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Abstract: This paper introduces basic elements of systems engineering that are 
useful in managing the product lifecycle, as expressed in an extension to the 
Unified Modeling Language. It presents models of product requirements for 
capturing stakeholder needs, system structure for defining the static relations of 
its elements, behaviour for the transformation of inputs to outputs, parametrics 
for constraining properties of structure, and allocation for assigning behaviour 
to structure. The relation of behaviour to structure is identified as a central issue 
in the integration of systems and software engineering. 
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Systems engineering (SE) overlaps a significant portion of product lifecycle management 
(PLM). It has existed as a discipline for several decades and been applied successfully to 
a wide range of complex products (INCOSE, 2000). This paper introduces SE and recent 
work on defining a standard SE modelling language. It also addresses a central aspect of 
integrating software development into general engineering practice. 

1 Introduction 

Both PLM and SE are concerned with managing the multiple views and interrelationships 
of product information to maintain coherence across time and place, and to apply to more 
than one product. The International Council on Systems Engineering (INCOSE) 
describes SE as: 



   

 

   

   
 

   

   

 

   

   124 C. Bock    
 

    
 
 

   

   
 

   

   

 

   

       
 

“…defining customer needs and required functionality early in the 
development cycle, documenting requirements, then proceeding with design 
synthesis and system validation while considering the complete problem: 
operations, performance, test, manufacturing, cost and schedule, training and 
support and disposal.” (INCOSE, 2004) 

The areas addressed by SE are so diverse that it must be concerned with communication 
between people working in them: 

“Systems engineering integrates all the disciplines and specialty groups into a 
team effort forming a structured development process that proceeds from 
concept to production to operation.” (INCOSE, 2004) 

SE is currently hampered by a lack of a standard language for coordination across the 
product lifecycle and across disciplines involved in product development. Organisations 
using multiple languages have less effective communication, increased project cost, and 
decreased product quality. Many of the specialties that systems engineering interacts with 
have adopted standard languages, most recently software engineering. 

To address these issues, INCOSE joined with a major software consortium, the 
Object Management Group (OMG), to create a Standard Modelling Language for 
Systems Engineering. OMG and INCOSE began by forming the Systems Engineering 
Domain Special Interest Group (SE-DSIG) (Friedenthal and Kobryn, 2004;  
OMG 2004a). The SE-DSIG developed a request for proposal for an SE modelling 
language, issued in March 2003 (OMG, 2003a). The requirements were developed from 
an OMG request for information (OMG, 2002) and with INCOSE and the international 
organisation for standardisation’s ISO 10303, informally known as the standard for the 
exchange of product model data (STEP). In particular, ISO’s 10303-233 application 
protocol for systems engineering team (AP-233) participated to align the OMG 
requirements with the evolving AP-233 neutral data interchange standard for systems 
engineering (ISO, 2004a). This is important in bridging to engineering analysis 
disciplines represented in other ISO standards. 

The OMG request covers a substantial part of SE: 

• requirements 

• structure 

• behaviour 

• parametrics (constraints) 

• verification (testing) 

• deployment. 

The request also identifies OMG’s Unified Modeling Language (UML) (OMG, 2004c) as 
a basis for SE modelling, because it combines critical elements needed for SE: 

• graphical presentation for communication between a wide variety of disciplines 

• extensibility mechanisms for adapting to new domains 

• wide range of capabilities, from requirements to deployment 

• model repository supporting notations for multiple disciplines, and translatable to 
multiple specialised formats. 
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The last feature addresses the essential requirement in PLM and SE for a common 
repository capturing consistent information accessible across the lifecycle. It also 
provides information beyond geometric and mathematical representations commonly 
used in specifications of product data (Sriram, 1997). The variety of product data requires 
flexible representations available in languages such as UML, or ontologies such as 
Ontology Web Language (OWL), and Process Specification Language (PSL) (Staab and 
Studer, 2004). These languages support identification of terms, relations, and processes in 
a form that is amenable to automated reasoning. In the setting of OMG’s model-driven 
architecture (MDA), they can be translated to optimised formats for other applications as 
necessary, such as automated manufacturing (OMG, 2004b; Bock, 2003c). 

This paper describes a response being prepared to the OMG request called the 
Systems Modeling Language (SysML) (SysML Partners, 2004). The first version will 
cover requirements, structure, behaviour, parametrics, and the relation of structure to 
behaviour (allocation). Each of these is introduced in the sections below. Finally, the 
relation of structure and behaviour is examined as a central issue in the integration of 
systems and software engineering. 

2 Requirements 

Requirements modelling includes the translation of textually expressed needs into a 
computable form, capturing the evolution of requirements and their relation to the system 
design. There are at least three important aspects to this process: 

1 Translation of text to model. Requirements usually appear first as a large text 
document, structured in some way by headings. The requirements model is a 
‘parsed’ form of the document. It has an element for each requirement, containing 
the portion of text corresponding to that requirement, with a reference to its location 
in the source document. The model contains a single element per requirement, even 
when the source text conjoins them. 

2 Derivation. Requirements can be more or less specific about the requested system. 
For example, a source requirement for transportation might be about safety 
generally. For automobiles, braking distance, traction requirements, and so on, are 
derived from safety. These further derive requirements on wheel rotation forces and 
speeds. SysML calls this a requirements trace. Derivation can include detailed 
models, as in UML structure and behaviour. Each stage of derivation will involve 
some assumptions about the design of the system (Cantor, 2003). For example, the 
derivation of the safety requirement above assumed the transportation mode was an 
automobile of the conventional kind. 

3 Link to system design. System designs that fulfil requirements are said to satisfy the 
requirement. SysML anticipates that system designs will be modelled in UML, but 
the satisfaction relationship does not restrict how the design is represented. 

SysML adds a requirements model to UML, because UML does not have one.  
Figure 1 shows the transportation safety example, with derivation traces based on 
increasingly elaborated designs (‘requirements flowdown’). The guillemot notation («») 
in UML is used to indicate what kind of language element a particular rectangle or arrow 
represents. For example, the rectangle at the top right labelled «document» 
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TRANSPORTATION SAFETY is an original source requirements document for the system 
being designed, and «requirement» TRANSPORTATION SAFETY REQUIREMENT 1 is a 
part of the model representing one of the requirements in the text document. Dashed 
arrows in UML show dependencies between pieces of the specification, where the 
element at the arrowhead end is independent and the other end is dependent on it.  
For example, the dashed arrow labelled «trace» indicates that the requirement is ‘parsed’ 
from the original source document, and depends on it. 

Figure 1 Requirements 

 

The rectangles marked «design» in Figure 1 represent classes of physical objects, where 
the design is specified in the class, and describes the structure of the physical objects that 
are members of the class. Designs are constructed to satisfy requirements, as indicated by 
the «satisfy» dependencies. Some of the designs are connected by generalisation arrows, 
notated with a hollow arrowhead. The design at the arrowhead end is a general case of 
the design at the other end, which inherits characteristics from the general design.  
For example, the characteristics of physical objects conforming to the SMALL SCALE 
VEHICLE design also apply to objects conforming to DRY LAND VEHICLE.  
In particular, small-scale vehicles are designed to satisfy TRANSPORTATION SAFETY 
REQUIREMENT 1, as shown by the dashed arrow labelled «satisfy», so dry land vehicles 
will inherit the characteristics satisfying that requirement also. 

Each specialised design introduces new characteristics that satisfy requirements 
derived from the general design requirements, as shown by the «trace» dependency.  
For example, the additional characteristics introduced by DRY LAND VEHICLE  
satisfy the TRACTION requirement derived from TRANSPORTATION SAFETY 
REQUIREMENT 1. This pattern also applies to parts of designs, as shown at the bottom 
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right of the figure, using UML’s black diamond line notation. These lines represent the 
assembly breakdown of physical objects in the classes being associated. For example, 
differentials are parts of cars, and satisfy the corresponding derived requirement  
WHEEL ROTATION ON CURVES, even though they are not special cases of cars. 

The designs in this example are structural, but some methodologies use functional 
design (see Sections 4 and 6). SysML also supports capturing the reason for any 
particular derivation or design choice, called the rational. These can include trade-off 
analyses. Requirements can specify testing procedures, to ensure the design actually 
satisfies the requirement. The trace and satisfaction relationships can be grouped, for 
example to identify alternative design choices. Requirements can also be expressed in 
tabular formats to improve scaling, which is necessary for typical systems. This technique 
is based on the repository for UML and its extensions, which records models in a way 
that is independent whether they are presented diagrammatically or textually  
(Bock, 2003c). 

3 Structure 

SysML reuses the UML 2 composite structure model, which SysML calls assemblies. 
The UML 2 model adds significant power to the earlier versions of UML, in particular, it 
supports the reuse of system elements in multiple assemblies, or in multiple ways in the 
same assembly (Bock, 2004b). Figure 2 shows an example composite structure for a 
simplified automatic braking system (ABS). The outer rectangle represents the class of 
cars, members of which are individual physical cars. It carries the design that each car 
conforms to. The labelled rectangles inside the car are its parts, for ABS, wheel assembly, 
and so on. Some of the parts are subassemblies, such as the one for wheels. These have 
their own components and interconnections inside. The small rectangles on the borders 
are ports, which provide access points for connections outside the part. For example, the 
ABS has ports for mechanical and hydraulic connections. The lines segments between 
ports are connectors, which show how the parts are connected together electronically, 
hydraulically, and so on. 

Each component of the car is a usage of a generic, reusable subcomponent. For 
example, the wheel subassembly might be used four times, though the figure shows only 
one for simplicity. Each usage of a wheel subassembly will be connected in different 
ways, for example to different ends of the same axle, or to different axles entirely.  
To accommodate multiple usages of the same kind of subassembly, the usage of each 
component is given a name, which appears to the left of the colon at the top of each part. 
The type of part being reused appears to the right of the colon. For example, the generic 
WHEELASSEMBLY is used under the name WA. When other wheels are added to the 
design they will have different usage names, even though they are all usages of 
WHEELASSEMBLY. 

The UML 2 composition model conforms to the common intuitions of assembly.  
For example, the ABS in one car is not connected to the wheels in another, and the ABS 
connects only the wheels indicated in the design, which might not be all the wheels  
in the car, and some cars might have wheels without ABS systems. The UML class 
diagram does not support these intuitions, because class diagrams define artefacts 
generically, independently of how they are used. For example, a class diagram showing 
an association between ABS systems and wheels would either need to define the linkage 
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as optional, which would be incorrect for cars that have ABS, or make the 
linkage required, which would be incorrect for cars that do not have ABS. The class 
diagram must be used in conjunction with the composite structure diagram to show how 
generic, reusable components are applied in particular designs (Bock, 2004b;  
Baysal et al., 2004).1 

Figure 2 Composite structure 

 

4 Behaviour 

One of the purposes of behaviour models is to coordinate or place constraints on other 
behaviours.2 For example, a procedure for shaping a piece of metal might have a series of 
steps that must happen in a certain order under certain conditions.  
UML provides three behaviour models that are reused in SysML. Each kind emphasises a 
different aspect of system dynamics, making one or the other more suitable for a 
particular application, or stage of application development: 

• activities emphasise inputs and outputs, conditions, and sequence for invoking  
other behaviours 

• state machines show how events cause changes of object state and invoke other 
behaviours 

• interactions describe message passing between objects that cause invocation of  
other behaviours. 

Activities are of particular interest to SE because they focus on what tasks need to be 
done, in what order, with what inputs, rather than which entity performs each task  
(Bock, 1999, 2003b). More specifically, activities are designed to be used with or without 
objects (see Section 6), and highlight the dependency of inputs on outputs. This emphasis 
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corresponds to SE functional flow, in particular Enhanced Functional Flow Block 
Diagrams (EFFBD) (Bock, 2003a). Functional flow is closest to requirements expressed 
as transformations of inputs to outputs (also called functions). 

Activities follow the style of UML 2 composition models in supporting multiple uses 
of the same behaviour. For example, system requirements might dictate a subfunction for 
heating water that takes water as input and provides it as output at a higher temperature. 
This generic, reusable function might be applied in many ways, and in each particular 
application it might provide hot water to different downstream functions. For example, 
one usage in a ship might provide hot water to a room heating function, another to a 
cooking function, and so on. 

Figure 3 is an example activity diagram, with some SysML extensions, showing the 
dependencies between some subfunctions of an automobile, adapted from  
SysML Partners (2004). Round cornered rectangles in activity diagrams represent the 
usages of functions, which are called invocations. For example, the one on the upper left 
is an invocation of a generic, reusable function that turns the key to the on position. 
Arrows, vertical bars, and dots in activity diagrams determine when the function 
invocations occur. For example, the dot on the upper left is an initial node, representing 
the starting point of the activity. The arrow coming out of it is a control flow, indicating 
the first step in the activity, TURN KEY TO ON. 

Figure 3 Activity example 1 

 

Vertical and horizontal bars in Figure 3 are forks showing initiation of concurrent flows 
of function invocations. For example, after the key is turned on, driving and braking 
functions start concurrently, because the control flow coming out of TURN KEY TO ON 
is split into two concurrent control flows, to DRIVING and BRAKING. The SysML 
keyword «runToDisable» on a function invocation indicates that once the function starts, 
it runs until it is turned off (turning the key to off is not shown). 
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The arrow coming out of DRIVING is an object flow, also called a data flow,  
or item flow. It represents the flow of information, material, or energy between functions.  
Item flow is distinguished from control flow by a rectangle indicating what type of thing 
is flowing. In this example, brake pressure information is passing from driving to 
braking. The information passed between functions is not necessarily implemented 
electronically or in software. For example, sending brake pressure information can be 
implemented in an analogue fashion, as with conventional hydraulics. The STREAM 
properties in curly braces indicate that this information might be passed between the 
functions while they are operating, rather than requiring DRIVING to complete before 
generating an output, or BRAKING to wait for break pressure to arrive before starting. 
The SysML RATE properties specify how fast the information flows. In this example, 
break pressure is emitted continuously from the driving function. 

The horizontal bar below BRAKE PRESSURE in Figure 3 indicates that the 
information is sent concurrently to two function invocations, one for BRAKING and the 
other for a special function that controls MONITORING TRACTION. This function is a 
control operator, which means it outputs control information that can enable or disable 
other functions (Pandikow and Torne, 2001). When the input break pressure is greater 
than zero, it outputs an enabling control value to monitor traction, otherwise it emits a 
disabling control value. The effect is that traction is only monitored when pressure is 
applied to the brake. The SysML keyword «runToCompletion» indicates the control 
operator starts when it receives an input, calculates its output, then stops until the next 
input arrives. It is not intended to run indefinitely like driving and braking, though it 
happens to run repeatedly in this example, because its inputs come in continuously  
(also see example in Figure 4). While MONITORING TRACTION is running, it emits 
modulation frequencies to BRAKING as necessary to maintain traction. 

Figure 4 Activity example 2 

 

Figure 4 shows the definition for the MONITORING TRACTION function used in  
Figure 3. The chevron shapes on the lower left represent receipt of signals from outside 
the process, which do not come through explicitly represented inputs. When enabled, 
MONITORING TRACTION receives signals from the wheel and accelerometer, which 
flow to a subfunction that calculates traction. This function is marked as 
«runToCompletion», so it will wait for two inputs to arrive, calculate the traction index 
output, stop, and wait for two more inputs. The acceleration input comes in faster than the 
angular velocity, as shown by the RATE properties, causing acceleration data to queue up 
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at CALCULATE TRACTION while it waits for an angular velocity to pair with. To prevent 
a stale acceleration value from being paired with a new angular velocity, the acceleration 
input is marked with the SysML IS OVERWRITE property, which causes new values of 
acceleration to overwrite old ones in the queue to CALCULATE TRACTION. 

The diamond shape in Figure 4 is a decision node that routes the output of 
CALCULATE TRACTION according to guard conditions notated in square brackets on the 
arrows coming out of the decision. One of the guards tests whether enough traction is lost 
to justify outputting a modulation frequency for the brakes. If so, the traction index flows 
as input to a function that calculates the frequency, the output of which passed out of the 
function. If not, the ELSE guard directs the values to a flow construct that discards it, 
notated as a circle with an X in it. 

The UML repository can support tabular or matrix formats such as the dependency 
structure matrix (DSM) (Sharman and Yassine, 2004). These provide a compact way to 
show function dependencies, by omitting some control information, but are not restricted 
to hierarchical decomposition. A DSM can be derived from activity models,  
stored in a repository, analysed, and results presented in either a matrix notation or an 
activity diagram. 

Functions can satisfy requirements, as shown in the lower left of Figure 3.3 Under 
some methodologies system function is determined separately from structural design, and 
requirements are satisfied through function, which is then allocated to structure, rather 
than satisfying requirements by structure directly, as in Figure 1 (see Section 6) 
(USDoDSMC, 2001). 

5 Parametrics 

A parametric model describes constraints among properties of a system.  
These are typically expressed as mathematical equations, for example ‘F = Ma’. UML 
provides a constraint language (OMG, 2003b), but it does not currently support for 
reusing equations, a critical requirement for SysML. For example, ‘F = Ma’ can be one of 
a library of equations that are reused many times in the analysis of a system, with 
variables bound to different properties in each case. SysML introduces a constraint model 
supporting reusable equations, which is called parametric relations. 

The SysML parametric model has two parts:4 

• Parametric relations defined as a reusable combination of other relations.  
For example, ‘F = Ma’ is a combination of equality and multiplication, both of which 
are primitive parametric relations. 

• Application of a parametric relation to particular object properties. 

The lower part of Figure 5 shows a SysML parametric diagram relating stopping distance 
to other parameters in an automobile, along with a partial structure model that it refers to 
at the top. The rectangles with keyword «property» represent the properties being 
constrained. The rounded rectangles represent parametric equations. The small rectangles 
on the borders are the parameters being constrained, which are connected to each other 
and to properties, forming a network of constraints. The equation ‘F = Ma’  
is used twice,5 connected to different relations and properties in each case, but defined 
once in the repository that stores the diagram (Bock, 2003c). This means that any change 
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to the equation is propagated to all uses in all diagrams (not that one would ever change 
Newton’s laws).6 

Parametrics are intentionally nondirectional, that is, they do not have inputs and 
outputs as activities do. For example, the equation ‘F = Ma’ constrains three variables, 
but it does not specify which are being calculated. This applies even when using 
irreversible relations, as in ‘y = sin(x)’. The model leaves it up to constraint engines 
implementing the equations to determine what to do in these cases. For example, in 
Figure 5, the coefficient of friction of the tyre could be a dependent or independent 
variable, depending on whether it is given as an input to the constraint engine. 

Figure 5 SysML parametrics example 

 

For compactness, parametrics can be notated as equations, and still be stored to the 
SysML repository. Tools can use the repository to generate the equations from diagrams 
such as Figure 5, or vice versa. The SysML repository does not dictate or suggest  
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a mathematical notation for parametrics, only a way to identify relations and how  
they are used. 

Parametric models can apply to any kind of value. They can be physical properties of 
the system, performance and effectiveness measures to choose between alternative 
designs, engineering analysis values, or any combination. The special property time is 
treated as the property of a global clock. 

6 Allocation 

Behaviour and structure must be used together to produce a real system, and SE takes the 
relation of behaviour to structure as a special area of concern, called allocation. SE 
requires a flexible connection between behaviour and structure because many alternative 
structures can support a required behaviour or function. Even when a structure is chosen, 
behaviour is often spread across multiple structural elements. For example, an 
automobile’s braking system has the overall function of translating driver input into 
change in the speed of the car, but this might be achieved through many structures, for 
example with hydraulics and mechanical pressure, or with electronics and  
electro-mechanical devices, and so on. Within any one of these structural choices, the 
function is achieved by multiple structural elements, like the hub and a portion of the axle 
in the wheel, the hydraulic system attached to the frame, and elements in the passenger 
compartment. 

Even in situations where structural elements are determined as part of requirements, 
for example in systems based on common off the shelf (COTS) components, it is 
beneficial to capture the existing functionality separately from structure. COTS products 
are never completely uniform in structure, have a variety of unintended effects, and are 
available in many versions developed over time.7 In addition, the new functionality arises 
from the synergy of existing components, not the components themselves, and there 
might be many possible ways of assembling them. These factors make it simpler to 
address the desired functionality separately from how it is achieved by the mandated 
COTS components. 

Another advantage of addressing behaviour independently of structure is that 
behaviour models can be simulated in the context of model-driven architectures, for 
testing early in the development cycle. Then dependencies between functions can be 
verified for all the alternative structures that might support them. This includes 
dependencies between inputs and outputs and between postconditions and preconditions. 
Complex systems have many interdependent functions with overall behaviour that is hard 
to predict. Simulation helps to evaluate the total behaviour for all the alternative 
structures at once, and determine the theoretical boundaries for performance of those 
structures. 

SysML provides a dependency for allocating behaviour to the structure supporting it. 
For example, Figure 6 shows the allocation of the braking, monitoring, and enabling 
functions to parts of the structural model. For example, the monitoring traction function 
is performed by the combination of sensor and hub. Allocation can also relate the flows 
in an activity model to the connectors in the structural model. For example, the modulator 
frequency that is passed from MONITORING TRACTION to BRAKING in Figure 3 could 
be allocated to the hydraulic connector between the ABS and wheel assembly in Figure 6. 
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Figure 6 Allocation 

 

As usual in model-driven approaches, other notations for allocation can be supported, for 
example to show functions inside the part rectangles, or in a tabular format, and so on. 
UML also supports a notation that groups the steps in an activity, called partitions, which 
can be also used for allocation (Bock, 2004a). 

7 Integration of systems and software engineering 

Software is increasingly important in SE and PLM, because it controls larger portions of 
modern systems, causing a wider range of errors (Kasser, 2000). In addition, software 
engineering is not well integrated with other disciplines, because it is more recent.  
For example, ISO assigns software standards and product information interoperability 
under separate technical committees (ISO, 2004b).8 
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One of the central issues arising in the integration of systems and software 
engineering is the different approaches they take to the relation of structure and 
behaviour. Systems engineering and most specialised disciplines allow a flexible 
connection between them, as described in Section 6, whereas modern software 
development methodologies usually keep them tightly bound, for example in object 
orientation.9 Specifically, these approaches select a single object to perform each 
subfunction,10 then define the interaction between objects to perform the overall function. 
Changing the object that supports a subfunction requires moving the service from one 
object to another, and changing the interaction between them. It forces the modeller to 
manage two difficult problems at once: dependency between functions and interaction 
between objects. 

Fortunately, UML 1.5 and 2.0 reintroduced the flexible relation of behaviour and 
object that were present in early software methodologies, while maintaining the option of 
tight binding between them. For example, the behaviour in Figure 3 only loosely 
constrains the structure that supports its subfunctions, which could be Figure 2 or some 
other structure, and once the structure is determined, it only partially constrains how the 
subfunctions are allocated, which might be as in Figure 6 or some other allocation.  
Figure 3 only declares the dependency of subfunctions on each other, through inputs, 
outputs, and control. 

At the same time, UML 2 activities support the tighter binding of behaviour and 
structure found in modern software methodologies. In these approaches, each subfunction 
is supported by a single object that receives requests to perform that function. The 
transition from loose to tight binding only requires local changes, so a model embodying 
the SE approach to behaviour and structure can be easily transformed to an object-
oriented one. 

8 Conclusion 

This paper reviews some of the major aspects of SE, which cover a substantial portion of 
PLM: requirements, structure, behaviour, and parametrics. These are supported by work 
on a standard SE modelling language, SysML. SysML follows general SE practice by 
providing model-based requirements for precisely capturing stakeholder needs, including 
requirement derivation and link to design solutions, structure modelling for intuitive 
description of assemblies, behaviour modelling for functions and function dependency, 
and parametrics for reusable calculations and equations. The relation of behaviour to 
structure in SE is more flexible than modern software approaches, and SysML utilises 
recent developments in UML to integrate these. It is hoped that SysML will be a 
significant contribution to model-based PLM in general. 
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Notes 
1The UML 2 composition model is extensible for manufacturing-specific information, such as 
abstract descriptions of mechanical connections, kinematics, and tolerances that support modelling 
early design stage product decisions (Baysal et al., 2004). 

2This is the UML and SysML meaning for the term ‘behaviour.’ Other models use it to mean the 
result of applying dynamic physical laws to structure (Fenves, 2002). 

3Dependency groups could be applied here to indicate that the two satisfaction relations work 
together to fulfil the requirement. 

4A third part being considered is to use parametric relations to constrain the values of inputs and 
outputs of behaviours. 

5As opposed to using energy-based relations, which are simpler. 
6A complete version that works with the Mars lander, for example, would model Earth as an 
instance of a planet class and be part of the total structure model. 

7This is analogous to reverse engineering in software, which can be extended to ontology extraction 
(Denno et al., 2003). 

8ISO/IEC/JTC 1 and TC 184 (ISO, 2004b). 
9A notable exception is James Odell’s Object-oriented Information Engineering (Martin and  
Odell, 1992). 

10Some approaches can have a single function supported by multiple objects (Kiczales, 1991). 
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