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ABSTRACT

This paper presents an analysis tool and design method for
MEMS parallel mechanisms. Due to processing constraints in
MEMS fabrication, flexure joints are frequently used in MEMS
mechanisms. Flexure joints offer advantages over other joint de-
sign due to their monolithic characteristics. They can be used
to reduce the size of manipulators or to increase the precision
of motion. Their inherent flexibility, however, also results in task
space compliance which needs to be carefully designed to match
the task specification. This paper presents an analysis and design
tool for such mechanisms by using the differential kinematics.
Performance metrics are chosen based on manipulability and
task stiffness matrices, which in turn are used in a multi-objective
optimization. As an illustrative example, a 1-DOF MEMS par-
allel mechanism based on the macro- and meso-scale models
designed by NIST is considered with several choices of perfor-
mance metrics and design variables. The resulting designs are
successfully fabricated using DRIE process.

NOMENCLATURE
4xT spatial velocity in the Cartesian space.
4xC constraint velocity in the Cartesian space.
fT spatial force in the Cartesian space.
fC constraint force in the Cartesian space.
4qa active joint velocity in the joint space.
4qp passive joint velocity in the joint space.
τa active joint torque in the joint space.
τp passive joint torque in the joint space.
JTa mapping between the spatial and the active joint velocity.
JT p mapping between the spatial and the passive joint velocity.
JCa mapping between the constraint and the active joint veloc-

ity.
JCp mapping between the constraint and the passive joint ve-

locity.
KT spatial stiffness matrix in the Cartesian space.
Kq joint stiffness matrix in the joint space.

Ã annihilator of matrix A (̃AA= 0).
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INTRODUCTION
Due to the limitation of micro-fabrication processes, flexure

joints are frequently used in micro-electro-mechanical-systems
(MEMS) mechanisms. In general, for precision mechanisms
with limited motion range, flexure joints offer significant advan-
tages over conventional joints [1, 2] in terms of both manufac-
turability and operational characteristics. Flexure joints are typi-
cally manufactured monolithically and therefore avoid assembly
errors. The monolithic construction also implies potentially very
compact design. In terms of operation, flexure joints have low
friction losses, do not require lubrication, and generate smooth
and continuous displacement without backlash. With a suitable
choice of material, flexure joints exhibit a predictable and repeat-
able relationship between force and displacement.

Due to the inherent flexibility of the joints, a MEMS mech-
anism with flexure joints will exhibit certain task space compli-
ance. To ensure compatibility with a given task specification,
the MEMS mechanism needs to be carefully designed to bal-
ance between the motion objective (manipulability) and the load
bearing objective (stiffness) subject to the maximum stress con-
straints. As a result, in addition to the geometric parameters, the
design variables will also contain the joint characteristics in order
to meet the task space stiffness objective.

Thorough treatments of the characterization and design of
flexure joints and mechanisms may be found in [1, 3]. Flexure
mechanism design is usually addressed either from a kinematic
synthesis point of view with the overall mechanism compliance
as a secondary criterion, or from the compliance point of view [1]
with the emphasis on synthesizing desired compliance character-
istics using, for example, topological optimization [4,5] or finite
element analysis [6,7]. The general problem of compliance syn-
thesis has been addressed using simple springs [8] with specific
solutions proposed for torsional and line springs in [9–11]. How-
ever, such approaches have several drawbacks: the design crite-
rion only involves the desired compliance; constraints are not
taken into account; and the overall mechanism is passive without
consideration of actuators. The specific problem of synthesizing
a desired grasp compliance by choosing appropriate finger com-
pliance is used in [12]. Independent of joint compliance, opti-
mization based design methods have also been developed for par-
allel mechanisms [13, 14], but the joint compliance is not taken
into account. A well established criterion for assessing the be-
havior of a serial or parallel manipulator is the manipulability
ellipsoid which is the task space image of a ball in the active
joint velocity space. This concept was first proposed for serial
manipulators [15] and later extended to parallel robots [16,17].

The goal of this paper is to present analysis and design tools
for parallel mechanisms containing flexure joints based on the
pseudo-rigid-body model. Our approach is to balance the mo-
tion and compliance consideration through a multi-objective op-
timization. The Pareto frontier [18] is calculated and the final
design is determined based on secondary considerations such as

dynamic characteristics and performance sensitivity. As an ex-
ample, we include the MEMS design based on the macro- and
meso-scale versions of a 1-D stage designed by the National In-
stitute of Standards and Technology (NIST). Several choices of
performance metrics and design variables are considered to illus-
trate the design approach described in this paper.

DIFFERENTIAL KINEMATICS
Consider a parallel mechanism with active and passive

joints. The differential kinematics, the velocity mapping between
joint space and Cartesian space, of general multibody systems
may be described as

[
∆xT

0

]
=

[
JTa JTp

JCa JCp

]
︸ ︷︷ ︸

J:=

[
JT

JC

]
[

∆qa

∆qp

]
︸ ︷︷ ︸

∆q

(1)

Depending on the number of passive joints and that of kinematic
constraints, a parallel mechanism can be divided into three dif-
ferent cases.

For parallel mechanisms with conventional passive joints,
the mechanism may have the same number of passive joints as
kinematic constraints. Therefore,JCp is typically square so that
there is no undesirable internal constraint forces. It is also essen-
tial to ensure thatJCp is invertible so there would not be undesired
motion. This is known as the kinematic stability condition.

If the number of kinematic constraints is larger than that of
the passive joints,JCp is a tall matrix and the mechanism is over-
constrained. It means that the mechanism cannot move unless
some of the constraints are redundant. If this is the case for a
working mechanism, the rigid body kinematic description is not
adequate, and either more lumped joints need to be added or a
distributed description should be used.

If there are more passive joints than the kinematic con-
straints, JCp is a fat matrix and the mechanism is undercon-
strained. For conventional parallel mechanisms, this is not de-
sirable, since there could be uncontrolled motion resulting from
disturbances. However, we shall see that for flexure mechanisms,
this may be acceptable provided that the stiffness in the direction
of unwanted motion is sufficiently large.

In this paper, we consider a fully constrained mechanism
and an underconstrained mechanism, i.e.,JCp is square or fat.
If JCp is a fat matrix ,∆qp cannot be uniquely solved since any
vector in the null space ofJCp may be added to the solution. In
this case, we assume that the solution∆qp minimizes the strain
energy in the passive joints where we have assumed linear spring
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characteristics with spring constantKqp:

∆qp =−J‡
Cp

JCa∆qa. (2)

whereJ‡
Cp

is the weighted pseudo-inverse ofJCp:

J‡
Cp

:= K−1/2
qp (JCpK−1/2

qp )†. (3)

and† denotes the Moore-Penrose pseudo-inverse. IfJCp is square

invertible, thenJ‡
Cp

= J−1
Cp

.
The relationship between active joint displacement and task

displacement in Eqn. (1) is then

∆xT = (JTa −JTpJ‡
Cp

JCa)︸ ︷︷ ︸
:=JTcomp

∆qa. (4)

By applying the principle of virtual work, we obtain the dual
relationship:

[
τa

τp

]
︸ ︷︷ ︸

τ

=
[

JT
Ta

JT
Ca

JT
Tp

JT
Cp

][
fT
fC

]
. (5)

where fT is the externally applied spatial force,fC is the con-
straint spatial force (to enforce the kinematic constraint, the bot-
tom portion of Eqn. (1)),τa andτp are the torque vectors applied
at the active and passive joints, respectively. When the passive
joints are free (e.g., pin, spherical, etc.),τp = 0. However, for
flexure joints,τp is related to∆qp.

PERFORMANCE MEASURES
For the mechanism design, we need to quantify the perfor-

mance measure. Differential relationships for parallel mecha-
nisms are shown in Fig. 1, wherexC (= 0) denotes the virtual
constraint displacement. We will formulate various performance
measures based on these kinematic relationships. Note that, in
contrast to parallel mechanisms with conventional joints, kine-
matic stability is not of paramount importance. Instead, design-
ing the desired stiffness would prevent excessive undesired mo-
tion.

We consider the following qualitative motion and stiffness
design criteria:

1. The output stage of the mechanism should have a sufficiently
large work space in the desired direction of motion and small
displacement in the remaining directions.

Figure 1. Position and Force Mapping in a General Parallel Mechanism

2. The output stage of the mechanism needs to be sufficiently
stiff to avoid undesired motion in the presence of external
force.

Based on these criteria, we will choose the performance mea-
sures from two classes based on the manipulability matrix and
the task space stiffness matrix.

Manipulability
Manipulability is related to the mapping from4qa to4xT ,

i.e.,JTcomp, as in Eqn. (4).

Task Space Stiffness
The spatial stiffness in the Cartesian space is defined from

the force balance between the applied external spatial forcefT
and the corresponding task frame displacementxT . Similarly,
the joint stiffness in the joint space is defined from the torque
balance between the overall joint forceτ and the corresponding
joint displacementq. Using the small deformation assumption,
KT andKq are constant. Then, the differential relation can be
calculated as Eqn. (6).

∆ fT = KT∆xT

∆τ = Kq∆q (6)

From the equation Eqn. (5), the differential force balance
can be rewritten as

∆τ = JT
T ∆ fT +JT

C ∆ fC +∆JT
T fT +∆JT

C fC. (7)

By assumption,JCp is full row rank, therefore,JC is full row

rank. LetJ̃C be the full column rank matrix whose column space
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coincides with the null space ofJC. Then

J̃C
T

∆τ = J̃C
T
JT

T ∆ fT + J̃C
T
(∆JT

T fT +∆JT
C fC). (8)

Substituting in Eqn. (6) and using the differential kinematics (top
portion of Eqn. (1)), we get

J̃C
T

∆τ = J̃C
T
JT

T KT∆xT + J̃C
T
(∆JT

T fT +∆JT
C fC).

= J̃C
T
JT

T KTJT∆q+ J̃C
T

(
∆JT

[
fT
fC

])
. (9)

The derivative of the Jacobian can be calculated as follows:

4JT = ∑
i

∂JT

∂qi
4qi = ∑

i

∂JT

∂qai
4qai +∑

i

∂JT

∂qpi
4qpi (10)

The product between4JT and the spatial and constraint forces
is

4JT
[

fT
fC

]
= (∑

i

∂JT

∂qa,i
4qa,i +∑

i

∂JT

∂qp,i
4qp,i)

[
fT
fC

]
(11)

=
[
4JT

f a 4JT
f p

][
∆qa

∆qp

]

where,

4JT
f a =

[
∂JT

∂qa,1
(JT)+Kq

[
qa

qp

]
... ...

...
∂JT

∂qa,na
(JT)+Kq

[
qa

qp

]]
.

4JT
f p =

[
∂JT

∂qp,1
(JT)+Kq

[
qa

qp

]
... ...

...
∂JT

∂qp,np
(JT)+Kq

[
qa

qp

]]
.

Note that we have assumed thatJ is of full row. Substituting
Eqn. (6) and Eqn. (11) into Eqn. (9), we get

J̃C
T
Kq∆q = J̃C

T
JT

T KT∆xT + J̃C
T [
4JT

f a 4JT
f p

][
∆qa

∆qp

]
= J̃C

T
JT

T KTJT∆q+ J̃C
T [
4JT

f a 4JT
f p

]
∆q (12)

From the kinematic constraint (bottom portion of Eqn. (1)), we
know ∆q may be expressed as

∆q = J̃Cφ (13)

for some vectorφ. Substituting into Eqn. (12), we get

J̃C
T
KqJ̃Cφ = J̃C

T
JT

T KTJT J̃Cφ+ J̃C
T [
4JT

f a 4JT
f p

]
J̃Cφ. (14)

Since this holds for anyφ, we obtain the expression for the task
space stiffness

J̃C
T
KqJ̃C = J̃C

T
JT

T KTJT J̃C + J̃C
T [
4JT

f a 4JT
f p

]
J̃C. (15)

Finally, the task space stiffness is calculated as

KT = (J̃C
T
JT

T )+J̃C
T (

Kq−
[
4JT

f a 4JT
f p

])
J̃C(JT J̃C)+ (16)

Note that Eqn. (16) is always true whether the mechanism
is subjected to an external force or not. In general, the task stiff-
ness is a function of joint stiffness and the mechanism config-
uration. If there is no external force or the mechanism is in
initial statue, fT and fC are zero. Then, the derivative of the
Jacobian,

[
4JT

f a 4JT
f p

]
, becomes a zero matrix. If we want to

design the mechanism, we can assume that
[
4JT

f a 4JT
f p

]
is a

zero matrix.
However, if an external force is exerted in the mechanism,

fT and fC are not zero. This results in a configuration change,
which effects the task space stiffness. If the mechanism inter-
acts with the environment, the effect of

[
4JT

f a 4JT
f p

]
may be

important.
If the mechanism is kinematically stable, i.e.,JCp is square

invertible, then

J̃C =
[

I
J−1
Cp

JCa

]
. (17)

and Eqn. (15) becomes

Kqa +JT
Ca

J−T
Cp

KqpJ−1
Cp

JCa = JT
Tcomp

KTJTcomp. (18)

which is the same expression as obtained in [19].

DESIGN OPTIMIZATION
Design optimization involves selecting a set of design vari-

ables,p, to optimize one or more performance objectives subject
to the constraints:

min
p
{µ1,µ2, . . .} subject toγi(p)≤ Γi . (19)

For this multi-objective optimization problem, we first find
the Pareto optimal solutions [18], and then use them to guide the
selection of the final design choice. A solution is Pareto when a
feasible decrease in one design metric causes at least one other
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design metric to increase. Solutions that are not Pareto are gen-
erally discarded because at least one design metric can be further
improved with no cost to any of the other design metrics. The
collection of all Pareto solutions is called the Pareto frontier. To
facilitate visualization of design choices, usually only a small
number of performance metrics (no more than 3) is considered
in the optimization while the rest of the performance metrics are
included in the constraints.

For flexure mechanism design, we choose the design vari-
ables to be the joint stiffness (which is determined by the joint ge-
ometry) and joint locations. The performance metrics are calcu-
lated with manipulability and stiffness, and the design constraints
are calculated with flexure joint stress, mechanism size, and pos-
sibly others. Once the Pareto frontier is generated, e.g., by us-
ing the normal constraint method [20], secondary criteria such as
performance sensitivity, dynamic characteristics, and manufac-
turability may be used to determine the final design parameters.

Flexure Joint Model
For a circular notch hinge type flexure joint (see Fig. 2), the

joint stiffness is modeled as a pure rotation as given in [3]

K ≈ 2E p
9π

√
t5

R
. (20)

whereE is the Young’s Modulus of the hinge material,p is the
depth of the joint,t the thickness of the thinnest portion of the
joint, andR is the radius of the circle. A full 3D (planar transla-
tion and rotation) joint stiffness model is also given in [3].

Figure 2. Circular Notch Joint

For a cantilevered joint (see Fig. 3), the joint stiffness may
be approximately modeled as

K ≈ 2γKθ
EI
L

. (21)

whereE is the Young’s Modulus,I = pt3

12 is the moment of inertia
about the axis perpendicular to the joint,L is the length of the

Figure 3. Cantilevered Joint

joint andγ andKθ are experimentally determined constants [1]:

γ = 0.8517,Kθ = 2.6762.

Maximum Joint Stress
The maximum stresses in the flexure joints are approxi-

mately proportional to the maximum deflections of these joints.
For example, for a circular notch hinge joint with radiusR, hinge
width t, and Young’s ModulusE, the maximum stress,σmax, is
related to the angular deflection,θmax, by [3]

θmax =
3π
4E

√
R
t

σmax. (22)

For a cantilevered joint with lengthL and widtht, the relationship
is approximately, by [21]

θmax =
0.148

E
L
t

σmax. (23)

If the maximum joint stress is given (e.g., from the yield stress of
the material), it can be converted to an equivalent maximum joint

displacement,∆q(max)
p by using the above formulas. The max

joint stress constraint can then be stated as a maximum deflection
constraint:

|∆qp| ≤ ∆q(max)
p . (24)

Other Design Considerations
In addition to the performances measures mentioned above,

other considerations may be needed to design the mechanism,
such as the size of the mechanism, task space motion resolu-
tion (due to the motion resolution of the active joints), dynamic
characteristics (bandwidth, resonant frequencies), sensitivity of
performance with respect to manufacturing tolerance, etc.
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EXAMPLE: NIST 1-D STAGE
Mechanism Architecture

A 1-degree-of-freedom (DOF) macro-scale precision mo-
tion stage using flexure joints was designed and fabricated by
NIST [22, 23]. Several meso-scale (about the size of a credit
card) models have also been built [24]. By replicating the de-
sign along the orthogonal axis, a 2-DOF version has also been
designed and built. Such stages are currently being considered
for deep space optical communication [25]. A schematic of the
mechanism is shown in Fig. 4. A piezoelectric actuator trans-
mits they-axis motion through joints 1 and 4 to the two lower
arms. These arms pivot about joints 2 and 5 and move the output
stage through joints 3 and 6. To support the output stage (and to
reduce angular crosstalk, i.e., undesirable angular motion), two
additional arms also support the platform through joints 7-10.
The goal of the design is to achieve desired manipulability (pure
translation iny) and stiffness (large stiffness in the angular and
x directions). The joints are constructed as circular notch joints
(see [22]).

Figure 4. Configuration of NIST 1-D Mechanism

Using the proposed analysis tools and performance mea-
sures, our purpose is to reduce the size of 1-DOF NIST mech-
anism to the MEMS scale that has the same configuration. The
overall size of mechanism must be less than 2.5mm× 2.5mm
including the active actuator.

To fabricate the micro scale parallel manipulator from the
optimization results, 1 layer DRIE (Deep Reactive Ion Etching)
process is used at MEMSCAP’s SOIMUMPs process. On the
Silicon On Insulator (SOI) wafer, the wet and dry etching pro-
cesses are used to fabricate the 25µm thickness structure. The
DRIE process is shown in Fig. 5.

Figure 5. SOIMUMPs Process for NIST 1-DOF Manipulator

Kinematic Models

The mechanism consists of 6 kinematic chains constrained
at the platform. This means that there are 15 total constraints (5
loops involving(x,y,θ)).

If all the joints in Fig. 4 are chosen to be idealized 1D ro-
tational joints, then there are 10 passive DOF’s and the mecha-
nism is overconstrained (JCp is 15×10). Indeed, in this case, the
mechanism cannot move from the equilibrium position shown.
This means that the 1D joint approximation is not adequate to
describe this mechanism. Therefore, we need a different joint
model to describe this mechanism.

To illustrate the design procedure, we have considered the
following joint model:

Replace joints 1, 3, 4, 6, 8, 10 by two rotational joints con-
nected by a short rigid segment. The motivation of this as-
sumption is to allow rotation as well as shear type of trans-
lation at these joints. Joints 2, 5, 7, 9 serve as pivots and are
retained as pure rotational joints. In this case, there are 16
passive joints and 15 constraints, i.e.,J̃C is rank 2 (including
one active joint). SinceJT J̃C (in Eqn. (15)) is rank 2, only
the x-y components ofKT can be determined. Overall, the
mechanism is underconstrained using this joint model.

The following sections discuss the optimal design structure
depending on the different performance measure and the design
variables.
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Design Optimization for MEMS-scale Stage
For the MEMS-scale stage, the joints are made from a

silicon-on-insulator (SOI) wafer. Silicon has different Young’s
Modulus depending on the crystal direction. The Young’s Mod-
ulus is 129.5Gpafor [100], 168.0Gpafor [110], and 186.5Gpa
for [111] from [26]. In this paper, we useE = 160Gpa which
is the average value for the three different directions. The four
quadrants of the stage are nominally all symmetric. We use the
following dimensions as the initial stage values:

a = 100µm,b = 1000µm,L = 20µm,d = 410µm.

For circular notch joints, the passive joint stiffness is calculated
using Eqn. (20) withR= L

2 = 10µm, t = 5µm, p = 25µm:

Kp = 5.00µN-m/rad.

For cantilevered joints, the passive joint stiffness is calculated
using Eqn. (21) witht = 5µm, andp = 25µm:

Kp = 9.50µN-m/rad.

The actuator stiffness is obtained from the FEA simulation:

Ka = 30 kN/m.

With the joint model, the task space Jacobian is (the task
coordinate is arranged as(θ,x,y)):

JTcomp =

 0
0
−10


showing onlyy-direction motion of the task frame.

Thex-y portion ofKT is almost diagonal:

KT (x,y) =
[

2.62×105 9.06×10−9

9.06×10−9 453.24

]
N/m

with eigenvalues(2.62×105,453.24).
For the maximum joint stress, we use the yield stress for

silicon from [27]: σmax = 7GPa. However, this value may be
chosen to be smaller to provide greater margin. The maximum
stress constraint is imposed when the active joint is at its maxi-
mum extension

∆qamax = 2µm.

The joint stress formula Eqn. (22) is used for circular notch joints
and Eqn. (23) is used for cantilevered joints. In this case, the
maximum allowed joint deflection for the circular notch joint is
8.35◦ and for the cantilevered joint 1.48◦.

Case A: Optimization for a, b, L To illustrate the de-
sign optimization procedure, three design parameters are chosen
to be(a,b,L) with the bounds:

33µm≤ a ≤ 300µm.

333.3µm≤ b ≤ 3000µm.

6.7µm≤ L ≤ 60µm.

For multi-objective design metrics, we choose to maximize
the manipulability (alongy) and the relative stiffness between the
x andy directions:

Manipulability: µ1 =
102∥∥JTcomp

∥∥ (25)

Stiffness:µ2 =
104

Kx/Ky
. (26)

Note that the scaling constants are added to normalize between
the two measures. The Pareto frontiers for cases A is shown in
Fig. 6.

Case B: Optimization for a, b, L, t Including the
flexure joint thickness, four design parameters are chosen to be
(a,b,L, t). The flexure joint thickness is bounded:

5µm≤ t ≤ 15µm.

Using the same design metrics in case A, optimization is per-
formed and the Pareto frontiers for cases B is shown in Fig. 7.

Case C: Optimization for L, t Based on the desired
travel range of the mechanism, the range of the actuator and the
range of motion amplification of the flexure mechanism are cho-
sen. This sets the values for a and b. Then the flexure joint
link (L) and thickness (t) are chosen for optimization. In case C,
same design metrics are used as case A. The Pareto frontiers for
cases C is shown in Fig. 8. In Fig. 8, first design metric,µ1, does
not change during the optimization because the design variables
can not effect the manipulability. Therefore, it is necessary to
choose different design metrics for the multi-objective optimiza-
tion. This is discussed in the case D.
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Case D: Optimization for L, t with different design
metrics In this case, using two design variables, different de-
sign metrics are chosen for the given displacement range. The
optimization goal is to maximize the stiffness (alongx direction)
and to minimize the stiffness (alongy direction):

Stiffness x:µ1 =
1
Kx
×104 (27)

Stiffness y:µ2 = Ky×10−2. (28)

The Pareto frontier for cases D is shown in Fig. 9

Figure 6. Pareto Frontier for Case A

Figure 7. Pareto Frontier for Case B

Results for Meso-scale stage
The Pareto frontier shows all feasible solution areas in the

design domain. Therefore, we can select the typical optimal de-
sign value by choosing the weight factor in the multi-objective
design function. In this paper, we choose the equal weight when

Figure 8. Pareto Frontier for Case C

Figure 9. Pareto Frontier for Case D

Table 1. Optimal Values for Design Variables

Initial Optimal value

value Case A Case B Case D

a 100µm 115.7µm 97.602µm ·

b 1000µm 1200µm 1200µm ·

L 20µm 18.135µm 21.824µm 55µm

t 7µm · 12.261µm 5.52µm

the two performance indices are considered with same amount:

µ= 0.5µ1 +0.5µ2.

The optimal design values for Case A, B, and D are summa-
rized in Table 1. In each case, the angular deformation of passive
joints is less than the maximum deflection range, when the active
joint is 2µm . Therefore, the maximum deflection constraint for
the circular notch joints and the cantilevered joints are satisfied
for all cases.

Finally, the optimal structure is design for the SOIMUMPs
process shown in Fig. 10.
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(a) Case A

(c) Case B

(e) Case D

Figure 10. Design Structures for SOIMUMPs Process

Figure 11. Fabricated NIST 1D Stages

Active Actuator Design
Since the size of the manipulator is limited, the actuator must

be as small as possible. The actuator mechanism must be a pla-
nar structure because of the DRIE process. By considering these
criteria, thermal actuators are designed to actuate the active flex-
ure joints. Thermal actuators can generate relatively large forces
compared to other MEMS actuators, such as electro-static actua-
tors. The length of the actuator is 500µmand the width is 10µm.
Using the basic structure of one actuator, we stacked up multiple
actuators using the long-common beam between actuators that
will increase the force to the MEMS structure. The thermal ac-
tuator was fabricated using the DRIE and its FEA simulation are
shown in Fig. 12.

Figure 12. Active Joint Actuator using Thermal Mechanism

FUTURE WORK AND CONCLUSION
In this paper, we have presented analysis and design tools for

MEMS parallel mechanisms with lumped flexure joints. We pose
the design problem as a multi-objective optimization with manip-
ulability and stiffness as performance measures and constraints.
A 1-D MEMS stage is designed as an example to illustrate the
modeling and design approach.

The various MEMS mechanism designs described in this pa-
per have been sent to the MEMS foundry and been fabricated
successfully. We will conduct experimental trials to determine
the validity of the proposed analysis tool and performance mea-
sures. It will be discussed in future publications
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