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Abstract

Engineering product development in today's industry is becoming increasingly knowledge intensive.

The NIST Design Repository Project, at the National Institute of Standards and Technology, is working

to develop infrastructural technologies to support the use of design repositories in industry. In contrast

to traditional design databases, design repositories more actively support knowledge-based design, serv-

ing not only as archives, but as repositories of heterogeneous information that are designed to enable

representation, capture, sharing, and reuse of corporate design knowledge. This paper presents a lan-

guage that has been developed for the modeling of engineering design artifacts. The implementation

of a prototype tool suite, which includes intelligent web-based interfaces that allow distributed users to

create, edit and browse design repositories, is also presented.

1 Introduction

Design of complex engineering systems is increasingly becoming a collaborative task among designers or
design teams that are physically, geographically, and temporally distributed. The complexity of modern
products means that a single designer or design team can no longer manage the complete product development
e�ort. Developing products without su�cient expertise in a broad set of disciplines can result in extended
product development cycles, higher development costs, and quality problems. On the other hand, ensuring
comprehensive technical pro�ciency in a world where trends are toward more multidisciplinary design can
become a costly undertaking for a company.

Driven by such issues, companies are increasingly sta�ng only their core competencies in-house and
depending on other �rms to provide the complementary design knowledge and design e�ort needed for a
complete product. Designers are no longer merely exchanging geometric data, but more general knowledge
about design and design process, including speci�cations, design rules, constraints, rationale, etc. As design
becomes increasingly knowledge-intensive and collaborative, the need for computational design frameworks
to support the representation and use of knowledge among distributed designers becomes more critical. Due
to the explosive growth of the Internet and associated information infrastructure, as well as the ubiquity of
World Wide Web browsers, the use of the Internet and the World Wide Web as methods for communication
and information transfer is increasing.

In addition to sharing and exchanging information, pressure to reduce product development times has
resulted in an increased focus on methods for representing and storing engineering artifact knowledge in a
way that facilitates its retrieval and subsequent reuse. Merely providing access to schematics, computer-aided
design (CAD) models of artifacts and written documentation is inadequate for this purpose. The emerging
research area of design repositories is aimed at addressing these industry needs.
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A design repository is an intelligent knowledge-based design modeling system used to facilitate the rep-
resentation, capture, sharing, and reuse (search and retrieval) of corporate design knowledge. It should be
noted that although the term design repositories has not yet found its way into daily usage in industry, many
companies are migrating from traditional design databases to design repositories1. Design repositories are
distinguished from traditional design databases in a number of signi�cant ways:

� Traditional design databases are typically more data-centric than knowledge-centric, while design repos-
itories attempt to capture a more complete design representation that may include characterization of
function, behavior, design rules, simulation models, and so on.

� Design databases are generally more homogeneous in the kinds of information they contain (e.g. images,
CAD models, and unstructured text/documentation). Design repositories may include, in addition to
these, formal data/information models, structured text (specialized languages for representing function,
design rules, logical expressions), mathematical simulation models and more.

� Design databases tend to be static sources of information (though their contents may grow with time).
Design repositories are designed not only for storage of information, but to support retrieval and
reuse of design data in more sophisticated ways such as search for components/assemblies that satisfy
required functions, explicit representation of physical and functional decompositions and the mappings
between them, etc.

The NIST (National Institute of Standards and Technology) Design Repository Project involves research
toward creating a technical foundation for the development of design repositories, addressing a broad set of
issues from knowledge representation and information models, to taxonomies of design function, to interfaces.
The project was motivated by needs identi�ed at an industry workshop held at NIST in November 1996 [25]
and, as such, focuses on needs determined by industry participants to be important to future knowledge-based
design systems.

This paper presents a summary of the knowledge representations used within the NIST Design Repository
Project artifact modeling system, followed by details about the implementation and intelligent web-based
interfaces for creating, editing and browsing design repositories. A more general summary of the project
and associated research issues can be found in [26]. Research done in areas related to the work described in
this paper are summarized in Section 2. Section 3 describes the knowledge representation used for modeling
design artifacts. The implementation, system architecture and interfaces are presented in Section 4. Section
5 discusses conclusions and future directions for this project.

2 Related Work

Traditional CAD systems are limited to representation of geometric data and other types of information relat-
ing to geometry that may include constraints, parametric information, features, and so on. The engineering
design community has been developing new classes of tools to support knowledge-based design, product data
management (PDM), and concurrent engineering. When contrasted with traditional CAD tools, these new
systems are making progress toward the next generation of engineering design support tools. However, these
systems have been focusing primarily on database-related issues and do not place a primary emphasis on
information models for artifact representation (e.g. [3], [11], [17], [23], [28]).

Furthermore, although these systems can represent some kinds of non-geometric knowledge (e.g. in-
formation about the design process, manufacturing process, bills of materials, etc.), representation of the
artifact itself is still generally limited to geometry. This impacts the utility of a range of software tools used
in engineering industry. As an example, the lack of a formal product representation that includes function,

1Just as the word \database" can refer to either a database management system or an individual information store and its
content, in this paper, the term \design repository" will be used to describe both the modeling system (underlying representation,
interfaces and mechanisms) as well as an speci�c design artifact model and its content. The intended meaning in a particular
instance should be clear from the surrounding context.
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behavior and structure has been identi�ed by Bilgic and Rock in [2] as a shortcoming of existing PDM
systems.

Because of industry's increasing dependence on knowledge, rather than simply geometric data, the design
artifact modeling system developed in the NIST Design Repository Project focuses on an artifact representa-
tion that encompasses a broader engineering design context. This context includes representation of not only
geometry, but also function, behavior, physical and functional decompositions, relationships among these
various entities, and so on.

The artifact modeling representation used in this research builds on earlier work in developing an object-
oriented representation format that provides a high level division into form, function, and behavior ([27],
[10]). The division of design artifact knowledge into these categories has its roots in earlier work in intelligent
design system development. Examples of work in this area includes the qualitative simulation work in [7],
behavioral and functional representation in [12], functional representation in [4] and successive representation
from projects such as KRITIK [8] and INTERACTIVE KRITIK [9], the YMIR project [1], CONGEN [10],
and others.

3 Knowledge Representation

Design repositories are intended to support the storage, retrieval and reuse of engineering knowledge about
artifacts that have been designed. This knowledge includes the geometric description such as drawings
and/or CAD models, as well as complementary knowledge concerning characterization of artifacts, func-
tion, behavior, relationships and interconnections between them. Information is represented using a formal
knowledge representation that can be comprehended by humans, but which, unlike natural language, can be
interpreted by computers and used for (partially) automated reasoning.

In order to achieve this objective, an artifact modeling language has been developed that consists of a
Data Language (DL) and a Design Representation Language (DRL)[21]. The Data Language describes the
syntax and data structures for a highly generic object-oriented (object/class) paradigm that can be applied
to any of many di�erent domains; the Design Representation Language combines the Data Language with
an engineering context to provide the means for modeling design artifacts. The artifact modeling language is
derived from the SHARED object model [27], which is implemented within a conceptual design shell called
CONGEN (an object-oriented domain-independent design support framework) [10].

3.1 The Data Language

The Data Language (DL) developed in this research is based on the SHARED object model[27]. This model,
which is useful not only for e�cient data handling, can be easily adopted to automate a design process.
For databases, which are destined to be used on a large scale in a distributed environment (e.g. Internet),
the SHARED model was modi�ed to address rigorous requirements in arrangement of storage, indexing,
searching or concurrent access.

The DL consists of four basic types of entities: objects2, relationships, and (object) classes and relation-
ship classes from which objects and relationships are instantiated. Each of these entity types are identi�ed
by a unique name.

3.1.1 Objects

An object o is de�ned as o(oid,cid,A,R), where oid is a unique object identi�er (i.e. a name), cid identi�es
the class the object belongs to (i.e. the parent of the object), A is a set of attributes represented by names

2In its general usage, the word \object" is usually used to describe any of numerous types of entities in an object-oriented
system. In this work, however, the term refers to a speci�c kind of data item, and thus relationships are not referred to as
\objects" though they could be considered objects in the generic sense. Because of this distinction, the term \entity" is used
to refer to the four types of data items.
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of attributes and their values (which may be strings, numbers, references to other entities, etc.), and R is a
set of relationships between sets of objects.

An example of an object data structure is shown in Fig. 1.3 The object shown de�nes the artifact4 named
drill artifact 1 (its oid), and Drill artifact, identifying it as an instance of that class. Its �ve attributes are
function, form, behavior, full name, and description. The values of the �rst three attributes are in brackets,
indicating that they are references to other entities having those names; the other two attributes have
strings as values. The list of relationships for the drill artifact 1 object consists of a single relationship,
again indicated by an entity name in brackets.

Object:

parent: [Drill artifact]

oid: [drill artifact 1]

A: function [drill artifact 1 Function];

form [drill artifact 1 Form];

behavior [drill artifact 1 Behavior];

full name ``Black & Decker VP840 Drill'';

description ``Battery powered power drill/screwdriver'';

R: [drill artifact 1 Has part];

Figure 1: Example schema for an object entity

3.1.2 Relationships

Relationships among objects are represented explicitly in the Data Language. This aids in organizing groups
of objects (in hierarchical or tree structures, for example), as well as to support human or automated
navigation among collections of objects, which in our case are design repositories. The generic relationship
r is de�ned similarly to the object: r(rid, rcid, RO, A), where rid is a unique identi�er (name) of the
relationship, RO is a set of roles that describe the nature of the relationship between the associated entities,
and A is a set of attributes de�ned the same way as for an object.

An example of a relationship entity is shown in Fig. 2. The entity is an instance of the Has part
relationship class, and de�nes the decomposition of a composite assembly (the drill artifact 1 object)
into a set of components which may be either subassemblies and/or individual components. This relationship
is bi-directional; it references both the composite and the components, and it is also referenced in the data
structures for both the composite (as seen in Fig. 1) and in the components (not shown). Such an approach
enables the organization of a collection of objects using relationships in either a bottom up or a top down
fashion, or a mix of both. The example shown is taken from the artifact modeling domain, and thus the
composite and components roles apply to the representation of artifacts. These roles are associated with the
Design Representation Language, which has roles speci�c to artifact modeling; the Data Language itself does
not restrict the roles associated with a relationship to a given domain.

3.1.3 Object Classes

The structures of individual objects and their syntax are described by object classes (heretofore referred to
simply as classes). A class c is de�ned as c(cid, scid, AD, Rc), where cid is a unique class identi�er, (name)
scid is a superclass (i.e. a parent class) of which c is a subclass, Ad is a set of attribute de�nitions, and Rc

3Recall that as described previously, the Data Language is generic and can be applied to any of many domains. Although
the example shown in the �gure has attributes and values that associat the object with an engineering artifact, there is nothing
within the generic object schema that restricts it to this domain. The basic object schema could just as easily be used to
represent an employee in a corporate personnel database.

4Artifacts are a type of object and will be described in greater detail in the section on the Design Representation Language.

4



Relationship:

parent: [Has part]

rid: [drill artifact 1 Has part]

RO: composite [drill artifact 1];

components

f[housing system 1] [power system 1] [control system 1]

[drill system 1] [white wire 1] [red wire 1]

[black wire 1] [black wire 3]g;
A:

Figure 2: Example schema for a relationship entity

is a set of relationship classes. An object o belonging to a class c contains the attributes and relationships
of that class. This allows generic class to de�ne the schema for instantiated objects belonging to that class.
An object belonging to a class generally has the slots de�ned by the class, but may also di�er somewhat,
either by having additional slots not speci�ed in the class de�nition, or by allowing unnecessary slots de�ned
in the class de�nition to remain unused (the unused slots would have no values). This method of relating
objects to classes di�ers from most object-oriented programming formulations, but is consistent with the
intended use of the Data Language. Speci�cally, the classes are intended to de�ne useful schemata while
building in representational exibility that is not required in more traditional object-oriented programming
environments.

Fig. 3 depicts the class named Tool artifact. It is descendant of the class Artifact, which means, that
it inherits properties prede�ned in its parent's de�nition. A class can possess additional attribute de�nitions
or relationship classes, which are not possessed by its ancestor and may not use all of them. The drill
artifact shown in Fig. 1 is an instance of Drill artifact, which is a subclass of Tool artifact, which is a
subclass of Artifact. The slots function, form, and behavior which appear in Fig. 1 are inherited from the
Artifact class, and therefore are not shown explicitly in the Tool artifact class de�nition shown in Fig.
3. The Tool artifact class de�nition adds a new attribute called full name, which does not appear in the
Artifact class de�nition.

Class:

parent: [Artifact]

cid: [Tool artifact]

A: STRING: full name;

R: [Has part];

Figure 3: Schema for the a class entity

3.1.4 Relationship Classes

Relationship classes refer to relationships and play the same role as classes do for objects. A relationship
class r is de�ned as rc(rcid, srcid, ROd, Ad), where rcid is a relationship class identi�er (name), srcid is
a relationship superclass (or parent class), ROd is a set of role de�nitions, and Ad is a set of attribute
de�nitions.

The relationship class showed in Fig. 4 describes the schema of the Has part relationship. Note that
the curly braces that appear to the left of the components role indicate a list of entities, not a single entity.
Thus, a Has part relationship de�nes the decomposition of a single composite, which must belong to the
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Artifact class, into a set of components which must also belong to the Artifact class. No attributes are
de�ned for this class.

RelationshipClass:

parent: NULL

rcid: [Has part]

RO: [Artifact] composite;

f[Artifact]g components;

A:

Figure 4: Example of a relationship class entity

Both the (object) class and relationship class hierarchies contain top level entities, which have no parents.
The Has part is an example of such a relationship class, and therefore the value of its parent slot is NULL.
These special entities are part of the Design Representation Language (DRL) and are described in the next
subsection.

3.2 The Design Representation Language

The previous subsection has de�ned the basic schemata and data structures of the Data Language in isolation
from any engineering context (though the examples did include such context). The engineering context is
de�ned through the Design Representation Language (DRL), and includes the semantics and class hierarchies
of artifacts, taxonomies of functions and ows, the concept of compositional, functional and behavioral
decomposition, and many engineering-speci�c attributes.

In the DRL an artifact a is de�ned (via its class de�nition) as an object whose subset of attributes Aa

contains references to objects belonging to three other fundamental classes: form - the geometry or physical
properties (material, color, surface �nish, etc) of the artifact, function - an indication of the purpose of an
artifact, and behavior - a casual account of the operation of the artifact.

Artifacts are used to represent physical assemblies, subassemblies and components; these are linked to
each other by the bi-directional Has part relationship to de�ne the compositional (physical) hierarchy of the
product. Similarly, a Has function relationship is used to de�ne a functional decomposition of a product. In
addition to any attributes mentioned above, artifacts may contain additional attributes speci�c to individual
objects. The set of classes that are descended (through parent slots) from the Artifact class create a
hierarchy that describes a conceptual classi�cation of products, which is independent of their assembly
structures. Using the DRL, any artifact is an instance of some type of Artifact class.

Since more and more CAD systems have the ability to import and export STEP (Standard for the
Exchange of Product Model Data [14]) data, this format is used as the basis for representation of geometry
in this project. Thus in the DRL, objects instantiated from the form class have as attributes pointers to data
�les in STEP format, speci�cally STEP AP (Application Protocol) 203 [15]. In addition, to facilitate remote
visualization of artifacts, geometry is also accessible in the Virtual Reality Modeling Language (VRML) [16])
format.

Artifact behavior speci�es the response of an artifact to input condition or behavioral states. The
Behavior class contains attributes that refer to a set of input and output objects, as well as relationships to
decompose behavior into subbehaviors (using Has subbehavior and Accomplished by relationships) to encode
the link between the behavior of an artifact and the behavior of another artifact, that directly accomplishes
that goal. The representation scheme for behavioral information within this work is not yet mature and will
be developed further as subsequent research.

In the DRL, functions describe interactions between ows5, which are treated as inputs and outputs

5The term \ow" in this work is used in a sense similar to that proposed by Pahl and Beitz [22], referring to the ow of
materials, energy and information.
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to functions. Like artifacts, functions are represented using objects which have a schema that de�nes the
function inputs and outputs as references to other entities (objects) representing ows, which in turn have
their own schemata. Objects representing functions are instantiated from classes that are descended from
the Function class.

Functions are decomposed using two type of relationships: Has subfunction, which decomposes a com-
plex function into simpler ones, and Satisfied by playing the same role as Accomplished by does for
behavior. The �rst type of relationship enables the de�nition of a functional decomposition of a design,
while the latter is used to avoid multiple identical objects, thereby reducing the overall number of objects
required to describe a product. Because artifacts refer to functions, functions refer to ows associated with
those functions, and ows refer to artifacts associated with those ows, the DRL provides a mapping between
the representations of the physical decomposition and the functional decomposition of a product.

The use of functional decomposition in design simpli�es the design process and facilitates comprehension
of the fundamental description of a product. Eventually, the process of subdivision reaches a level at which
further decomposition is not bene�cial. The Function taxonomy can provide the natural set of leaves6,
which terminate this tree-like decomposition. The problem is to provide a terminology which is domain-
independent and generic enough to model a broad variety of engineering artifacts, and yet small enough to
provide a manageable standardized vocabulary and to facilitate indexing and retrieval for design reuse. To
accomplish these conicting requirements a the development of comprehensive taxonomies of functions and
associated ows is in progress.7 For illustrative purposes, Fig. 5 shows an abridged portion of the Function
and flow taxonomies (i.e. class hierarchies) used in this work.

a) b)

Figure 5: Class hierarchies: a) Function taxonomy b) Flow taxonomy

The �rst level of the function hierarchy consists of four basic function classes that are subclasses if the
root class Function. These are: Convey, Transform, Distribute and Control (see Fig. 5a). If a more
precise description of elementary functions is required, classes from lower levels of the function class hierarchy
may be used. Although the function taxonomy has currently been expanded only to two levels in depth,

6By \leaf" we mean an instance of a Function class, expressing a basic interaction between ows.
7Other work in the area of function representation is being studied, such as [18], [19], [24].
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this set of function classes allows the representation of most artifacts in the domain of mechanical systems
design. The branches of this tree can be further expanded in cases when the existing taxonomy lacks an
appropriate term to describe a function required for modeling a speci�c artifact or component. As seen in
Fig. 5b, the taxonomy of ows follows the Pahl and Beitz model with the root class Flow being decomposed
into three basic subclasses: Matter, Generic energy and Signal.

4 Implementation

A primary objective of the NIST Design Repository Project is to develop a computational framework for the
creation of design repositories, and a proof-of concept prototype to demonstrate their bene�ts. This research
has resulted in the implementation of a suite of tools for distributed development of, and access to, design
repositories. The system that has been implemented includes web-based interfaces that enable a designer to
create, edit, and browse design repositories, accessed via the Internet by multiple distributed clients using
common web browsers.

Two types of interfaces have been implemented. The �rst is a Design Repository Editor used to create
and update design repositories. This editor interacts with an ASCII text �le containing the information to
be stored in a repository. The format of this �le follows the schemata de�ned by DL and the DRL; the
contents of the formatted text �le for a power drill design repository include the data structures used as
examples in the previous section. The second interface is the Design Repository Browser8 that retrieves
design repository information from a database management system (DBMS), in which it is stored. The use
of this database provides capabilities such as transaction management, consistency maintenance, distributed
databases, synchronization of mirrored databases, information caching, etc. The schemata for the database
representation of a design repository are unchanged, but within the DBMS information is stored in a compiled
form rather than in a formatted text �le.

The Design Repository tool suite includes several components in addition to the web-based interfaces:

� ObjectStoreTM9, a commercial object-oriented database management system, developed by Object
Design, Inc.

� A Design Repository Compiler which takes a formatted text �le created by the Design Repository
Editor and transfers the contents to an ObjectStoreTM database.

� An information extractor or \decompiler" which takes the contents of a database and replicates them
in a formatted text �le for further editing.

� STEP/Works, a STEP AP 203 viewer developed by International TechneGroup, Inc. for local (non
web-based) visualization of STEP-based geometry, desirable in some cases since VRML provides a less
comprehensive representation of geometry.

4.1 Architecture

Since the interfaces are web-based, no special client software is required other than a web browser. The
architecture of the Design Repository Browser is illustrated in Fig. 6 As the designer uses the point-and-click
interface, the browser sends Hypertext Transfer Protocol (HTTP) requests to an HTTP server. Common
Gateway Interface (CGI) scripts running on the HTTP server parse and process those requests into database
queries that are sent to a database server running on a di�erent machine. The database server queries a

8Not to be confused with a web browser, the Design Repository Browser is the user interface to a design repository that
allows the designer to navigate through an artifact representation. The Design Repository Browser is a web-based interface
that runs within a web browser.

9Use of any commercial product or company names in this paper is intended to provide readers with information regarding
the implementation of the research described, and does not imply recommendation or endorsement by the National Institute
of Standards and Technology.
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design repository stored in an ObjectStoreTM database. The database queries retrieve information from the
repository and return the data as text to the CGI scripts, which then format the data in HTML for viewing
through a web browser. The formatted data is then sent from the HTTP server back to the user. In addition
to data about the artifacts themselves, the repositories also include Universal Resource Locators (URLs)
for VRML models of the various assemblies and components. When the user follows one of these links, the
model is retrieved directly using its URL without requiring calls to the database server, and is displayed for
the user using a VRML plug-in or viewer.

Distributed
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requests

Data
(HTML)

HTTP
server

CGI
scripts

HTTP
requests

Data
(HTML)

Web
browser

Database
server

database
queries

Data
(text)
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(text)
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browser
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Internet
Connection

Figure 6: Architecture of the Design Repository Browser

Interactions involving the Design Repository Editor interface are quite similar. The main di�erence is
the introduction of a batch processing mode designed as a time-saving feature. When creating or editing a
design repository, the contents of a repository are also stored in a specially formatted text �le as described
above. As a repository is changed or modi�ed, the text �le is updated accordingly without updating the
databases �les themselves. Artifacts modeled in design repositories can consist of many entities; for a point
of reference, a power drill repository that has been developed contains over 250 entities. Not updating
the database �les each time an entity is created or modi�ed eliminates many time-consuming calls to the
database server, thereby saving a considerable amount of time. Once an editing session is complete, the
user compiles the text �le into a database using the Design Repository Compiler that transfers the entire
contents of this formatted text �le into a database in a batch operation.

The development of a new version of the system architecture has recently begun. The motivation and a
more detailed description of the new architecture are discussed in Section 5 of the paper.

4.2 Web-based Design Repository Editor

A formatted text �le that follows the schemata for the data structures de�ned by the DL and DRL, can
be created using any text editor. But this is a very complicated and time consuming task, which requires
a designer to be familiar with speci�c syntax of the design repository entities, to have detailed knowledge
about the artifact class hierarchies, the function and ow taxonomies, and to expend considerable e�ort to
maintain consistency within the data structures. To simplify the design repository development process an
intelligent web-based Design Repository Editor, which can be used via most common web browsers (e.g.
Netscape Navigator or Microsoft Internet Explorer) has been implemented. This interface allows the user
to de�ne new classes, to create an artifact model by creating objects and relationships from existing classes,
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and to describe physical, functional and behavioral decompositions as well as the mappings between them.
Fig. 7 shows the Design Repository Editor being used for two di�erent actions: the editing of the artifact
class hierarchy (Fig. 7a) and the creation of a new function object (Fig. 7b).

a) b)

Figure 7: Web based CGI editor: a) the window to assign the class, b) the multiframe window for completing
the object form and/or for creating the object hierarchy

All web pages created by the Design Repository Editor provide a point-and-click interface that allows
the user to navigate across the stored data and access the editor functionality. According to DRL, the key
entities of a design repository are objects (used to represent artifacts, functions, ows, behaviors, etc) and
relationships. The creation of a new function as is shown in Fig. 7b requires only three simple actions:

1. Select a class from which the function should be instantiated, which can be accomplished by clicking
on the appropriate item in the function class hierarchy, shown in the right-hand portion of the window
in Fig. 7b.

2. Name the object.

3. Fill in the slots for the attributes and relationships as required.

The Design Repository Editor is an intelligent interface that removes much of the burden from the
designer. These capabilities include:

� Automatic schema generation. When an object is instantiated from a class, a form is automatically
generated with the appropriate slots based on the schema de�ned by the class description without
requiring the designer to know a priori all the slots needed for a class.
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� Automatic entity linking. When a link to an existing entity is speci�ed by the designer, the data
structures are automatically updated to reect those links. To illustrate, when the designer submits
the form shown in Fig. 7b, the current repository will be searched for each of the entities that appear
in the form (e.g. clutch base output 1) and will create a link to those entities if they exist.

� Automatic entity creation and to-do list. When a link to an entity is speci�ed and that entity does
not exist, a \dummy" entity is created and named with the appropriate name. The editor maintains
a to-do list, which is a list of all items that were created because they didn't exist when links to them
were speci�ed, but that the designer still has to go back to and �ll in the required attributes and
values. At any point, the designer can click on an entity name on that list, and a form is automatically
generated with the appropriate slots based on the schema de�ned by the entity's class.

� Partial entity creation. As can be seen at the bottom of Fig. 7b, the designer can check a box
indicating that an entity that has been created is not yet complete. This will result in that entity
being added to the to-do list so that the designer does not forget to return and �nish �lling out the
required information.

� Automatic relationship entity creation, naming and linking. When, for example, an artifact called
Drill artifact 1 is created and the designer speci�es that it has a Has part relationship, all the
designer must do is indicate the components into which that artifact is decomposed. The entity for
that Has part relationship is automatically created, named Drill artifact 1 has part, and linked
to the Drill artifact 1 object (see Fig. 2 for reference). As before, if objects corresponding to those
components already exist, they too are linked to the relationship entity. If not, \dummy" objects are
again created and added to the to-do list. In this manner, the designer can specify physical, functional
and behavioral hierarchies without ever having to explicitly create relationship entities; it is done
automatically by the Design Repository Editor.

The intelligent Design Repository Editor provides the designer with several signi�cant advantages. First,
it encompasses a great deal of knowledge about the engineering context, which often translate into constraints
on how an artifact can be modeled, so that the designer is not required to remember all these constraints.
Second, by maintaining a list of dummy objects, the designer is not restricted to modeling an artifact in a
speci�c manner, but can create a model using a top down approach, a bottom up approach, or a combination
of the two moving back and forth between levels of detail. Finally, not only does the automatic entity
creation, naming and linking save time for the designer, it aids tremendously in consistency maintenance by
eliminating a signi�cant portion of the errors that would occur when manually creating a design repository
using a text editor (e.g. misspelling an entity name causing a broken link, or specifying a link to an object
but forgetting to create it).

4.3 Web-based Design Repository Browser

The other interface developed within the framework of this research is the Design Repository Browser,
which is the user interface to a design repository that allows the designer to navigate through an artifact
representation. The Design Repository Browser extracts information about entities from a design repository
database where they are stored in object-oriented data structures, and provides this information to the user.

Fig. 8 shows two di�erent images of the Design Repository Browser. The multiframe window (Fig. 8a)
created by the Design Repository Browser enables the user to navigate across an existing design repository.
Such a window is accessed via most web browsers and consists of four frames, one static (the upper frame
which links to information about the NIST Design Repository Project) and three dynamic ones below that
one.

In the three dynamic frames, each of the underlined names is a hyperlink to a CGI script which retrieves
information from a design repository database and updates the browser. The bottom left frame presents
information about an entity in the design repository (this is the same information that is shown in the text-
based data structure shown in Fig. 1). The user can browse a repository by clicking any of the links in that
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a) b)

Figure 8: Web-based Design Repository Browser a) multiframe window b) visualization of the drill artifact 1
form using VRML

entity. The browser will then retrieve the information for that new entity and will update the browser view
with the new entity. The middle right frame contains the history of the user's browsing session, allowing
the user to return to any previously viewed entity by clicking on an entity name. The bottom right frame
includes a view of the appropriate hierarchy allowing to locate the selected object within the design structure.
In this instance, the user is viewing an artifact object, so the Has part artifact hierarchy is shown. In this
frame, too, the designer can jump to a di�erent part of the artifact representation by clicking on an entity
name. Within all three of the dynamic frames, hyperlinks to di�erent types of entities are color-coded, which
makes easier to distinguish them from each other.

4.4 Implementation Example

The prototype design repository that has been used in the examples in this paper represents the Black &
Decker VP840 cordless power drill. This repository was created using the Design Repository Editor and
contains 28 artifact objects (assemblies, subassemblies and components) and over 250 additional entities
(objects and relationships) belonging to 64 classes and 6 relationship classes. Most of the objects were not
created explicitly by the designer, but were initially generated automatically as \dummy" objects and then
completed with detailed descriptions by the user. Similarly all relationships were created automatically by
the editor as described previously. The class, function and artifact hierarchies for the power drill are depicted
in Figs. 7a,7b, and 8a respectively. Fig. 8b shows the visualization of the geometry of the modeled product,
stored in VRML format.
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5 Summary and Future Research

The practical use of design repositories in industry requires an information modeling framework (including a
modeling language to formalize engineering knowledge and model engineering artifacts), and a computational
platform to create, store, and retrieve this knowledge. In the framework of the NIST Design Repository
Project the Data Language and the Design Representation Language have been developed to de�ning data
structures describe the engineering context and model artifacts in a design domain. This allows to represent
structures of artifacts, functions, ows, relationships and other entities described in previous sections in
the formatted text. Initial work has been done in developing a comprehensive taxonomy of functions and
associated ows. The existing taxonomies can be extended with new terms or new domains using the
data structures that have been established. Finally web-based interfaces were implemented to facilitate the
creation and and retrieval capture of design information by distributed users via the Internet. To illustrate
the functionality of the modeling framework an example repository was created.

The basic research in the area of design repositories that has been conducted in the framework of the
NIST Design Repository Project focuses on development of knowledge representations and a computational
platform for data handling via the World Wide Web. The motivation for developing design repositories
(rather than traditional design databases), was discussed in Section 1 of this paper. However, the current
implementation, described in section 4, still makes use of traditional database technology for information
storage. Currently, this limits the locations of design repositories to single sources where database servers are
available. Future emphasis will be placed on taking greater advantage of the distributed nature of the World
Wide Web by distributing design repositories to a greater extent. To improve the information circulation
and to distribute sources of knowledge the development of a new version of the system architecture has
recently begun.

The new system architecture will di�er from the current one in two signi�cant ways. Both of these changes
are strongly motivated by the needs of the engineering industry (as will be described below). The �rst is a
migration from the current repository text �le format to an Extensible Markup Language [29] (XML)-based
text �le. The motivation for this is that the schemata used to represent information in the current format are
not readily used other than by applications developed as part of this project by people with knowledge about
the format. In contrast, XML has the advantage of widespread adoption in the information technology world
and appears to be on its way to becoming a World Wide Web Consortium (W3C) standard. Third-party
XML parsers, compilers, and authoring tools exist and/or are under development, and built-in XML support
is expected in upcoming versions of several commercial web browsers and word processing applications. This
change will result in a more broad-based solution for the engineering industry, in which companies are
increasingly looking towards purchase of o�-the-shelf software over in-house development when possible.

The second change is the decoupling of the database system from the Design Repository Project editing
and browsing tools. The XML-based artifact text �le will be able to act as a self-contained database,
allowing browsing and editing of artifact repositories without requiring a commercial database management
system (DBMS). One advantage is that for small-scale applications, a company will not have to invest in a
DBMS to take advantage of the design repositories. For large scale applications, DBMSs are quite useful for
management of large amounts of data, providing capabilities such as transaction management, consistency
maintenance, distributed databases, synchronization of mirrored databases, information caching, and more.
In these cases, the decoupling is still desirable because use of the Design Repository Project tools will not
tie a company to a speci�c commercial DBMS. The Design Repository Project tools provide the interface
between the user and XML-based artifact text �le. Then, for a given commercial DBMS, a compiler would
be developed to exchange information between the �le and a true database in order to take advantage of the
features of commercial database systems.

Another important possibility falls out from this new architecture: the ability for companies that are using
design repository technologies to share and exchange artifact data even if they use di�erent DBMS systems
in-house, by using the XML-based artifact text �le as a neutral �le format for information transfer. As
industry relies more and more on partnerships and outsourcing with other companies, interoperability across
corporate boundaries and the ability to exchange design information { not just geometry, but knowledge
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{ becomes increasingly important. This solution will help provide this interoperability without requiring
partners to adopt the same DBMSs in-house.

Another objective for future work is to incorporate a more formal representation of behavior to allow
composable simulations. Work in this area is being done as part of two projects that are funded by the De-
fense Advanced Research Projects Agency (DARPA) Rapid Design Exploration and Optimization (RaDEO)
program, for which NIST is a funding agent: the Model-Based Support of Distributed Collaborative De-
sign (previously How Things Work) project at the Stanford University Knowledge Systems Laboratory [13],
[5], and the Active Catalog project at the University of Southern California Information Sciences Institute
[20],[6]. The behavior representation languages developed in these projects are among the options being
considered for representing behavior within the NIST Design Repository Project.
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