush materialÓ (Hundal, 1990), Òcreate lateral motionÓ
(Sturges et al., 1996), Òtransmit linear motionÓ (Kirschman
and Fadel, 1998), and Òconvert electricity to thermal energyÓ
(Stone and Wood, 1999). Approaches such as these can cap-
ture the essence of many artifact functions; however, they do not
fully address the needs of a formal representation of function
because they do not include information models that capture
other types of information relevant to function, or the explicit
mappings between functions to flows, and between the function
domain and the physical domain. The representation of func-
tion described in this paper seeks to address these limitations
by providing formal schemata and taxonomies of terms used to
describe artifact functions and associated flows.

XML is not the only language that has been developed for
information modeling and knowledge exchange; other such
languages include EXPRESS (ISO, 1994b), Knowledge Inter-
change Format (KIF) (Genesereth and Fikes, 1992), and Open
Knowledge Base Connectivity (OKBC) (Chahudri et al.,
1998). However, XML has the main advantage of increasingly
widespread adoption in the information technology world.
More specifically, XML support is expected in upcoming ver-
sions of several commercial Web (i.e., World Wide Web)
browsers and word processing applications, in addition to a
number of XML authoring and development tools that are cur-
rently available. The decision to use XML has been made in
order to provide a more broad-based solution to an industry
that is increasingly looking towards purchase of off-the-shelf
software over in-house development when possible.

Other examples of the use of XML in engineering design
research include (Veeramani et al., 1998), which proposes the
use of XML as a modeling language for an intranet decision
support system, and (Lee and Hahn, 1998) which uses XML as
a basis for a manufacturing process engineering language. Be-

3

cause XML is a relatively new languageÑhaving achieved the
pre-standard status of recommendation from the World Wide
Web Consortium in February, 1998ÑitÕs use in the engineer-
ing field has not yet reached the pervasive level that has been
seen in the information technology world.

3 REPRESENTATION OF FUNCTION
This section introduces XML-based schemata, or informa-

tion models, used for the generic representation of function and
associated flows. Within the context of this representation,
function and flow are represented separately using different
schemata. The motivations behind the decision to decouple
the representation of function and flow concern ease of modifica-
tion of an artifact function representation, avoiding a prolifera-
tion of concepts required for modeling artifact function, and
simplifying the representation of functions that do not have
flows associated with them. A more detailed discussion of
these issues is given in (Szykman et al., 1999b) and therefore is
not repeated here. Similarly, because (Szykman et al., 1999b)
contains in-depth explanations of the generic (not XML-based)
schemata for function and flow, this paper contains only abbre-
viated descriptions.

The next section provides a brief introduction to XML for
those who are not familiar with the language. The sections that
follow describe the mapping of generic schemata for function
and flow into XML. An example illustrating the use of the
schemata for function modeling of a design artifact is then
given. The taxonomies of generic functions and flows will be
discussed in Section 4.

3.1 XML: A Brief Introduction
The Extensible Markup Language (XML) is a specification

developed by the World Wide Web Consortium (W3C). XML
is similar in appearance to the Hypertext Markup Language
(HTML). Unlike HTML, which has a fixed set of elements (or
tags), XML is designed to be extensible by allowing the defini-
tion of new elements arbitrarily, or more commonly using a
specified format called Document Type Definition (DTD). The
ability of XML to allow definition of structures and elements
fosters the development of standard schemata and terminolo-
gies. User-defined XML elements can be read by any other
compliant system, providing a way to keep data in a structured,
yet neutral, platform-independent form. Although XML is a
structured, machine-readable language, another benefit of XML
is that it is also human-interpretable (assuming the human is
familiar with the structure of XML). XML can therefore be
used either for computer-based data exchange, as well as for
human consumption.

XML documents are composed of markup and content.
There are six kinds of markup that can occur in an XML docu-
ment; the only ones discussed here are the two most important
ones necessary for understanding how a document is built and
structured: elements and document type declaration. Elements
are the most common form of markup. Delimited by angled
brackets (Ò< >Ó), most elements identify the nature of the con-
tent they surround. Some elements may be empty, in which
case they have no content. If an element is not empty, it be-
gins with a start tag <example> , and ends with an end tag

</example> . While most elements in a document are wrappers
around content, empty elements are simply markers of occur-
rences. Empty elements have a modified syntax, where a trail-
ing slash in an element tag, <example/> , indicates to a pro-
gram processing the XML document that the element is empty
and no matching end tag should be sought. Attributes are
name/value pairs that occur inside tags after the element name.
For example, <Function name="do"> is the Function ele-
ment with the attribute name having the value "do ." In XML,
all attribute values must be in quotes.

A Document Type Definition (DTD) contains a formal
definition of a particular type of document; it is the definition of
a schema, or information model, in XML form. This estab-
lishes what names can be used for elements, where they may
occur, and how they all fit together. Thus, data can be checked
for structural correctness (conformance to the DTD) and hierar-
chical data can be modeled to any level of complexity. An
XML document that is syntactically correct is said to be well-
formed; if a document also conforms to a declared DTD file, it
is considered to be valid.

3.2 The Function Schema
The generic schema for the function information model is

shown in Figure 1, where a word in brackets (Ò[]Ó) indicates a
reference to another data structure, and braces (Ò{ }Ó) indicate a
list of references to other data structures. The Name of the func-
tion is a string, and is required to be unique. The Type is a
reference to a generic function class that is part of a function
class taxonomy (to be discussed in Section 4). Documenta-
tion is a string used to describe the function. In cases where a
description is somewhat long, this string can consist of or in-
clude file paths or Web universal resource locators (URLs) that
lead to more information, images, etc. Methods is also a string
and can also be a file path or Web URL. This item differs from
Documentation in that Methods is intended to include com-
puter-processable information (such as a computer program,
code fragment, rules, constraints) to support computer-based
reasoning about a design.

The next two items in the schema are Input_flow and
Output_flow . These are references to lists of input and output
flows for the function. The next item in the schema is Sub-
functions . This item is a list of references to other function
data structures, allowing a function to be decomposed into mul-

Function
Name string
Type [Generic_function_class]
Documentation string (or NULL)
Methods string (or NULL)
Input_flow {[Flow]} (or NULL)
Output_flow {[Flow]} (or NULL)
Subfunctions {[Function]} (or NULL)
Subfunction_of [Function] (or NULL)
Referring_artifact [Artifact]

Figure 1. Generic Schema for Representation of
Function

4

<!ELEMENT FunctionRepresentation (Artifacts, Functions, Flows)>

<!ELEMENT Functions (Function*)>
<!ELEMENT Function (Documentation?, Methods?, InputFlow,
 OutputFlow, Subfunctions?, ReferringArtifact)>
<!ATTLIST Function
 name ID #REQUIRED
 type CDATA #REQUIRED
 subfunction_of IDREF #IMPLIED>

<!ELEMENT ref:Function EMPTY>
<!ATTLIST ref:Function
 ref IDREF #REQUIRED>
<!ELEMENT Subfunctions (Function | ref:Function)+>
<!ELEMENT ReferringArtifact (ref:Artifact)>
<!ELEMENT InputFlow (Flow | ref:Flow)*>
<!ELEMENT OutputFlow (Flow | ref:Flow)*>
<!ELEMENT Documentation (#PCDATA | Location)*>
<!ELEMENT Methods (#PCDATA | Location)*>
<!ELEMENT Property (#PCDATA)>
<!ELEMENT Location EMPTY>
<!ATTLIST Location
 type (path | URL) #REQUIRED
 value CDATA #REQUIRED>

<!ELEMENT Artifacts (Artifact*)>
<!ELEMENT Artifact (#PCDATA)>
<!ATTLIST Artifact

name ID #REQUIRED>
<!ELEMENT ref:Artifact EMPTY>
<!ATTLIST ref:Artifact
 ref IDREF #REQUIRED>

Figure 2. XML Mapping of the Generic Schema for Representation of Function

tiple subfunctions each of which may have its own associated
input and output flows. As will be illustrated in an example
below, the decomposition enabled by Subfunctions provides
the means to map complex functionality to more detailed por-
tions of an artifact model. The next item in the schema is Sub-
function_of , which can be thought of as the inverse of a refer-
ence indicated by Subfunctions . In other words, if function A
has functions B and C as subfunctions, then B and C are sub-
functions of A and will list function A under Subfunction_of .
The last item in the function schema is Referring_artifact .
This is a reference from a function back to the artifact that refer-
ences it.

The XML mapping of the generic function schema is
shown in Figure 2; one can see a general mapping of items in
the generic schema into the XML-based schema. A complete
description of the XML specification is outside the scope of this
paper and is not attempted here. Without delving into the de-
tails of XML, the following few syntactical points will aid
those unfamiliar with XML in interpreting the schemata in this
paper:

• Items in parentheses separated by a vertical line Ò|Ó indi-
cate an either-or relation. Therefore, the definition of the
Subfunctions element indicates that the data will either
include a function, or a reference to a function.

• In general, a name that appears in the schema definition
must have exactly one corresponding item in the data. For
example, as can be seen in the third element definition in
the schema, a Function must have exactly one referring
artifact.

• Exceptions to the above rule are indicated by adding spe-
cial characters to the end of a name. A name that ends in a
question mark indicates an optional item that can occur
zero or one times. Thus, the Documentation in the third
element definition is not required, but if it occurs it can
only occur once.

• A name that ends in an asterisk indicates an optional item
that can occur zero or more times. Since the definition of
InputFlow ends with an asterisk (combined with the ei-
ther-or relation described above), it indicates that an In-

5

putFlow is a list of zero or more items, each of which can
be either a flow or a reference to a flow.

• A name that ends in a plus sign Ò+Ó indicates a non-
optional element that occurs one or more times. The defi-
nition of the Subfunctions element (which ends in a Ò+Ó)
indicates that the data will include a list of one or more
items, each of which will be either a function or a reference
to a function.

• CDATA and #PCDATA indicate generic data, i.e., strings. ID
is also a string, but one that is required to be unique.

• Attributes are either required or optional, as indicated by
the #REQUIRED and #IMPLIED keywords.

3.3 The Flow Schema
Figure 3 shows the schema for the flow information model.

Like the function schema, the flow schema has a Name that is
required to be unique, a Type (that references the generic flow
class to which a given flow belongs, taken from a flow taxon-
omy to be discussed in Section 4), and a Documentation
string. In addition to these items, the flow schema also has a
Source and a Destination , which reference the physical arti-
facts that the flows for a given function enter from and exit to.
These two items are shown with braces, indicating a list of
references to allow the representation of a flow having multiple
sources or destinations. Since a great many properties or pa-
rameters can be associated with flows, it would not be desirable
to attempt to itemize a priori all the potential properties that
could be relevant to a given flow and capture them in a mono-
lithic data structure. The Properties item is a list of strings
that specify flow properties or parameters, and can vary based
on the userÕs requirements. For example, an electrical flow may
have a property that specifies its voltage in a string such as Ò v
= 5 VoltsÓ. The last item in the schema is Referring_
functions , which is a list of references to the functions that
have that particular flow as an input or output.

The mapping of the generic flow schema into XML is
shown in Figure 4. Again, one does not need to be intimately
familiar with XML to observe the general correspondence be-
tween information in the generic schema and the XML- based
schema. Although the element that defines a flow includes
Documentation as an optional element, the definition of the
Documentation itself does not appear in Figure 4. The reason
for this is that elements are only defined once. Since the Docu-
mentation element was defined in the function schema, it is
not redefined as part of the flow definition.

3.4 Example
Figure 5 shows a schematic representation of the data struc-

tures and references for a mechanism that is part of a fluid pump
design. This mechanism takes the rotational motion from a
rotating shaft, which is driven by a motor, and converts it to
oscillatory translational motion used to drive the pump piston
heads. At one level, this mechanism can be considered as a
single artifact, having an input flow (rotational motion) whose
source is a motor shaft, and an output flow (oscillatory transla-
tional motion) whose destination is the pump heads. However,
the function of this mechanism is actually more complex, con-
sisting of multiple subfunctions each satisfied by different por-

Flow
Name string
Type [Generic_flow_class]
Documentation string (or NULL)
Source {[Artifact]} (or NULL)
Destination {[Artifact]} (or NULL)
Properties {string} (or NULL)
Referring_functions {[Function]}

Figure 3. Generic Schema for Representation of
Flow

<!ELEMENT Flows (Flow*)>
<!ELEMENT Flow (Documentation?, Source,
 Destination, Property*, ReferringFunctions)>
<!ATTLIST Flow
 name ID #REQUIRED
 type CDATA #REQUIRED>
<!ELEMENT ref:Flow EMPTY>
<!ATTLIST ref:Flow
 ref IDREF #REQUIRED>
<!ELEMENT ReferringFunctions (ref:Function)+>
<!ELEMENT Source (ref:Artifact*)>
<!ELEMENT Destination (ref:Artifact*)>
<!--COMMENT: The ELEMENT Property does not appear
here because it's defined in the function schema.
Each ELEMENT should only be defined once.-->

Figure 4. XML Mapping of the Generic Schema for
Representation of Flow

tions of the mechanism. The conversion of motion described
above is accomplished as follows: a motor drives a shaft, which
enters a gearbox; the gearbox reduces the speed of rotation, and
the output motion drives a camshaft; the cam followers have
links to the pump piston heads, resulting in an output at the
piston heads that is an oscillatory translational motion.

These multiple subfunctions are represented individually
and mapped appropriately back to the physical artifact domain,
as shown in the figure. Although a discussion of a comprehen-
sive design artifact representation is beyond the scope of this
paper, representation of function is only one aspect of what is
required for artifact modeling. Since the function and flow
schemata include references to artifacts, boxes representing arti-
facts are shown in the figure. What is not captured at the func-
tion modeling level is the physical decomposition, i.e., the fact
that this mechanism is a subassembly within the pump, and
that the gearbox, cam and follower are parts of the mechanism
assembly.

The XML-based representation of the pump mechanism
function model is shown in Figure 6. Unlike the XML sche-
mata defined previously, this figure illustrates the appearance of
XML data, with references at the top indicating the version of
XML being used, as well as the DTD file containing the
Document Type Definitions for the schemata that the data must
adhere to in order to be valid.

6

Pump_
Mechanism

Mech_function
(convert)

Shaft
Piston_
heads

Source Destination

Gearbox

Artifact

Function

Flow

Artifact

Function

Flow

References to:

Legend

Data structures:

Cam_and_
follower

Subfunctions

Low_speed_rotation
(rotational_motion)

Gearbox_function
(convert)

C-F_function
(convert)

High_speed_rotation
(rotational_ motion)

Piston_motion
(osc._transl._ motion)

Subfunction_of

DestinationDestinationSource Source

Input_flow

Input_flowOutput_flow

Note: The Referring_function
references for the three flows have
been omitted to simplify the figure

Output_flow

Subfunction_of

Referring_artifact

Referring_artifactReferring_artifact

Figure 5. Graphical Illustration of Pump Mechanism Function Representation

Since an XML-based representation for artifact information
has not yet been developed, the first set of definitions that ap-
pear are simply placeholders for artifact definitions. These are
followed by the definitions of the three functions (the mecha-
nism function and its two subfunctions), which include refer-
ences to their associated input and output flows. These are
then followed by the definitions of the three flows, which in
turn provide the mapping of the function domain back to the
physical domain via references to artifacts. These definitions
are somewhat simplified for reasons of brevity, as this is merely
an example. In an actual function model, additional informa-
tion would be included in the form of documentation, lists of
flow properties, and so on.

4 XML-BASED REPRESENTATION OF TAXONOMIES
OF FUNCTION AND FLOW

The function and flow schemata described in Section 3
both include a Type , which is used to reference the generic class
to which that flow or function belongs. In addition to the de-
velopment of these schemata, a second objective of this work is
the development of generic taxonomies of function and flow that
are concise, yet comprehensive enough to allow the modeling
of a broad variety of engineering artifacts. The top-level divi-
sions of the two taxonomies are shown in Figure 7. The in-
dentation of terms identifies functions or flows that are subtypes
of a more generic type; the bracketed ellipsis Ò[...]Ó indicate
that each of the types listed actually has additional terms as
subtypes that are not listed in the abbreviated taxonomies

shown in the figure. The extended taxonomies of function and
flow appear in (Szykman et al., 1999b). The taxonomies con-
tain over 130 functions and over 100 flows. The evolution of
both taxonomies to achieve more comprehensive coverage of
engineering functions will be an ongoing part of this research.

In contrast to the schemata described previously, the ge-
neric schema for organizing the function and flow taxonomies is
relatively simple. The organization of functions and flow is
achieved through the definition of families. The generic schema
for the family definition is shown in Figure 8. A generic func-
tion or flow type that has a set of subtypes (indicated by the
indentation in Figure 7) defines a family with the subtypes as
descendants. Aside from the highest level terms (the ones
called ÒFunctionÓ and ÒFlowÓ) any family must belong to an-
other family, referred to as a superFamily . Families may also
have documentation and properties, similar to those described
for the schemata in Section 3.

The mapping of the generic family schema into XML is
shown in Figure 9. The Name of a family is a string and is
required to be unique. The superFamily is a reference to the
parent family. Documentation is a string used to describe the
family. In cases where a description is somewhat long, this
string can consist of or include file paths or Web URLs that
lead to images or additional information. The Properties
consist of a list of strings. These strings are used to represent
information about the specific properties of a family such as the
number of parameters necessary to describe one sort of family,
inheritance constraints, etc. The last item in the schema is

7

<?XML version="1.0"?>
<!DOCTYPE Function-Representation SYSTEM "FunctionRepresentation.dtd">
<FunctionRepresentation>

<Artifacts>
 <Artifact name="Pump_mechanism"> ... </Artifact>
 <Artifact name="Shaft"> ... </Artifact>
 <Artifact name="Gearbox"> ... </Artifact>
 <Artifact name="Cam_and_follower"> ... </Artifact>
 <Artifact name="Piston_heads"> ... </Artifact>
</Artifacts>

<Functions>
 <Function name="Mech_function" type="convert">
 <InputFlow> </InputFlow>
 <OutputFlow> </OutputFlow>
 <Subfunctions>
 <ref:Function ref="Gearbox_function"/>
 <ref:Function ref="Cam_and_follower_function"/>
 </Subfunctions>
 <ReferringArtifact> <ref:Artifact ref="Pump_mechanism"/> </ReferringArtifact>
 </Function>

 <Function name="Gearbox_function" type="convert" subfunction_of="Mech_function">
 <InputFlow> <ref:Flow ref="High_speed_rotation"/> </InputFlow>
 <OutputFlow> <ref:Flow ref="Low_speed_rotation"/> </OutputFlow>
 <ReferringArtifact> <ref:Artifact ref="Gearbox"/> </ReferringArtifact>
 </Function>

 <Function name="Cam_and_follower_function" type="convert"
 subfunction_of="Mech_function">
 <InputFlow> <ref:Flow ref="Low_speed_rotation"/> </InputFlow>
 <OutputFlow> <ref:Flow ref="Piston_motion"/> </OutputFlow>
 <ReferringArtifact> <ref:Artifact ref="Cam_and_follower"/> </ReferringArtifact>
 </Function>
</Functions>

<Flows>
 <Flow name="High_speed_motion" type="rotational_motion">
 <Source> <ref:Artifact ref="Shaft"/> </Source>
 <Destination> <ref:Artifact ref="Gearbox"/> </Destination>
 <ReferringFunctions> <ref:Function ref="Gearbox_function"/>
 </ReferringFunctions>
 </Flow>

 <Flow name="Low_speed_motion" type="rotational_motion">
 <Source> <ref:Artifact ref="Gearbox"/> </Source>
 <Destination> <ref:Artifact ref="Cam_and_follower"/> </Destination>
 <ReferringFunctions>
 <ref:Function ref="Gearbox_function"/>
 <ref:Function ref="Cam_and_follower_function"/>
 </ReferringFunctions>
 </Flow>

 <Flow name="Piston_motion" type="oscillating_translational_motion">
 <Source> <ref:Artifact ref="Cam_and_follower"/> </Source>
 <Destination> <ref:Artifact ref="Piston_heads"/> </Destination>
 <ReferringFunctions> <ref:Function ref="Cam_and_follower_function"/>
 </ReferringFunctions>
 </Flow>
</Flows>

</FunctionRepresentation>

Figure 6. XML-based Modeling of Motor Function Representation

8

Function
Usage-function [...]

Sink [...]
Source [...]
Storage [...]

Combination/distribution-function [...]
Transformation-function [...]
Conveyance-function [...]
Signal/Control-function [...]

Mathematical/Logical [...]
Signal-processing [...]

Assembly-function [...]

Flow
Material [...]

Solid [...]
Object [...]

Liquid [...]
Gas [...]
Multi-phase-mixture [...]

Energy [...]
Generic [...]
Mechanical-domain [...]

Translational-domain [...]
Rotational-domain [...]

Electrical-domain [...]
Thermal-domain [...]
Hydraulic-domain [...]

Signal [...]
(a) Function Taxonomy (b) Flow Taxonomy

Figure 7. Top-level Subdivisions for the Function and Flow Taxonomies

Family
Name string
superFamily [Family] (or NULL)
Documentation string (or NULL)
Properties {string} (or NULL)
Descendants {[Family]} (or NULL)

Figure 8. Generic Schema for Organization of a
Taxonomy

<!ELEMENT Taxonomy (Family+)>
<!ELEMENT Family (Documentation?, Property*,
 Descendants?)>
<!ATTLIST Family
 name ID #REQUIRED
 superFamily IDREF #IMPLIED>

<!ELEMENT Descendants (Family | ref:Family)*>
<!ELEMENT ref:Family EMPTY>
<!ATTLIST ref:Family
 ref IDREF #REQUIRED>

Figure 9. XML-based Modeling of the Generic
Schema for Organization of a Taxonomy

Descendants . It is a reference to family entities that are spe-
cializations or subtypes of the current one.

To illustrate the use of the family schema to hierarchically
organize the terms in a taxonomy, Figure 10 provides the defi-
nition of three of the families from the abbreviated flow taxon-
omy shown in Figure 7b: Flow, Material, and Solid. The ge-
neric term Flow is a family with three descendants, Material,
Energy, and Signal. Material is a family whose superFamily
is Flow, and which has four descendants. In the portion of the
taxonomy shown in Figure 10, only the term Solid is broken
down further; in the full taxonomy Material, Energy, and Sig-
nal, are all families having additional levels of descendants.

<?XML version="1.0"?>
<!DOCTYPE Taxonomy SYSTEM "Taxonomy.dtd">
<Taxonomy>
 <Family name="Flow">
 <Descendants>
 <ref:Family ref="Material"/>
 <ref:Family ref="Energy"/>
 <ref:Family ref="Signal"/>
 </Descendants>
 </Family>

 <Family name="Material" superFamily="Flow">
 <Descendants>
 <ref:Family ref="Solid"/>
 <ref:Family ref="Liquid"/>
 <ref:Family ref="Gas"/>
 <ref:Family ref="Multi-phase-mixture"/>
 </Descendants>
 </Family>

 <Family name="Solid" superFamily="Material">
 <Documentation>
 <Location type="URL"
 value="http://www.nist.gov/DRP/"/>
 </Documentation>
 <Property> property text A </Property>
 <Property> property text B </Property>
 <Descendants>
 <ref:Family ref="Object"/>
 </Descendants>
 </Family>
</Taxonomy>

Figure 10. XML-based Modeling of a Representative
Portion of the Flow Taxonomy

9

5 APPROACHES TO INFORMATION PROCESSING,
KNOWLEDGE RETRIEVAL, AND REUSE

Now that a formal specification for representation of artifact
function information has been developed and mapped into XML
to better support implementations using this representation, the
next step is to begin generating algorithms and building soft-
ware systems that use this representation. Any tools that will
be used for processing information represented using these
schemata and taxonomies will have to begin by reading in data
from a file or database and parsing itÑmoving data from the file
level into data structures at the software level. A significant
advantage of the use of XML as an information modeling lan-
guage is that generic XML parsers already exist, freeing devel-
opers from this burden.

Once XML data has been parsed, interfaces need to be de-
veloped to view and navigate this information. The next phase
in this work is to develop an interface that will display and
allow editing of the function and flow taxonomies. The devel-
opment of other interfaces for more generic artifact modeling are
discussed as part of the future work in the next section.

Some initial algorithms for information processing and
reasoning about function have been identified and devised, but
have not yet been implemented. One example is the method for
identifying input and output flows for functions that are decom-
posed into subfunctions. Returning to the pump mechanism
example discussed previously, one can see from Figure 5 that
the mechanism function does not have input and output flows
because it is decomposed into subfunctions. There is therefore
a need for the ability to derive that information from the given
data. This can be done as follows:
• Follow a decomposed function down the subfunction hier-

archy to the lowest level where functions are not further de-
composed, and create a list of all the functions (actually
subfunctions) at the bottom-level. The decomposition
only descends one level for the pump mechanism, but in
the general case there may be multiple levels. The list of
bottom-level level functions for the pump mechanism ex-
ample consists of the gearbox function and the cam and fol-
lower function.

• Next, for each function in that list, add all the input flows
to a list called inputs and add all the output flows to a list
called outputs. In this example, the gearbox function will
add high-speed rotation to the inputs list and a low-speed
rotation to the outputs list. The cam and follower function
adds low-speed rotation to the inputs list and oscillatory
translational motion to the outputs list.

• Next, take any flow that appears in both lists, remove it
from both the inputs and outputs lists, and add it to a list
called internal.

• Any flows that remain on the inputs list are inputs to the
decomposed function, and any flows remaining on the out-
puts list are outputs to the decomposed function. Any
flows that end up on the internal list are ÒinternalÓ to the
higher-level decomposed function. In this example, the
high-speed rotation is an input to the mechanism function,
the oscillatory translational motion is an output. The low-
speed rotation, which ends up on the internal list, is a flow

that is internal to the pump mechanism but does not actu-
ally enter or leave the mechanism in that form.

Although it is not demonstrated by the simple pump mecha-
nism example, this algorithm works with more complex func-
tions that may be decomposed more than one level, and with
subfunctions having multiple input and output flows that may
reference different source and destination artifacts.

Once a large enough number of design artifacts has been
modeled, the set of function models can serve as a database for
knowledge retrieval and reuse. Using the above algorithm,
queries can be made to search for solutions to particular function
structures; a search for something that converts rotational mo-
tion to oscillatory translational motion, for instance, would turn
up the pump mechanism. Since properties of flows are stored
as lists of strings in the flow schema, these properties can be
included as search criteria. A search can be made not only for a
function structure that converts electrical energy to rotational
motion, but one whose input is electrical energy in the form of
direct current at no more than twelve Volts.

Furthermore, the formal representation that has been devel-
oped can support even more sophisticated types of queries. As
illustrated by the graphical interpretation of the pump mecha-
nism shown in Figure 5, the function representation can be
mapped to a graph where the various data structures (functions,
flows, artifacts) are nodes in the graph and references among data
structures are arcs. Sophisticated graph-based pattern-matching
algorithms have been developed in the field of computer science
that could be used for even more intelligent kinds of searches.
A search could therefore attempt to match not only a function
with certain inputs and outputs, but could also target or avoid
certain kinds of subfunctions or internal flows. And although a
detailed representation of the artifact itself has not yet been de-
veloped, once such a representation has been implemented,
searches could target or avoid certain kinds of artifacts, or could
attempt to find function structures that satisfy certain functions
and that have fewer than X parts, and so on.

Searches of these kinds are virtually impossible using tradi-
tional design databases where function is either described in
some kind of natural language documentation, or even more
often not captured explicitly at all. Thus, in addition to pro-
viding a neutral language for storing and exchanging function
information, the representation described in this work provides
a means for the creation of corporate design knowledge archives
and repositories that support more effective retrieval and reuse of
knowledge.

6 SUMMARY AND AREAS FOR FUTURE RESEARCH
This paper presents an XML-based mapping of a standard-

ized representation of function consisting of schemata for func-
tions and associated flows, along with taxonomies of generic
functions and flows. The formal representation provides the
means for representing functions that have multiple input and
output flows, properties and parameters associated with flows,
and the decomposition of functions into subfunctions each po-
tentially having its own distinct flows. The representation also
provides a mapping from the function domain to the physical
domain (via references to artifacts in the flow schema) and sup-
ports the representation of function sharing provided that it is

10

used with an artifact representation that permits artifacts to have
multiple functions.

Future work relating to the research presented in this paper
is continuing along several avenues. To date, the focus of the
development of the function taxonomy has focused on classes of
functions that have flows associated with them. These are,
however, not the only types of functions. One area of future
work is to expand the scope of the taxonomy to cover different
classes of functions, such as assembly functions and other non-
flow-based functions relating to more abstract types of issues
such as to shelter and to provide access. While the taxonomy
does not currently extend to cover these other functions, the
function representation itself is still capable of characterizing
these concepts simply by using the function schema with no
input and output flows.

The development of concise taxonomies containing generic
terms has two main advantages. First, it reduces ambiguity at
the modeling level, which can occur when multiple terms are
used to mean the same things, or when the same term is used
with multiple meanings. The distillation of a large body of
terms into concise taxonomies does not eliminate this problem
entirely, but it significantly lessens its occurrence. Second, it
reduces the number of different was a given function concept can
be represented. Both of these advantages provides benefits
when it comes to indexing and retrieving function-based infor-
mation from a knowledge base. However, because designers do
use different terms to mean the same thing or use the same
terms to mean different things, one potential contribution to
this work would be to develop a ÒthesaurusÓ that would cross-
reference multiple terms and multiple meanings, in order to aid
a designer in finding the best term to use in a given context.

As engineering function is generally not of interest in the
absence of any design artifact information, the representation of
function proposed in this paper is intended to be incorporated as
a layer within the context of a larger artifact modeling system
that includes a more comprehensive representation of a design
artifact. Other important aspect of design knowledge include
geometry, behavior, physical (often hierarchical)
decompositions, and other kinds of relationships. One such
prototype system is being developed as part of the NIST De-
sign Repository Project (Szykman et al., 1999a; Szykman et
al., 1999c).

This prototype is now beginning a new implementation
phase to produce a system architecture that utilizes XML-based
representations of artifact information. This second-generation
system will make use of the function representation presented in
this paper, as well as representations that are currently being
developed for other kinds of artifact knowledge. Existing inter-
faces for modeling artifacts and browsing artifact models will be
re-implemented to interact with these XML-based artifact mod-
els. Part of this effort will include the modeling of various con-
sumer products. This exercise will serve to validate the XML-
based representations as well as the interfaces.

Beyond its adoption within the NIST Design Repository
Project, it is hoped that the specification for a standardized rep-
resentation of function presented in this paper will propagate
into other parts of the academic and industrial research commu-
nities. In the near term, such a standardization will facilitate

information exchange among researchers. In the longer term,
this work is intended to provide a foundation for developers of
the next generation of CAD systems and design tools. Aside
from supporting ongoing research at NIST, helping to avert the
undesirable emergence of multiple competing, proprietary for-
mats for representing functionÑa problem that has adversely
impacted industry in the area of geometric modeling and repre-
sentationÑhas been a strong motivation for undertaking this
work. Furthermore, should competing formats emerge, the
proposed language may still be useful by providing a neutral
exchange language much as STEP (ISO 10303, Standard for the
Exchange of Product Model Data) (ISO, 1994a) is used for the
exchange of geometric CAD data. Systems that have incom-
patible formats can still exchange information if both can read
and write data in a standardized neutral format.

The specification for function representation provides a
simple, generic language for representing function information.
Consequently, the main contribution of this work is at the rep-
resentational level. Algorithms for information processing and
knowledge retrieval (including those described in the previous
section) will have to be developed and implemented. This
representation provides a generic infrastructure that will facilitate
the capture and exchange of function information among re-
searchers at present, and eventually in industry by contributing
to interoperability between design systems, be they commercial
or developed internally within a company.

Once a more complete artifact representation has been de-
veloped, another potential application for this work is to en-
hance the content of patent databases residing at the U.S. Patent
and Trademark Office. Currently, patent information consists of
text and two-dimensional images. A formal artifact representa-
tion that extends to function will provide a more comprehensive
description of a device, while the combination of the formal
representation and taxonomies of generic terms will allow more
meaningful indexing, and will consequently enable more effi-
cient search and retrieval of patent information.

REFERENCES
Baxter, J. E., N. P. Juster, and A. de Pennington (1994),

ÒA Functional Data Model For Assemblies Used To Verify
Product Design Specifications,Ó Proceedings of the IMechE,
Part B, Journal of Engineering Manufacture, 208:235-244.

Chaudhri, V. K., A. Farquhar, R. Fikes, P. D. Karp, and
J. P. Rice (1998), Open Knowledge Base Connectivity 2.0,
KSL-98-06 (technical report), Stanford Knowledge Systems
Laboratory, Stanford University, Stanford, CA.

Genesereth, M. R. and R. E. Fikes (1992), Knowledge In-
terchange Format, Version 3.0 Reference Manual, KSL-92-86
(technical report), Stanford Knowledge Systems Laboratory,
Stanford University, Stanford, CA.

Hundal, M. S. (1990), ÒA Systematic Method for Devel-
oping Function Structures, Solutions and Concept Variants,Ó
Mechanism and Machine Theory, 25(3):243-256.

ISO 10303-1:1994 (1994a), Industrial Automation Systems
and Integration Ð Product Data Representation and Exchange
Ð Part 1: Overview and Fundamental Principles.

11

ISO 10303-11:1994 (1994b), Industrial Automation Sys-
tems and Integration Ð Product Data Representation and Ex-
change Ð Part 11: The EXPRESS Language Reference Manual.

Kirschman C. F. and G. M. Fadel (1998), ÒClassifying
Functions for Mechanical Design,Ó ASME Journal of Mechani-
cal Design, 120(3):475-482.

Lai, K., and W. R. D. Wilson (1989), ÒFDL - A Lan-
guage for Function Description and Rationalization in Mechani-
cal Design,Ó Journal of Mechanics, Transmissions, and Auto-
mation in Design, 111:117-123.

Lee, D. E. and H. T. Hahn (1998), ÒA Temporal Process
Specification Language for Virtual Manufacturing Engineering,Ó
Proceedings of the 1998 ASME Design Engineering Technical
Conferences, Paper No. DETC98/CIE-5535, Atlanta, GA, Sep-
tember.

Pahl, G. and W. Beitz (1988), Engineering Design: A Sys-
tematic Approach, Springer-Verlag, New York.

Rodenacker, W. (1971) Methodishes Konstruieren,
Springer, Berlin.

Shapiro, V. and H. Voelcker (1989), ÒOn the Role of Ge-
ometry in Mechanical Design,Ó Research in Engineering De-
sign, 1:69-73.

Stone, R. B. and K. L. Wood (1999), ÒDevelopment of a
Functional Basis for Design,Ó Proceedings of the 1999 ASME
Design Engineering Technical Conferences (11th International
Conference on Design Theory and Methodology), Paper No.
DETC99/DTM-8765, Las Vegas, NV, September.

Sturges, R. H., K. OÕShaughnessy and M. I. Kilani
(1996), ÒComputational Model for Conceptual Design Based
on Extended Function Logic,Ó Artificial Intelligence for Engi-
neering Design, Analysis and Manufacturing, 10:255-274.

Szykman, S., J. W. Racz, C. Bochenek and R. D. Sriram
(1999a), ÒA Web-based System for Design Artifact Modeling,Ó
Design Studies (accepted for publication).

Szykman, S., J. W. Racz, and R. D. Sriram (1999b),
ÒThe Representation of Function in Computer-based Design,Ó
Proceedings of the 1999 ASME Design Engineering Technical
Conferences (11th International Conference on Design Theory
and Methodology), Paper No. DETC99/DTM-8742, Las Ve-
gas, NV, September.

Szykman, S., R. D. Sriram, C. Bochenek and J. W. Racz
(1999c), ÒThe NIST Design Repository Project,Ó Advances in
Soft Computing Ð Engineering Design and Manufacturing,
Roy, R., T. Furuhashi, and P. K. Chawdhry (Eds.), Springer-
Verlag, London, pp 5-19.

Szykman, S., R. D. Sriram and S. J. Smith (Eds.) (1998),
Proceedings of the NIST Design Repository Workshop,
Gaithersburg, MD, November 1996.

Umeda, Y. and T. Tomiyama (1997), ÒFunctional Rea-
soning in Design,Ó IEEE Expert Intelligent Systems and Their
Applications, 12(2):42-48.

Veeramani, R., N. Viswanathan, and S. M. Joshi (1998),
ÒSimilarity-based Decision Support for Internet Enabled Sup-
ply-Web Interactions,Ó Proceedings of the 1998 ASME Design
Engineering Technical Conferences, Paper No. DETC98/CIE-
5523, Atlanta, GA, September.

World Wide Web Consortium (1995), Hypertext Markup
Language - 2.0, World Wide Web Consortium (W3C) Stan-
dard, September, <http://www.w3.org/MarkUp/html-spec/html-
spec_toc.html>.

World Wide Web Consortium (1998), Extensible Markup
Language (XML) 1.0, World Wide Web Consortium (W3C)
Recommendation, February, <http://www.w3.org/TR/REC-
xml>.

