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ABSTRACT 
Progress in algorithm development and transfer of 
results to practical applications such as military 
robotics requires the setup of standard tasks, of 
standard qualitative and quantitative measurements for 
performance evaluation and validation. Although the 
evaluation and validation of algorithms have been 
discussed for over a decade, the research community 
still faces a lack of well-defined and standardized 
methodology.  The range of   fundamental problems 
include a lack of quantifiable measures of performance, 
a lack of data from state-of-the-art sensors in calibrated 
real-world environments, and a lack of facilities for 
conducting realistic experiments.  In this research, we 
propose three methods for creating ground truth 
databases and benchmarks using multiple sensors. The 
databases and benchmarks will provide researchers 
with high quality data from suites of sensors operating 
in complex environments representing real problems of 
great relevance to the development of autonomous 
driving systems. At National Institute of Standards and 
Technology (NIST), we have prototyped a High 
Mobility Multi-purpose Wheeled Vehicle (HMMWV) 
system with a suite of sensors including a Riegl ladar, 
General Dynamics Robotics Systems (GDRS) ladar, 
stereo Charge Coupled Device (CCD), several color 
cameras, Global Position System (GPS), Inertial 
Navigation System (INS), pan/tilt encoders, and 
odometry*.  All sensors are calibrated with respect to 
each other in space and time. This allows a database of 
features and terrain elevation to be built. Ground truth 
for each sensor can then be extracted from the database. 
The main goal of this research is to provide ground 
truth databases for researchers and engineers to 
evaluate algorithms for effectiveness, efficiency, 
reliability, and robustness, thus advancing the 
development of algorithms. 

                                                 
* Certain commercial equipment, instruments, or materials 

are identified in this paper in order to adequately specify 
the experimental procedure. Such identification does not 
imply recommendation or endorsement by NIST, nor does 
it imply that the materials or equipment identified are 
necessarily best for the purpose. 
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1. INTRODUCTION 

 
Historically, performance evaluation has not been 
commonly practiced in the perception community. 
Periodically, efforts are made to persuade researchers to 
provide performance evaluations that can be 
substantiated, but only a few take up this challenge.  As 
a result, performance evaluation is ad hoc in general, 
and quite frequently completely absent from research 
papers. 
 
In Europe, a number of formal programs have been 
developed that address performance evaluation of 
vision algorithms. Of these, European Computer Vision 
Network (ECVnet), an association of European vision 
researchers, had a subcommittee on Benchmarking and 
Performance Measures1, although it now appears to be 
defunct. The German Association for Pattern 
Recognition (DAGM) established a Working Group on 
"Quality Evaluation of Pattern Recognition 
Algorithms", but it, too appears inactive2. The 
International Association for Pattern Recognition has a 
Technical Committee on Benchmarking & Software, 
which organizes performance competitions comparing 
algorithms for particular applications, such as 
fingerprint identification and document analysis3. There 
have also been a number of workshops on performance 
characterization and benchmarking of vision systems. 
 
There are also a number of publications that address the 
issue of how to evaluate the performance of vision 
algorithms, and a few examples of careful evaluations 
of particular algorithms or classes of algorithms. 
Approaches to performance evaluation can be classified 
into the following general categories, recognizing that 
more than one approach may be used in an evaluation. 

Comparative Here an algorithm may be compared with 
others that attempt to address the same image-
processing task, or its performance may be compared to 
“ground truth,” or perhaps to human performance4, 5, 6, 7, 

8, 9 



Analytic The theory behind the algorithm is examined 
to try to determine the limits to its operation. The 
computational complexity may be derived, or 
theoretical optimality may be determined under certain 
constraints. Frequently, the approach makes use of 
simplified input data to make the analysis feasible10, 11, 

12, 13. 

Performance The way the algorithm actually performs 
on test data is measured and execution times with 
different parameters may be reported14, 15, 16. 

Appropriateness to Task The algorithm is shown in the 
context of a particular application, and the constraints 
of the task are used to justify the selection of the 
particular algorithm. The performance of the task as a 
whole is taken as the evaluation of the algorithm17, 18. 

Other, more informal measures include generality and 
acceptance. Perhaps the only real performance 
evaluation measure in common use is longevity. 
Algorithms that are accepted widely and implemented 
by many people for different applications can be 
considered good performers. 

A large number of papers report excellent performance 
of their algorithms, based on small data sets. The 
success of the Facial Recognition Technology (FERET) 
program9 has inspired us to take up the challenge of 
producing a large database of ground truth for the 
domain of mobile robotics. In this domain, sensors are 
mounted on board the moving vehicle, and the 
algorithms are constrained to run in real time (i.e., fast 
enough to provide data to control the vehicle). The 
ground truth that we provide is much more extensive 
than is typically available, and where human 
interpretations provide the ground truth, they cover a 
large number of image sequences because the 
annotation of the images is performed with computer 
assistance. We describe three methods for generating 
ground truth and demonstrate performance evaluations 
for range and electro-optical sensors using the ground 
truth database. 

We have developed a rigid and reliable methodology 
for producing three different kinds of large databases of 
sensor data with ground truth. One method involves 
collecting ground truth data using a highly accurate 
ladar sensor mounted on our instrumented HMMWV. 
The ladar can characterize large areas of terrain and is 
registered with cameras that provide color information 
for each ladar point. The position and time at which 
each sample is collected is recorded with an INS and 
GPS accurate to a few centimeters. Another set of data 
was obtained through a high-resolution aerial survey of 
the grounds of the NIST and surrounding area. The 

survey includes annotations providing labels for all the 
features. Lastly, we have developed an interactive 
method of hand-labeling features in image sequences to 
efficiently generate a large database of ground truth 
data. 

The data sets are used to evaluate performance of 
algorithms objectively by comparing the output of the 
algorithms to the expected result derived from the 
ground truth. Given a large number of ground truth data 
sets from different environments, statistical evaluations 
are possible as well as the robust assessment of 
performance of algorithms. 

The main goal of this work is to make our test data and 
ground truth available for general use, with the hope 
that it will lead to rapid and significant development of 
perception algorithms for autonomous mobility. In 
order to validate the approach we use the data sets to 
evaluate our own algorithm development. 

2. APPROACH 
 
In the following, we assume that all sensors used to 
collect data and produce ground truth have been 
calibrated and necessary parameters such as the optical 
center of a device or the focal plane are known. 

We first discuss our method for creating ground truth 
databases for sequences of color image data. It involves 
a human user, who annotates the data to supply the 
ground truth.  Manually annotating sensor data with 
ground truth is costly and time consuming. Instead, we 
have developed a semi-automatic ground truth 
application that reduces cost and time by requiring only 
occasional annotation. The user annotates the first 
image of a sequence by outlining and naming regions 
of interest (e.g., highway signs, vehicles). The 
computer then tracks the annotated regions through 
successive images, and the user observes how well each 
region is recognized and outlined by the computer. 
When the annotations start to diverge from the desired 
regions, the user intervenes and re-identifies the 
regions, retaining the same names. When new regions 
appear that the user wants to track, the same process of 
stopping the computer, annotating the regions, and 
restarting the tracking is followed. The annotation 
application can be used to outline regions with curved 
or polygonal lines, and several tracking algorithms can 
be used, depending on the objects in the images. The 
output of this process consists of the names, shapes and 
position coordinates of the targets in each image 

Figure 1 shows the starting frame of a sequence of 
color images. It shows road edges that were selected by 
a user constructing the ground truth. Figure 2 shows the 



results of automatic tracking. The tracking to this point 
is acceptable, and no user interaction is required. Figure 
3 shows the situation when the automatic tracking is 
starting to drift. At this point, the user stops the 
tracking, resets the annotation, and lets the tracker 
continue (Figure 4). 

 
 
The second method provides data for evaluating range 
sensors. It makes use of a high-resolution ladar (Riegl 
LMS Z210) to construct a map of a region. The map 
can then be used for evaluating range sensors that have 
significantly lower resolution than the Riegl. We use a 
5 cm x 5 cm spatial resolution grid to construct the 
ground truth map, but maps can be constructed at 
different resolutions (finer or coarser).  This method has 

been used to gather ground truth for off-road terrain 
such as that shown in Figure 5.   
 
Evaluating other range sensors involves mapping their 
data into the high-resolution map. The residual of the 
Riegl data and the other sensor data provides a measure 

 
Figure 1 The first frame of a sequence. The user has drawn 

the features to be tracked. 

 

 
Figure 2 The computer tracks the features through a 

sequence of images 

 
Figure 3 In this frame, the automatic tracker has 

drifted enough to require human intervention. 

 

 
Figure 4 The user re-initializes the features and 

automatic tracking continues. 

 

 
Figure 5 An image mosaic used to provide color 

information for the high-resolution ladar scanner. 

 



of the performance of the sensor (relative to the Riegl). 
It is important to note that in order to map data from the 
sensor under test onto the Riegl data, the positions and 
orientations of the sensors must be known accurately. 
The current map resolution of 5 cm x 5 cm corresponds 
to a spatial tolerance of 5 cm. This method of 
constructing a map of a region can also measure how 
much information each successive ladar image adds 
about the world. The ground truth maps can also be 
used to evaluate similar maps constructed with stereo 
algorithms6 
 
Figure 6 shows the result of scanning the region in 
Figure 5 with the Riegl ladar. Figure 8 shows the sub-
region scanned with a different ladar (GDRS). In 
Figure 7 the two scans are overlaid. The white region 
shows the mismatch due to the lower resolution and 
coarse range quantization of the GDRS ladar with a 
small component due to registration error. 
 

The third method  involves constructing a ground truth 
database of color and range images based on a high-
resolution aerial survey combined with data from 
calibrated ground sensors such as cameras and ladars. 
In our case, we commissioned a survey of the NIST 
campus (2.34 * 106m2 or 578 acres) and part of the 
surrounding urban area. The area includes roads, 
parking lots, traffic signs, buildings, trees, streams, 
fences, etc., as well as off-road terrain. All of these 
features are recorded and entered into a database of 

features and terrain elevation. Ground truth for each 
sensor can then be extracted from the database based on 
position and sensor model.  

In order to produce the ground truth database from a 
sensor or set of sensors, each sensor is mounted on the 
NIST HMMWV or other calibrated vehicle with an 
accurate position sensor, or a tripod or other stationary 
mount whose position can be obtained accurately. If the 
sensors are to be used in real time autonomous driving, 
the vehicle is driven over the NIST grounds, preferably 
over the kind of terrain on which the sensors will be 
used and data is collected with associated time and 
position stamps19.  

A high resolution INS/GPS navigation sensor coupled 
with a differential GPS base station and post-processing 
of the position data enables determining the location of 
the NIST vehicle with an accuracy of about 4 cm in 
position and a few thousandths of a degree in 
orientation. The location of each sensor on the vehicle 
can also be precisely measured using the techniques 
described in a companion paper in this proceedings19. 
This enables sensor data to be transformed into the 
vehicle coordinate system, or into the coordinates of the 
aerial survey of the NIST campus. The labels of sensed 
data can then be obtained from the ground truth 

With this procedure, a large set of ground truth 
database can be produced easily. Given a dataset 
captured in this way, we can borrow the evaluation 
procedure from FERET program9 to quantitatively 
evaluate the performance of sensor-processing 

 
Figure 6 Range data from the Riegl ladar. Color is 

used to represent elevation. 

 

 
Figure 7 The result of overlaying the GDRS ladar 

data on the Riegl data. The difference in 
measurement of the scene can clearly be seen. 

 

 
Figure 8 The sub-region seen by the GDRS ladar, 
taken from the same position. Elevation is again 

represented by color. 

 



algorithms such as segmentation, classification, and 
recognition algorithms. These algorithms produce 
labeled regions in an image. The regions, by projection 
into the a priori data, can be assigned labels from the 
ground truth. It then becomes a simple matter to 
determine the percentage of false positive and false 
negative labels of each algorithm and the correctness of 
the detected positions and shapes of the objects.  

The ground truth data are also an excellent resource for 
verifying the accuracy of a ladar sensor by taking 
samples from locations that contain surfaces or objects 
of known sizes, distances, and orientations. The 
response of the algorithm is then compared with the 
ground truth position, which is extracted from the 
database of prior knowledge based on the known 
position of the sensor and its field of view. Obviously, 
all measurements are limited by the accuracy of the a 
priori data and the accuracy with which the position and 
orientation of the sensor can be established with respect 
to the a priori data. A sample-by-sample measurement 
can be made, giving the range resolution and field of 
view of the sensor. Alternatively, feature-based 
measurements can be made, giving the accuracy with 

which the sensor can capture surfaces of different 
shapes and slopes. More detailed studies, such as trying 
to determine which part of the field of view of a single 
sample (e.g., laser beam) gives rise to the measured 
response, can also be made, but methods customized to 
the sensor are more reliable. 

 

3. DISCUSSION AND CONCLUSIONS 

Three methods of producing and using ground truth 
data have been presented and applied to electro-optical 
and range sensors primarily used for autonomous 
mobile robots. The methods all rely on ground truth and 
are dependent on the accuracy with which it is 
represented and registered with the test samples.  By 
careful measurement of the positions and orientations 
of the sensors at the time samples are taken, a good 
match with the ground truth can be established and 
quantitative measures of performance for sensors and 
sensory processing algorithms can be made. 

We have developed a reliable methodology for 
establishing a large database of ground truth for 
evaluating sensors and sensor-processing algorithms. 
The database is available to the public with the hope 
that researchers and engineers will use it to verify and 
evaluate sensors and algorithms for effectiveness, 
efficiency, reliability, and robustness. This will enable 
algorithms to be developed using realistically difficult 
sensory data, make it possible to compare algorithms 
quantitatively by running them on the same data, and 
speed technology transfer by providing industry with 
metrics for comparing algorithm performance. It will 
also help with sensor development by highlighting 
areas of strength and weakness of current sensors.  
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