
Ontological product modeling for collaborative design

Conrad Bock a,*, XuanFang Zha a, Hyo-won Suh b, Jae-Hyun Lee a

a U.S. National Institute of Standards and Technology, 100 Bureau Dr., MS 8263, Gaithersburg, MD 20899-8263, USA
b Department of Industrial System Engineering, Korea Advanced Institute of Science and Technology, 373-1, Guseong-dong, Yuseong-gu, Daejon 305-701, Republic of Korea

a r t i c l e i n f o

Article history:
Received 15 November 2007
Received in revised form 20 June 2010
Accepted 27 June 2010
Available online 22 July 2010

Keywords:
Product modeling languages
Ontology
Collaborative design

a b s t r a c t

This paper shows how to combine ontological and model-based techniques in languages that facilitate
collaborative design exploration. The proposed approach uses ontology to capture alternative designs
and incremental refinements that meet requirements and earlier design commitments. Model-based
techniques are applied to develop more powerful, engineering-friendly languages for using ontology. It
uses ontology’s open world semantics to support design collaboration with flexible and accurate design
combination, refinement, and consistency checking. It also leads to more reliable interpretation of models
across the product lifecycle due to more rigorous language semantics. An example language is described
using these techniques.

Published by Elsevier Ltd.

1. Introduction

Product design has become increasingly complicated due to
many additional factors that must be considered, and a wider range
of collaborators involved [1,2]. Designers are aware of many more
stages of the product lifecycle. They interact with a wide range of
other designers, especially in sophisticated products. Consideration
of more lifecycle stages and more collaboration result in better prod-
ucts [3,4], but also place a significant burden on designers to exam-
ine a larger set of alternative designs at varying levels of detail.
Designers do not know about all the lifecycle stages at once, and usu-
ally no single design will optimize for all criteria at all stages. They
must develop many alternatives, from less to more detail, in consul-
tation with many other engineers. Collaboration is often hampered
by lack of uniform interpretation of product modeling languages
and terminologies, leading to rework when discrepancies are discov-
ered. Designers distributed geographically and organizationally in
global economies worsen these problems [5]. Product information
assets become fragile and return less on investment.

This paper addresses these challenges by applying ontology in
an engineering-friendly way through model-based techniques.
Ontologies bring a taxonomic approach to managing design com-
plexity, and an ‘‘open world” semantics enabling independently
developed product models to partially describe the same products.
They also have the precision needed to check consistency when the
models are combined, and to ensure uniform interpretation. Mod-
el-based techniques provide engineering-friendly languages, free-
ing engineers from learning the specifics of ontology languages,

while still having their benefits. These improvements enable differ-
ent or overlapping aspects of product information to be developed
separately, or built on each other, then assembled rapidly and flex-
ibly with the aid of automated consistency checking.

Section 2 gives requirements on product models and languages.
Section 3 covers previous work on these requirements. Section 4
covers an example language addressing the requirements, with
brief introductions to ontology and model-based architecture.
Section 5 concludes the paper.

2. Requirements on product models and languages for
collaboration

Product modeling languages are engineered just as products are,
including requirements and designs. Language requirements are
naturally intertwined with the kinds of models expected to be con-
structed by engineers or other stakeholders. This section takes the
scenario of collaborative design exploration to determine character-
istics of typical product models, and requirements on product mod-
eling languages. Section 2.1 discusses product models as they are
constructed by engineers or other stakeholders in a collaborative
way, while Section 2.2 addresses requirements on languages used
to construct these models. The requirements are addressed by
and example language described in Section 4, where ontological
techniques are applied to satisfy the concerns of Section 2.1, and
model-based approaches to satisfy those of Section 2.2.

2.1. Collaboration-enabled product models

The ultimate goal of collaborative product modeling is to pro-
duce a consistent and complete model of a product, drawn from

1474-0346/$ - see front matter Published by Elsevier Ltd.
doi:10.1016/j.aei.2010.06.011

* Corresponding author. Tel.: +1 301 975 3818; fax: +1 301 975 8273.
E-mail addresses: conrad.bock@nist.gov (C. Bock), xuanfang.zha@nist.gov

(X. Zha), hw_suh@kaist.ac.kr (H.-w. Suh), jaehyun.lee@nist.gov (J.-H. Lee).

Advanced Engineering Informatics 24 (2010) 510–524

Contents lists available at ScienceDirect

Advanced Engineering Informatics

journal homepage: www.elsevier .com/ locate /ae i



a wide variety of sources. The sources will necessarily be incom-
plete and potentially conflicting. This section gives several charac-
teristics typical of product models created in this scenario. These
are characteristics of product models, rather than requirements
on the languages used to create them, see Section 2.2.

Product models developed collaboratively can be intentionally
incomplete. They can describe any aspect of a product, no matter
how little is specified. For example, a product model for a car might
only give limits on how much pollution it may emit, perhaps deter-
mined by the manufacturer or a regulating government agency.
Models might only describe the materials used in the car. Or they
might only give the overall shape of the car for marketing and
aerodynamic analysis. All these are product models, they are just
incomplete.

Multiple incomplete product models can exist for the same
product at the same time. Product development typically has many
engineers and stakeholders, each having something to say about
the product, but none saying everything. For example, regulators
might establish limits on pollution for cars, marketing departments
might be concerned with their shape, and engineering depart-
ments with the materials to use. Each of these descriptions of the
product is a product model in its own right.

Incomplete product models can be combined into more com-
plete models, assuming they are not contradictory. For example,
if one stakeholder requires the car to have a certain shape for mar-
keting purposes, but another requires a different shape to meet
mileage requirements, then the models cannot be immediately
combined. The ultimate goal is to produce a set of models of
the same product that are consistent and cover all aspects of the
product.

Product models developed collaboratively can be about the
physical product itself (device), or the things surrounding the prod-
uct when it is operated (environment), or both. For example, a mod-
el of a car might describe the kinds of roads on which it can be
driven, perhaps the altitudes and speeds at which it can be driven,
and how much pollution it is expected to emit. A product model
without these would tell us about the car itself, rather than about
the requirements on it or how the car satisfies those requirements.

Product models developed collaboratively can be about
structure, behavior, or both. Structure describes individual physical
objects, such as a particular car with an identification number.
Structural models describe some aspect of individual physical
objects, which might apply to some objects and others not. For
example, a structural model might describe cars weighing less than
2000 kg. A particular car with an identification number weighing
1500 kg fits this description, while another car weighing 2500 kg
does not. Behaviors describe changes in individual physical objects,
or lack thereof, occurring during particular time intervals (behavior
occurrences) [6]. For example, a commuting behavior might be de-
scribe travel between workplace and home. The occurrence of John
going to work in his car on March 3, 2007 between 8:05 am and
8:30 am Eastern U.S. Time would fit this description if John left
from home, otherwise it would not. Behavior occurrences involve
individual physical objects, for example, John, his car, and the road
on which he is driving that particular day. The same object can be
involved in many behavior occurrences. For example, John’s car is
involved in an occurrence of commuting on many days.

Since product models can be incomplete, they can be about por-
tions of the device, environment, structure, or behavior, in any
combination (total system). To cover all these cases, total systems
are defined in the paper as behavior occurrences involving individ-
ual physical devices and objects in the environment when the de-
vice is used. Product models describe some aspect of total systems,
which might be the interactions of the environment and the
device, or how the device should be used. A product model might
describe only a portion of the total system behavior, for example,

only the objects in the environment, only their behavior, only the
structure of the device, or only its behavior. A complete product
model combines all these into a consistent description of all the
relevant objects and behavior occurrences of the total system.

2.2. Requirements for collaboration-enabled product modeling
Languages

This section describes the capabilities of product modeling lan-
guages following the principles of Section 1. These capabilities en-
able designers to express portions of a product model, and combine
them with contributions of other designers, see Section 2.1.

The capabilities fall into several categories:

� Models of device and environment (designs and requirements,
total systems).
� Generalization (taxonomies, refinement).
� Interconnections as components (reuse, inheritance, decompo-

sition, interconnections between interconnections).
� Behaviors as relations and interconnections.

At least two kinds of product models are useful for modeling
languages to identify. Since models can be about any aspect of a
device or the environment in which is operates (and the structure
or behavior of either one, see total system in Section 2.1), it is help-
ful if the language distinguishes at least these kinds of models:

(1) Designs are product models that describe only engineered
devices, which might include their intended behavior.

(2) Requirements are product models that describe the environ-
ment in which the device is to be used [7], including:
(a) The objects in the environment of the device when it is

used, and the effect of the device on them.
(b) The behavior of the environment in the presence of the

device, including the interactions of the environment
and the device, for example, how the device should be
used.

The definitions of design and requirement above are for exposi-
tion in this paper, and can be changed or adapted as needed. In par-
ticular, some communities use the term ‘‘requirement” to include
descriptions of devices developed at early stages. For example, a
marketing requirement might constrain the weight of lawn mow-
ers, or the color. In the terminology of this paper, such constraints
are part of design of the lawn mower. The requirement is to be able
to lift the device or that it is pleasing to look at. Requirements in
this paper are ‘‘operational” or ‘‘usage” requirements. The termi-
nology can be adapted or changed as needed when the language
is applied in particular communities.

Generalization is a technique for combining product models by
specifying that everything fitting the description of one product
model also fits the description of another. For example, a general
model of cars might describe them as weighing less than
2000 kg, but in a special model for small cars they might be less
than 1000 kg. All objects fitting the description of small cars will
fit the description of cars in general. Fig. 1 shows a notation for
generalization, the hollow-headed arrow, adapted from the Unified
Modeling Language (UML) [8], where it has the same meaning as
this paper, and as subclassing in the Web Ontology Language
(OWL) [9]. In the figure, vehicles generalize cars and boats (cars
and boats are vehicles), or more precisely, all objects fitting the
description of the car or boat models will fit the description of
the vehicle model.

Generalization provides a simple and well-defined framework
for collaborative design exploration. Engineers can independently
refine models for the same product with alternative specializations

C. Bock et al. / Advanced Engineering Informatics 24 (2010) 510–524 511



of a general platform, and combine them later with multiple gen-
eralizations of the final product model. Specialized models that
do meet requirements can be abandoned, returning to more gen-
eral models and alternative specializations. Abandoned models
are still available for further adaptation if requirements change,
or other solutions turn out to be worse overall. Generalization
ensures specialized models are compatible with general ones,
keeping the design space more organized than typical versioning
techniques, where any kind of change can occur between versions.
More discussion of this is in Section 4.4.

Another technique for combining product models is intercon-
nection of other models according to roles those other models play
in the new product, sometimes called ‘‘composition” or ‘‘assem-
bly.” Fig. 1 illustrates this in a simplified car model on the lower
right using a wheel model twice, in different ways, shown with
notation adapted from the UML composite structure diagram
[8,10]. The colon notation for the wheels specifies a reused subas-
sembly to the right of the colon, and the way it is used (‘‘roles”) to
the left of the colon (role names are omitted for brevity on the
other parts). One wheel usage is powered by the engine and
the other is not, as shown by the lines between the engine
and one of the wheels. The resulting product will have two subas-
semblies specified by the wheel model, only one of which will be
connected to the engine. The examples here are just for devices,
but the environment can have interconnections also.

Generalization applies to refinement of interconnections and
subassemblies, also illustrated in Fig. 1. Vehicles include an ele-
ment that exerts force outside the vehicle (the impeller), which
generalizes wheels and propellers, as shown in the upper right of
Fig. 1. Similarly, frames in vehicles generalize chasses and hulls
in cars and boats, respectively. Boats add an element for represent-
ing the rudder with an additional connection to the hull. The inter-
connections can also be generalized (not shown for brevity). For
example, a wheel attaches to a chassis differently from a propeller
to a hull, but these are generalized by the common characteristic of
limiting the movement between the frame and impeller.

Interconnections within an assembly or composed product
model can be specified as a composition of other interconnected
elements, as illustrated in Fig. 2. The connection between engine
and wheel in manual transmission cars on the upper right decom-

poses into a separately specified set of interconnected elements
that includes a clutch and gearbox for manual transmissions.
Things described by the manual car model will have individual
clutches and gearboxes linked between the engine and wheels.
The same connection decomposition might be reused many times,
for example, a chemical plant might have the same piping patterns
between tanks used many times, see Fig. 3. This enables product
designers to reuse complex interconnections defined by others.

Alternative product model refinements using generalization
and interconnection composition are also illustrated in Fig. 2. The
car model generalizes two others that decompose the connection
between engine and wheel in different ways. One decomposes it
with a manual transmission, the other with an automatic transmis-
sion. The things described by the specialized product models are
also described by the car model, by the definition of generalization,
including any characteristics of the interconnection between
engines and wheels, such as power delivery requirements, as
explained next.

Behaviors can be taken as relations between the objects in-
volved in them, enabling behaviors to interconnect elements in a
composite or assembly. For example, a behavior for the intercon-
nections between a table top and its leg might specify that the ob-
jects involved have small relative movement. Fig. 2 shows another
example of a behavior on the lower left used by an interconnection
in the assembly above it. The behavior describes power transmis-
sion between the engine and wheel, potentially establishing max-
imum and minimum limits. The model generalizes two others with
decompositions satisfying the general behavioral constraint, be-
cause the products described by the specialized models are also de-
scribed by the general one, according to the definition of
generalization.

Interconnections can be interconnected in a product model, as
illustrated in Fig. 3. Two interconnections that decompose into pip-
ing elements are themselves interconnected. The individual physical
devices described by the assembly will have two individual pipes
with heat transfer between them. This can be combined with gener-
alization similarly to Fig. 2, for example, to specify thermal conduc-
tion between the interconnections without specifying that it is
achieved with piping. Then the thermal connection applies to spe-
cializations of the assembly that connect the units in different ways.

Composite Name
Composite /

Assemblyrole name : Reused 
Composite Name

Vehicle

ImpellerEngine

Frame  

Boat

PropellerEngine

Hull

Car

pw : WheelEngine

Impeller

WheelPropeller

Frame

ChasisHull

Rudder  upw : WheelChassis

Wheel

t: Tire

h : Hub

Wheel

t: Tire

h : Hub

D
es

ig
n 

R
ef

in
em

en
t

Design Alternatives

Interconnection
Generalization

Reused Composite

Fig. 1. Product generalization.

512 C. Bock et al. / Advanced Engineering Informatics 24 (2010) 510–524



3. Previous work

Previous work in product modeling takes either an ontology or
model-based approach, but usually not both. Those using only mod-
el-based techniques do not support independently developed prod-
uct models for the same product (open world), or the precision
needed to check consistency when the models are combined, while
those taking only an ontological approach do not provide engineer-
ing-friendly modeling languages. In addition, previous work with
ontology in product modeling does not take full advantage of
ontology, such as open world semantics, while previous work using
model-based techniques does not support many of the needed capa-
bilities, such as interconnection of subassemblies and parts with the
same capabilities as subassemblies and parts. The few previous
combinations of ontology and model-based techniques support only
some of their potential synergies. This section reviews these two
areas of previous work in product modeling, with model-based
approaches in Section 3.1, and ontologies in Section 3.2.

3.1. Model-based product information

Model-based approaches to product information have been used
much longer than ontological techniques. They provide engineering-
oriented languages, but specify their meaning informally, and lack
the benefits of ontology. These languages include ISO 10303 (STEP,
STandard for the Exchange of Product model data) [11], the Unified
Modeling Language (UML) [8], and its extensions in the Systems
Modeling Language (SysML) [12], the U.S. National Institute of
Standards and Technology (NIST) Core Product Model (CPM) [13]

and its extension in the Open Assembly Model (OAM) [14], and
Methodology and tools Oriented to Knowledge-based engineering
Applications (MOKA) [15]. This section reviews these efforts.

STEP is a comprehensive standard, covering a wide range of
manufacturing product data, some crossing subdomains (generic
and integrated resources) and some specific to subdomains, such
as electrical and mechanical products (application protocols). STEP
gives a standard terminology for product management system ven-
dors [16]. STEP models have assembly support within some of the
application protocols, but limited assembly representations across
subdomains. For example, ISO 10303-44 specifies the assembly
structure of a product and manages its configuration during its life-
cycle [17]. One of its primary features is that it provides a mecha-
nism to generate and maintain various kinds of product data
structures, such as bills of material and parts lists, using the same
primitive entities, such as components. ISO 10303-109 defines
kinematic and geometric constraints for mechanical assemblies,
including assembly feature relationships and constraint schemas
[18]. ISO 10303-239 provides capabilities for product lifecycle sup-
port, including product lifecycle activity management, product
description, operational feedback, and support solution and envi-
ronment [19]. The Organization for the Advancement of Structured
Information Standards Product Life Cycle Support Technical Com-
mittee is currently developing Data Exchange Specifications using
ISO 10303-239. This includes product breakdown for support, fault
states, task specification, maintenance plan, operational feedback,
product as individual, requirements, core models, and infrastruc-
ture maintenance.

STEP currently does not adequately address the capabilities of
Section 2.2, in some cases only in particular application protocols.
ISO 10303-109 supports hierarchical relations and interconnec-
tions among components via part properties such as assembly fea-
tures [18], but it does not cover assembly generalization and
relation decomposition for configuration management of assem-
blies and components, nor behaviors as relations and interconnec-
tions. Extensions of STEP-compatible models have been proposed
to address some of the missing capabilities in STEP assembly mod-
els [20,21], for example, introducing entities such as assembly,
subassembly, part, and connector for integrated assembly design
and process planning. In addition, ISO working group TC184/SC4/
WG12 is updating STEP’s assembly representations. However,
these proposals are not currently adopted into STEP.

Car

Engine

Wheel

Car, manual

Engine

Car, automatic

Engine

Wheel

Wheel

Automatic 
Transmission

Manual Clutch

Gearbox

Engine

Wheel

Engine

Wheel

Transmit
Power

Design Refinement

D
es

ig
n 

Al
te

rn
at

iv
es

Fig. 2. Interconnection decomposition.

A

Unit 1

Unit 2

Pipe

Fitting

Unit

Unit

Fitting
Thermal

conduction

Fig. 3. Interconnections of interconnections.

C. Bock et al. / Advanced Engineering Informatics 24 (2010) 510–524 513



UML is a standardized, general-purpose, wide lifecycle modeling
language defined at the Object Management Group (OMG), under
their Model-driven Architecture [22]. It is designed for visualizing
and interchanging models of many kinds of systems and the entities
in their environment. It is used for business processes, organiza-
tional structures, and hardware. It covers both structural and dy-
namic models, including composite objects and multiple behavior
models. UML provides two extension mechanisms, profiles and
metamodel specialization. SysML extends UML to a modeling lan-
guage for manufactured systems engineering, which is a concerned
with the accurate capture of customer requirements and reliable
translation of these to high-level designs for hardware, software,
and organizations. SysML is defined as a UML 2 profile by the
OMG, in cooperation with the International Council on Systems
Engineering (INCOSE). UML and SysML fully support generalization,
composition and assemblies, except only SysML supports relation
decomposition and connectors between connectors. Neither sup-
ports behaviors as relations or interconnections. SysML and UML
do not support total system modeling very well, because of the lim-
ited nature of requirements in SysML and use cases in UML.

The NIST research effort on foundations for next generation CAD
and product development systems suggests a core representation
for product information, CPM, and extensions to this model, such
as OAM, and Design-Analysis Integration [23]. Heterogeneous
Material Model [24], Mechatronic Device Model [25], the Product
Family Evolution Model [26], and the Embedded System Model
[27]. CPM is intended to unify and integrate product and assembly
information, providing a base-level, knowledge-oriented model
that is open and non-proprietary, extensible, independent of prod-
uct development process, and capturing engineering context most
commonly shared in product development activities. It focuses on
artifact representation including function, form (including geome-
try and material), behavior, physical and functional decomposi-
tions, and relationships among these concepts. OAM extends
CPM to include assembly, tolerance and propagation, kinematics,
and engineering analysis at the system level. OAM is integrated
with the EXPRESS/XML schema based assembly model [21] to com-
pletely capture the detailed geometric information using XML
Schema [28]. Thus, the STEP-based integrated product information
model comprises not only geometry but also function, behavior,
form feature and product structure information.

CPM and OAM currently do not adequately address the capabil-
ities of Section 2.2. OAM supports interconnections between parts,
but not involving elements of the same kind (except in version 2),
and only ports for assembly. It also does not support generaliza-
tion, decomposition of relations and connectors between connec-
tors, or behavior relations and connectors. CPM does not clearly
distinguish behavior of the device and environment, though some
work exists in this area [29,25].

MOKA is perhaps the most powerful and widely known
methodology for product design modeling and development of
knowledge-based engineering applications, including process
knowledge. It is intended for routine design tasks, rather than
conceptual design that includes requirements. The MOKA product
model supports five views or perspectives on the underlying prod-
uct model. Structure is the hierarchical decomposition of a product
into parts, assemblies, and features (structures). It can be physical
or logical. Function is the functional decomposition of the product
and principles of solution. Behavior includes a state model of the
various states of a product and of the transition from one state to
another. Technology includes materials and manufacturing process
information. User-defined technological information includes
alternate representations of the physical structure. MOKA provides
a kernel for various kinds of applications, using base classes as the
key integration elements. MOKA is based on UML 1.0 class model-
ing, and applies UML stereotypes.

MOKA shares the same theme as the approach proposed in this
paper, but many of the potential capabilities from combining
ontology and modeling languages are not drawn out in the docu-
mentation and articles. For example, MOKA has the potential to
support generalization and relation decomposition, but this is lar-
gely unexplored in the documentation. In many cases, it is unclear
how the semantics of the stereotype applies to the MOKA concepts.
For example, state and transition in MOKA behaviors are stereo-
types of UML Class, but it is not explained what they classify (what
the instances of states and transitions are). MOKA does not con-
sider the environment of devices (total system modeling) in its def-
inition of function, or requirements modeling generally. This
makes it difficult to apply MOKA during conceptual design. MOKA
supports interconnection of elements in a composition, but not
behaviors as relations, connectors between connectors, multiple
usages of the same kind.

3.2. Product ontologies

Ontology has been recently applied to product modeling, usu-
ally to improve the precision of modeling languages, such as those
in Section 3.1 [30]. Some of the applications follow the typical def-
inition of ontology as being about real world things, or things in-
tended for the real world, rather than linguistic constructions
such as modeling languages. This approach gives more precise
meaning to product models by interpreting them as physical
things, satisfying some of the requirements in Section 2.1, but does
not tie ontologies to modeling languages for ease of use in the engi-
neering community, as required in Section 2.2. Other work applies
ontology languages to the syntax of existing or new modeling lan-
guages, which improves the specification of how those languages
appear to the engineer, but does not give them ontological mean-
ing in terms of individual, physical objects or occurrences of behav-
ior. The few efforts that combine ontology and modeling languages
do not take advantage of the open world semantics of ontology for
collaboration, and provide only a portion of the expressiveness
needed in modeling languages.

Some of the previous work applying ontology to product model-
ing classifies physical objects or occurrences of behavior, for exam-
ple, built products with serial numbers, or the operation of a
particular pump on a particular day. Some of the work develops
ontologies for the static aspects of individual physical objects, such
as relations between parts and wholes, congruence, convexity, and
perpendicularity [31], or for dynamic aspects using qualitative phys-
ics and packaged in reusable model libraries [32]. Other work ex-
tends these general physical concepts to include dynamics, then
relates dynamics to mathematical equations for use in simulation
[33]. Some work standardizes taxonomies of physical objects in par-
ticular manufacturing domains, such as pumps and heat exchangers,
specialized further into classes defined by industry associations, all
specialized from generic classes supporting assembly of physical
things and how they are involved in occurrences of behavior [34].
Some research explores how these product taxonomies can be used
in knowledge management and configuration systems [35,36],
while another effort gives a methodology for defining product family
ontologies [37]. All these lines of work can describe individual phys-
ical things, such as a particular car with an identification number, but
do not provide a modeling language for engineers. For example,
these approaches can classify physical things, such as pumps, but
an engineer cannot specify which models are about the environment
of a product as it is operated (requirements), and which are about the
product itself (designs).

Other previous work applies ontology to defining existing or
new product modeling languages, rather than classifying physical
objects or occurrences of behaviors. Some research gives taxono-
mies of functions, such as providing material, preventing a

514 C. Bock et al. / Advanced Engineering Informatics 24 (2010) 510–524



side-effect, or driving a process [38]. These classify domain-specific
functions that appear in a product model, such as heating and
generating torque, rather than occurrences of these functions that
happen at particular times. Other research gives a taxonomy of
requirements and their relations, such as explicit and derived
requirements, and requirement decomposition [39]. Other re-
search uses ontology to formalize an assembly language that was
defined in UML, and integrate it into design tools [40]. Some
research formalizes the syntax of product modeling languages
using ontology languages [41,42], or uses ontology to evaluate
the syntax [43]. These lines of work precisely specify how to use
a modeling language properly, but do not have the benefits of
ontologies of physical objects and occurrences, such as product
taxonomies or checking consistency of requirements and designs.

A few previous efforts combine ontology and modeling lan-
guages, using the same or related architectural techniques as in
this paper, and applying them in product lifecycles [44–46]. These
efforts do not draw out the implications of ontology for colla-
borative design exploration (partial and refined product models
combined and checked for consistency), and their modeling
languages do not integrate interconnected elements with general-
ization, decomposable relations, and behaviors.

4. An ontological product modeling language

This section describes an example product modeling language
that provides the benefits of ontology in an engineer-friendly
way through model-based approaches. Section 4.1 briefly intro-
duces ontology in general. Section 4.2 shows how ontology applies
to product modeling. Section 4.3 introduces a technique for making
ontology more accessible to engineers, by integrating modeling
languages with ontology. Section 4.4 explains the benefits of this
technique to product modeling. Section 4.5 covers models of gen-
eric concepts of the language described in this paper, such as rela-
tions, while Section 4.6 covers extensions for engineering concepts.
Together these last two sections describe an example language
using the techniques of Section 4.3 to combine ontology and mod-
eling languages and satisfy the requirements of Section 2.

4.1. Introduction to ontology

Ontology focuses on descriptions of real or intended things,
especially partial descriptions that can be combined and checked
for consistency separately from the many real or intended things
being described.1 In this paper, engineers and stakeholders provide
descriptions of intended products that are ultimately manifested in
individual physical things and their behavior. Ontology enables
product engineers and stakeholders to independently develop partial
descriptions of the same product and check consistency when the
descriptions are combined.

Ontology is usually formalized with set theory, where members
of sets are actual or intended things, and rules for membership
(called classes) capture expert knowledge and specifications. In
product modeling, members of sets might be individual physical
products or their behavior occurrences, and membership rules
are engineering and stakeholder specifications about the product.
Classes only characterize the members of sets, they do not identify
the sets or individual members directly. For example, a class might
require the members of a set to be all and only cars weighing less
than 2000 kg. The set described by this class will have individual
cars in it, each with particular identification number, but the class
will not identify any of the cars directly. Sets are defined just by
listing their members (extension). Classes are defined by rules

determining members of sets (intension).2 The members of the
set are said to conform to the class, be classified by the class, or infor-
mally, be ‘‘described” by the class. Classes are sometimes informally
called ‘‘categories” or ‘‘types.”

Classes are very expressive because they are only rules for set
membership, rather than actual members of sets. The membership
rules can be about:

� One, some, or all aspects of things (open world).
� Things from the past, present, future.
� Intended things that are actually built or imagined things that

are never realized.
� Physically possible or impossible things.
� Things with very little in common, or things that are very

similar.

This expressiveness arises from separating classes from the sets
of things they describe. Membership rules exist independently of
sets, for example, sets may be empty or contain only things that
do not or cannot exist in reality, such as perpetual motion ma-
chines. The goal of the engineering process is for these sets to con-
tain real and useful things, but classes provide a way to capture
engineering knowledge at stages before and after the members of
the sets become real or useful.

Ontological reasoning examines classes to determine results of
operations on the corresponding sets, without using the members
of the sets directly.3 For example, Fig. 4 on the upper right shows
a class for cars weighing less than 2000 kg, and on the upper left a
class for cars weighing more than 2000 kg. Example members of
the sets described by these classes are shown at the bottom. Onto-
logical reasoning applied to these classes reveals whether they can
be consistently combined into a single class. In this example, rea-
soning shows the sets corresponding to the combination of classes
will never have any members in common, because an individual
car cannot weigh more and less than 2000 kg at the same time.
The classes being combined are inconsistent. Reasoning determines
this using only the class descriptions (weighing more and less than
2000 kg), not by intersecting the sets conforming to the classes.
This enables ontological reasoning to operate without enumerating
all possible members of the sets described by classes.

4.2. Ontological product modeling

Product models can be represented as ontological classes be-
cause product models describe:

� Existing or potentially existing things, and occurrences of
behavior of those things. For example, a product model for a
car describes actual cars with identification numbers, or occur-
rences of behavior, such as a car being driven on a particular day
by a particular person, or simulated versions of these. Product
models do not describe documents or other engineering data
recording requirements and designs for cars. These documents
and data are the product models, and product models do not
describe themselves.

1 See Footnote 5 in Section 4.3 regarding ontologies of linguistic entities.

2 Membership rules can determine that individuals are members (sufficient
conditions) or are not members (necessary conditions). For example, a membership
rule for small cars is that they are cars, which is a necessary condition. The rule would
determine that a truck is not a small car, but could not determine whether a sports car
is a small car, because not all cars are small cars.

3 This distinguishes ontological reasoning from rule systems, which require
instances to perform inference, due to closed world semantics. Ontological reasoning
can also determine whether an individual is in the sets described by classes (instance
checking), but this is not as applicable to engineering design, because physical
products usually do not exist before the models.

C. Bock et al. / Advanced Engineering Informatics 24 (2010) 510–524 515



� Some aspects of the same product (open world). For example,
two product models can describe the same car, where one spec-
ifies the elevations at which is can be operated, while another
specifies its weight limit. Partial product models can be com-
bined into a more complete ones, until a model is reached that
is complete enough for manufacturing.

Sets described by product models (as classes) must have mem-
bers that are the same kind of thing, to enable their descriptions to
be combined into one model and tested for consistency. Otherwise,
a model might describe members that are ruled out by other mod-
els, even if the models are consistent in every other way. For exam-
ple, if the members of sets described by product models are taken
to be either physical objects or behavior occurrences, the intersec-
tions might be missing some members just because they are ob-
jects, or just because they are behavior occurrences, even if the
objects are involved in the occurrences in a consistent way. Prod-
uct models that describe sets of the same kind of things can sup-
port logical operations on models developed independently in a
collaborative setting, regardless of their source.

One option is to take product models as classes of physical ob-
jects, for example, cars with vehicle identification numbers, or sim-
ulated versions of these. Requirements and designs could describe
individual cars and be tested for consistency. However, cars behave
in many different ways at different times, in part because of vari-
ations in how they are operated and in what environment. The
description of just the objects themselves cannot capture the vari-
ety of these situations.

Another option, used in this paper, is to take product models as
classes of behavior occurrences in which objects are involved, for
example, the driving of a car during a particular timeframe, as
shown at the bottom of Fig. 5. The product model on the upper left
limits operation of the car to below 5000 m. This describes the set
of behavior occurrences encircled in the lower left ellipse, each an
operation of an individual car. Physical objects are involved in
these occurrences, because there must be something that is behav-
ing. A product model might describe only objects involved in the
occurrences, as much product data does, is illustrated on the upper
right of Fig. 5. This model limits the weight of the car involved in
the occurrence to less than 2000 kg. This is just an intentionally
incomplete model that does not cover the dynamic aspects of
occurrences. It describes the occurrences encircled in the lower
right ellipse. The two original models describe occurrences involv-
ing the engineered device (design) and the environment in which it

is operating (requirement), respectively (total system behavior
occurrences, see Section 2.1), while the combined model covers
both.

Since these two product models describe sets of the same kinds
of things (behavior occurrences) logical operations can apply to
them, as shown in Fig. 5. Classes descriptions are combined to cov-
er sets of occurrences described by both models at the same time.
In this example, these are occurrences of using a car weighing un-
der 2000 kg at an elevation under 5000 m. The set described by this
combined model is illustrated in the intersection of the two ellip-
ses (only examples are shown for brevity). The occurrences not in
this set involve a car under the weight limit, but used at an unin-
tended elevation, as shown by the occurrences on the far lower
right, or involve a car over the weight limit, but used at a proper
elevation, as shown on the far lower left.

4.3. Languages for ontological product modeling

A barrier to adoption of ontological product modeling is ontology
languages are not specific to engineering. Ontology languages take
time to learn and relate to engineering applications. For example,
the Web Ontology Language (OWL) uses the terms ‘‘class,” ‘‘prop-
erty,” ‘‘restriction,” ‘‘subclass,” ‘‘domain,” ‘‘range,” all with set-theo-
retic meanings not familiar to engineers [9]. This is illustrated under
the left box in Fig. 6, with one ontology language element, CLASS,
shown at the at the M2 level, which is where languages are defined.4,5

Product models are shown at the M1 level, such as a model of cars. This
is where engineers and other stakeholders define products. Product
models describe members of sets at the M0 level, such as using a par-
ticular car with a particular identification number. These are the total
systems that product models are ultimately about, see Section 2.1.6

4 The levels in Fig. 6 are numbered by OMG’s Model-Driven Architecture [50,22],
inherited from the Electronic Industries Alliance’s Computer-Aided Software Engi-
neering Data Interchange Format [51].

5 Modeling languages are specified in metalanguages, which appear at an M3 level.
These languages are not shown for brevity, but are usually a small subset of domain-
independent M2 modeling languages, such as UML class diagrams. Ontology
languages can be used as metalanguages, classifying linguistic entities rather than
real things (syntax rather than semantics). This ensures precise specification of
modeling languages, as in this paper and some previous work described in Section 3.2,
but does not provide the benefits of ontology to engineers working at M1.

6 From a software viewpoint, the M0 level is divided into physical objects or
behavior occurrences, and measurements made on those recorded in a manufacturing
information system. This paper treats these as the same for brevity, and to reflect the
engineering design viewpoint that is not concerned with manufacturing information.

Classes

Sets
(only example

members shown)

Car with
serial# 56678,

weighing 2500 kg.

Cars weighing
more than 2000 kg

Conform
to both classes

Conform
only to above

class

Conform
only to above

class

John’s car,
weighing 1000 kg

Joe’s car,
weighing 2200 kg 

Cars weighing
less than 2000 kg

Cars weighing
more and less 
than 2000 kg

Car with
serial# 7398

weighing 1000 kg.

Mary’s’s car,
weighing 3000 kg 

Car with
serial# 3756

weighing 1000 kg.

Fig. 4. Classes and sets.

516 C. Bock et al. / Advanced Engineering Informatics 24 (2010) 510–524



Using only ontology languages at M2, as under the left box of
Fig. 6, the engineer must know to use CLASS at M2 and other onto-
logical concepts when defining product models. This enables prod-
uct models to generalize each other, for example, CAR being more
general than SMALL CAR (see Section 2.2 about generalization nota-
tion), and to classify actual cars at M0 (notated with a dashed ar-
row, the conformance link from CAR and SMALL CAR to CLASS is
omitted for brevity), and to be checked for consistency when com-
bined. However, these benefits would only be available to engi-
neers trained in ontology. Also engineering information about the
models cannot be recorded, such as the engineers responsible for
them, or which models are requirements and which designs, be-
cause CLASS will not define these properties. CLASS is part of the
ontology language, rather than an engineering language. One at-
tempt to address this might be to introduce PRODUCT at M1, as a gen-
eralization of all product models. This would give some guidance to
engineers, but does not support information about product models,
as in the examples above.

Engineering modeling languages typically do not have the ben-
efits of ontology described earlier. For example, under the middle
box of Fig. 6, the M2 level has an engineering term, PRODUCT MODEL,
which is used to specify particular product models at M1, such as
CAR and SMALL CAR. This enables engineering information about
the models to be recorded, such as the engineers responsible for
them, or which models are requirements and which designs, be-
cause PRODUCT MODEL is part of an engineering language. However,
the M1 product models are not ontological classes, because they

are not specified with CLASS at M2. This prevents CAR from general-
izing SMALL CAR, from classifying actual cars at M0, and from being
checked for consistency when combined.

The approach of this paper combines the ones above to provide
the capabilities of ontology and the ease of use of modeling lan-
guages, as illustrated under the right box in Fig. 6. It includes CLASS

as a generalization of PRODUCT MODEL in the modeling language at
M2.5 Engineers can use a term they know to define product models
at M1, and record engineering information on product models,
while still having the benefits of ontology. Product models can gen-
eralize each other, classify actual cars at M0, be checked for consis-
tency when combined, and carry information such as which
engineers are responsible for them, or which product models are
requirements and which are designs.

The modeling technique illustrated on the right of Fig. 6 does
not dictate or restrict design processes. In particular, the hollow-
headed arrow notates generalization, rather than a sequence of
steps in a design process. For example, the model for small cars
might be developed before the model of cars in general. The design
process might also proceed the other way, from cars to small cars.
Or the individual M0 elements might exist before the model is
developed, as occurs when the documentation is lost for long-lived
products such as ships, and must be regenerated from real world
artifacts, or in prototype-based design processes.

The language modeling techniques in Fig. 6 cover the terminol-
ogy (abstract syntax) of the language, but not concrete syntax, such
as punctuation and graphical shapes. This enables multiple con-
crete syntaxes to be described a single language specification.
Developing concrete syntax involves many issues of visual ergo-
nomics and conventions that are not addressed by abstract syntax.
In the rest of this paper, ‘‘language” will refer to abstract syntax, as
in the M2 level of Fig. 6, and the implication of M1 models for M0
individuals (semantics).

4.4. Benefits of ontological product modeling languages

Product modeling languages using the technique of Section 4.3
support partial, refinable, and combinable product models. For
example, generalization can refine requirements with alternative
designs, as illustrated in Fig. 7. The most general model at M1 only
requires that water is moved somehow, without specifying the
device achieving this. For example, the MOVING WATER model might
specify a minimum rate at water should be moved. The two

Modeling
Language
(M2)

Small Car

Model
(M1)

Individuals
(M0)

Using John’s car, 
weighing 900 kg,

at 2000 m, 

Class

Product Model

Car
Car

Product Model

Small Car

Using John’s car, 
weighing 900 kg,

at 2000 m, 

Class

Modeling 
Language,

No Ontology

Ontology,
No Modeling 

Language

Modeling 
Language and 

Ontology

Small Car

Car

Fig. 6. Ontology and product modeling languages.

Product
Models

All Total System
Behavior Occurrences

(only examples shown)

Using car with
serial# 56678,

weighing 2500 kg,
at 2000 m.

Operating at 
elevation below

5000 m
(Requirement)

Conform
to both

Conform
only to design 

Conform
only to

requirements 

Involves device
weighing less
than 2000 kg
(Design)

Using car with serial# 2345,
weighing 1500 kg, at 2000 m.

Using John’s car, weighing
1000 kg  at 3000 m. 

Using Mary’s car, weighing
1800 kg, at 1000 m

Using John’s car,
weighing 1000 kg,

at 6000 m. 

Using Joe’s car,
weighing 1500 kg,

at 7000 m. 

Fig. 5. Product models describing behavior occurrences.

C. Bock et al. / Advanced Engineering Informatics 24 (2010) 510–524 517



specialized models introduce devices, a pump and Archimedes
screw, respectively (conformance links from the specialized M1
models to PRODUCT MODEL are omitted for brevity). They must meet
the requirement of moving water at a minimum rate, because all
of their conforming total systems also conform to the model of
moving water, by the definition of generalization, see Section 2.2.

Requirements and designs are kinds of product models, as shown
at the M2 level in Fig. 8. Requirements are models that describe the
environment of devices as they are operated, including the proper
use and expected effect of the device, while designs are models that
constrain the devices being operated, see Section 2.2. The taxonomy
of requirements and designs at M1 describes narrower sets of indi-
viduals in the more specialized classes. For example, vehicles are de-
scribed as weighing less than 10,000 kg, and small vehicles as less
than 2000 kg. The individual total system at the lower right con-
forms to the small vehicle design, because the operated car weighs
1500 kg, while the total system at the lower left does not, though it
meets the safety requirement for small vehicles. The same model
can describe both environment and device, whereupon it is both a
requirement and a design, and the same M0 total system can con-
form to multiple M1 models, which might be requirements and de-
signs, see Fig. 5 in Section 4.2.

The technique of Section 4.3 facilitates cross-checking of
requirements and designs at multiple levels of abstraction, to
identify potential errors early in the design cycle and increase
the accuracy and completeness of testing built products against
requirements. Fig. 8 illustrates this with safety requirements
generalized on the left, designs on the right, and generalizations
between them in the middle. Descriptions are added in the spe-
cialized classes. For example, safe, small, dry land vehicles have
a traction requirement that is not present for all safe, small
vehicles. Analysis can be applied to check that specialized models
imply the more general ones when requirements and designs are
combined [47].7 For example, analysis can predict whether the
traction requirement for safe, small, dry land vehicle designs will
produce the required stopping distance for safe small vehicles. This
determines whether it is possible for M0 elements to conform to
the design for safe, small, dry land vehicles, because these must
conform to the more general requirements also, by the definition
of generalization. Tests can be developed to verify generalizations
in practice. For example, tests on the produced vehicle might verify
traction is within the specified limits, and that this results in the
specified stopping distance.

4.5. Modeling language for relations, interconnections, and behavior

This section gives abstract syntax for a language covering basic
concepts such as relations, behaviors, compositions, and combina-
tions of these (see end of Section 4.3 about abstract syntax). Con-
formance between M0 and M1 levels is specified to provide
semantics. The base modeling language of this section is used as
the foundation for engineering terminology in Section 4.6.

Relations are introduced into the modeling language (M2) as a
specialization of CLASS. This enables M1 relations to be generalized
at M1, and to have conforming links at M0. For example, a mechan-
ical relation has conforming links at M0 that might be categorized
into fixed and moving (see Fig. 10 for another example). Relations
are always between other things, modeled in Fig. 9 at M2 with
RELATES to identify the kinds of things being related. There are at
least two of these, as indicated by the minimum multiplicity of
two.

Relations by themselves are insufficient for capturing the com-
position of interconnected elements, for example, the interconnec-
tions between engines and wheels in cars in Fig. 1 in Section 2.2
[10]. A relation between the ENGINE and WHEEL classes is not re-
stricted to the context in which it is used, for example, it would al-
low an engine in one car to power the wheels in another, or a spare
wheel in the same car, or a propeller in a boat. Defining specialized
classes for interconnections, for example, car and boat engines, and
for powered and spare wheels, is cumbersome (introducing classes
for every ‘‘role” played by engines and wheels), and still allows the
engine in one car to power the wheels in another.

A solution to the above problems is illustrated in Fig. 9, notated
with an adapted form of UML class diagrams at the user model le-
vel (M1),8,9 and some of the conformance links shown. The primary
aspects of the solution are:

(1) Identify connected elements by relations between a compos-
ite and the elements inside it. For example, identify the
engine and wheels in each individual car using the relations
ENGINEINCAR and POWEREDWHEELINCAR, between cars and their
engines and powered wheels, respectively. This ensures
the POWERS relation is applied only with each individual car,
not between cars, see next item. These ‘‘whole–part” rela-
tions are notated with UML composition notation, with the
black diamond on the composite end [8,10].

(2) Treat ‘‘part–part” interconnections like any other element of
the composite, with the additional capability of connecting
the whole–part relations in the previous item (between a
composite and its elements). For example, the powers rela-
tion between a car’s engine and wheels is treated like an ele-
ment of the car, just like the engines and wheels. It is given a
relation from the composite, just like the relations for
engines and wheels in the first item above. In Fig. 9, this is
the POWERSINCAR relation between CAR and POWERS conforming
to CONNECTOR, a new element at M2. The POWERSINCAR relation
identifies M0 powers links between the engines and wheels
in each individual car. This enables interconnections to be
generalized, like any other element of the composite, as in
Fig. 1 in Section 2.2, as well as connected by other connec-
tors, as in Fig. 3.

7 This assumes requirements only describe the expected effects under proper
operation of the device. This prevents contradictions caused by total systems
conforming to designs and not the operational requirements. These total systems are
not of concern to requirements, which only capture that the device behaves properly
when operated properly. Requirements can be divided into those concerning the
operation of the device and those concerning its effect.

8 Rectangles as in UML are used at M1 in the rest of the paper to distinguish it from
the other levels.

9 UML composite structure diagrams are a compact and scalable notation for this,
see Fig. 1 in Section 2.2 [8,10]. The large rectangle is the class CAR, while the smaller,
nested rectangles are relations from the class CAR to elements inside it. The names of
the relations can be shown to the left of a colon in the nested rectangle labels. The
interconnections are shown as lines between the nested rectangles.

Class

Product Model

Moving Water

Moving Water
with Pump    

Moving Water
with Screw    

Moving 10 liters of water
with Pump #132

May 1, 2007, 12:10-20pmET

Moving 20 liters of water
with Screw #789

April 30, 2007, 3:44-47pmET

Modeling
Language
(M2)

Model
(M1)

Individuals
(M0)

Fig. 7. Alternative designs for the same requirement.

518 C. Bock et al. / Advanced Engineering Informatics 24 (2010) 510–524



Interconnections can be specified between subassemblies of
subassemblies, for example, between the hubs of the wheels in
Fig. 2 in Section 2.2 and the crankshaft of the engine (not shown
for brevity). A connector between the hubs and the crankshaft is
insufficient, because not all hubs are in powered wheels. The mod-
eling language (M2) specifies the ends of connectors with a series
of relations from the whole, as shown in Fig. 9 by the ‘‘{list}” anno-
tation on CONNECTS. In this example, one end of the connector would
refer to a list of POWEREDWHEELINCAR and HUBINWHEEL (a relation be-
tween wheels and hubs), to power only the hubs in powered
wheels, while the other end refers to a list of ENGINEINCAR and CRANK-

SHAFTINENGINE (a relation between engines and crankshafts), to take
power from crankshafts in car engines, rather than boat engines.

Relations between a composite and its elements can include ele-
ments that are ‘‘outside” the composite. For example, a car model

might have a relation for the owner. Relations like these can tie
device models to models of their environments. For example, a
car model can have a relation for the roads on which it is supposed
to be operated, and the operator. Elements of the environment and
device can be interconnected as needed for the intended use, for
example, the wheels of the car are on the road, and the hands of
the operator are on the steering wheel. An alternative is to model
the total system of car and its environment. In this approach, the
car model does not refer directly to road and driver, so all the inter-
connections in it are between things contained in cars.

Relations can be composed of interconnected elements, like
classes in general. For example, the powers relation between

Modeling
Language
(M2)

Safe Small Vehicle Req.
(Stopping: less than half the

length of vehicle per 10 km/h)
Model
(M1)

Class

Product Model

Safe Vehicle Req.
(Less than 10 deaths per 

100 million km/yr)

Requirement Design

Small Dry
Vehicle Design

Small Vehicle Des.
(involves device weighing

less than 2000 kg)

Safe Small
Land Vehicle Req.

(Traction: Slip no more than
1% of each meter travelled)

Safe Small Car Req.
(Wheel traction: Slip no more
than 1% of any 360O rotation)

Small Car
Design Wheel

Individuals
(M0)

Using car with serial# 566,
weighing 3000 kg,

slipping .07%

Using Mary’s car,
weighing 1500 kg,

slipping .05%

Vehicle Des.
(involves device weighing

less than 10000 kg)

Fig. 8. Requirements and designs.

Model
(M1)

Engine Wheelpowers

Engine Wheel

manualPowers

we

Clutch Gearbox

c gb
ePowersC cPowersGB gbPowersW

Engine Wheel

automaticPowers

we

AutomaticTranmission

at
ePowersAT atPowersW

we

Fig. 10. Relation generalization with alternative decompositions.

John’s Car

RelationClass

relates
2..*

Connector

connects { list }

Engine in
John’s Car

Wheel in
John’s Car

powers
InCar

powers link

Modeling
Language
(M2)

Model
(M1)

Individuals
(M0)

Engine Wheel

Car

powered
wheelInCar

engine
InCar powers

powers
InCar

powered
wheelInCar

engine
InCar

2..*

Fig. 9. Relations and interconnections.

C. Bock et al. / Advanced Engineering Informatics 24 (2010) 510–524 519



engines and wheels might be composed of a clutch and gearbox
that are related to each other and to the engines and wheels. The
approach is similar to Fig. 9, except the composite element is a
relation, as illustrated in Fig. 10. The MANUALPOWERS relation at the
lower right has four elements, each identified by its own relation,
for example, the E relation to ENGINE, and the GB relation to GEARBOX

(impellers generalize wheels and propellers, see Fig. 1 in Sec-
tion 2.2). The relations identifying the objects linked by
MANUALPOWERS, E and W. do not have diamonds because they are
not contained in MANUALPOWERS. The four elements are intercon-
nected by other relations, such as EPOWERSC and CPOWERSGB, as spec-
ified by the connectors (relations to the connectors are omitted for
brevity). Individual links at M0 conform to MANUALPOWERS by having
interlinked elements, such as an individual engine and clutch in an
individual car linked in conformance to EPOWERSC. Individual M0
links for composite relations can be established by M1 connectors,
such as a powers link established by the connector at M1 in Fig. 9.

Relations can generalize others that have alternative decompo-
sitions, like classes in general. For example, the POWERS relation of
Fig. 9 might generalize relations for manual and automatic trans-
missions, as illustrated in Fig. 2 in Section 2.2. The POWERS relation
does not introduce subassemblies between the engine and wheels,
leaving these to its specializations, as shown in Fig. 10 (M2 and M0
omitted for brevity). The relations between POWERS and its elements,
E and W, are available in AUTOMATICPOWERS and MANUALPOWERS, because
M0 links conforming to AUTOMATICPOWERS or MANUALPOWERS also con-
form to POWERS, by the definition of generalization. The specialized
power relations each have their own way of interconnecting the
engine and wheels, using different subassemblies.

Specialized relations can be used to specialize interconnections,
for example, the connector between engines and wheels in Fig. 2 in
Section 2.2. The model for this is shown in Fig. 11. Cars in general
use the POWERS relation, while specialized cars use the MANUALPOWERS

and AUTOMATICPOWERS relations. The POWERSINCAR connector is also
generalized in cars from the specialized connectors in manual
and automatic cars, AUTOMATICPOWERSINCAR and MANUALPOWERSINCAR,
as shown in the upper right of Fig. 11. This means M0 links
conforming to AUTOMATICPOWERSINCAR and MANUALPOWERSINCAR also
conform to POWERSINCAR. For example, if John’s car is manual, then
the link between the engine and wheels in it will conform to
MANUALPOWERS and POWERS, and the link will be identified by
both MANUALPOWERSINCAR and POWERSINCAR.

Interconnections can be interconnected, for example, the con-
nector between the pipes in Fig. 3 in Section 2.2. The model for this
is shown in Fig. 12. Assembly A has four elements, two of which are
connectors using the PLUMBING relation. Since connectors are rela-
tions between a composite and its elements, they can be also con-
nected, in this example by a connector using the THERMAL relation.
The thermal connection applies to specialized assemblies also, like
the rest of the elements of A, in particular to specialized kinds of
plumbing between the units.

Behaviors are introduced into the modeling language (M2) as a
specialization of CLASS, as shown in Fig. 13 (through RELATION, de-
scribed next). This enables M1 behavior models to be generalized
at M1, and to have conforming behavior occurrences at M0. For
example, a rotation behavior has conforming occurrences at M0
that might be categorized into fast and slow rotations. Behaviors
always include things that are behaving, modeled at M2 with IN-

VOLVES, to identify the kinds of things involved in the behavior, as
shown in Fig. 13.10 The M1 TRANSMITPOWER behavior involves ENGINE

and IMPELLER, as identified by two relations, E and I, without diamonds,

because the engine and impeller are not contained by the behavior
(conformance links from IMPELLER and I are not shown for brevity).
Occurrences of TRANSMITPOWER at M0 will involve individual engines
and impellers conforming to ENGINE and IMPELLER, respectively.

Behaviors can generalize others involving additional and spe-
cialized elements, like classes in general. For example, a behavior
that transmits power generalizes other behaviors doing this in dif-
ferent ways, as shown Fig. 13. One specialized behavior involves a
wheel and the other a propeller, both special kinds of impellers.
The specialized behaviors transmit power, because their M0 occur-
rences are also occurrences of TRANSMITPOWER, by the definition of
generalization.

Behaviors can be treated as relating the things involved in them.
For example, a relative rotation behavior can be modeled as a rela-
tion between the things rotating relative to each other. The behav-
iors in Fig. 13 relate engines to impellers of various kinds. This
enables behaviors and relations to form generalizations, as in
Fig. 13, where a behavior for transmitting power generalizes the
power relations from Fig. 10. Behavior relations also enable behav-
iors to be used as connectors in assemblies, for capturing func-
tional requirements, as in Fig. 11 where specialized power
transmission behaviors connect elements of cars and boats. Behav-
iors as relations is introduced into the modeling language (M2)
with RELATION generalizing BEHAVIOR, as shown in Fig. 13, meaning
all M1 behaviors are relations, by the definition of generalization.
And RELATES generalizes INVOLVES, meaning things involved in behav-
iors are also in relation to each other. Generalizing relations means
links conforming to the special relation also conform to the general
one, for example, people’s sisters are also their siblings, or in
Fig. 13, anything involved in behaviors are also related by
behaviors.11

4.6. Engineering modeling language

This section builds on the models of Section 4.5 to capture com-
mon engineering concepts, such as product models, requirements,
artifacts, and form. Most of these are special cases of the modeling
elements of Section 4.5, while some are top-level categories. They
provide a framework for development of more specialized engi-
neering concepts.

Product models as defined in Section 2.1 describe behaviors and
objects involved in them, where the:

� Involved objects are the devices being specified and objects in
their intended environment.
� Behaviors are those of the above objects, including their

interaction.

Product models might place many constraints on the above or
very few, or might place many constraints on some aspects and
few on others. For example, a model might only describe the
structure of devices and environmental objects, but not the
behavior. The model still describes total systems, but only the
structural aspects of them. Other models might focus only on
the dynamic aspects, rather than structure.

The modeling language of Section 4.5 is extended for product
models as shown in Fig. 14. Models identify the device among
the involved objects with the SPECIFIES relation. Other things in-
volved in the model are either inside the device or in the envi-
ronment of its use. Artifacts are devices specified by product
models, as indicated by the minimum multiplicity of one on
the product model end of the relation. Things not specified by

10 Some behaviors might appear to involve only one object, but even these are
relative to other objects. For example, a rotating or moving object is only doing so in
relation to other objects. The expansion of metal by heating is relative the
environment in which heating occurs, which might prevent expansion.

11 This is property subsetting in UML [8], where it is notated textually rather than
graphically as in Fig. 13, and has the same semantics as in this paper, and as
subproperties in OWL [9].

520 C. Bock et al. / Advanced Engineering Informatics 24 (2010) 510–524



product models are not artifacts. For example, the moon is not
an artifact, because its orbiting behavior is not specified by a
product model. Product models generalize requirements and de-
signs. Designs describe the artifact, requirements describe the
environment in which they are used, see Section 2.2. M1 product
models must fall into one of these categories, and fall into both
if they describe both environment and device. The same M0 total
system can conform to multiple M1 models, as in Fig. 8. Other
specializations of product models can be defined, for example,
for those only about dynamics, versus those that are only about
structure. These specializations can be combined with require-
ments and designs, for example, to classify some models as only
describing the dynamics of the environment (sometimes called
‘‘function”).

Artifacts can contain other artifacts, as modeled in Fig. 15. Con-
tainment is a kind of relation between exactly two artifacts. The
notion of containment has various definitions, such as the bound-
ary of the contained artifacts are within the boundaries of the con-
tainer (topological), or that the contained artifacts contribute to
the function of the container (integral), or that some operations
on the container apply to the contents, such as movement or
destruction (operation propagation). These definitions and others
can be modeled as specializations of CONTAINMENT RELATION in
Fig. 15, but this paper does not propose a more detailed categoriza-
tion [48,49].

Assemblies depend on assembly relations between their con-
tained artifacts, also modeled in Fig. 15. Assembly relations are a
kind of relation between artifacts. The notion of assembly rela-
tion has various definitions, such as contents of the related arti-
facts are not significantly modified in shape when they are
brought together. For example, a table is assembled from its
top, legs, and fasteners, but a silicon wafer is not assembled
from the materials contained in it. These definitions and others
can be modeled as specializations of Fig. 15, but this paper does
not propose a more detailed categorization [14]. Assemblies are
artifacts composed of interconnected elements (see Section 4.5)
where at least one connector uses an assembly relation. Parts
are artifacts where no connectors use assembly relations. Indi-
vidual M0 artifacts are either assemblies or parts, but not both
(artifacts are a disjoint union of assemblies and parts). Com-
pound parts have containment relations, such as layers on a sil-
icon wafer, while simple parts do not have containment
relations, such as a piece of steel. Individual M0 parts are either
simple or compound, but not both (parts are a disjoint union of
simple and compound parts). The model for these categories is
shown on the lower right of Fig. 15 (omitting the disjoint union
notations for brevity).

Forms include materials and geometries [13]. They are intro-
duced into the modeling language as a specialization of CLASS, to en-
able generalization at M1, and categorization of M0 individuals, as
shown in Fig. 16. Individuals conforming to an M1 material are ob-
jects made only of that material, while individuals conforming to

Engine Wheel

Car

powered
wheelInCar

engine
InCar powers

powers
InCar

Engine Wheel

powered
wheelInCar

engine
InCar manualPowers

manualPowers
InCar

Engine Wheel

powered
wheelInCar

engine
InCar automaticPowers

automaticPowers
InCar

Model
(M1)

automaticPowersInCar

powersInCar

manualPowersInCar

Manual CarAutomatic Car

Fig. 11. Generalization of interconnected elements using relation generalization.

plumbing

p2

p1

plumbing

thermal

t

u2u1

Unit Unit

A

Model
(M1)

Fig. 12. Interconnection of interconnections.

Model
(M1)

TransmitPower

p

ie
Engine Impeller

Wheel Propeller

Modeling
Language
(M2)

Class

Behavior
involves

Relationrelates

2..*

TransmitPower
ToPropeller

TransmitPower
ToWheel

manualPowersautomaticPowers

powers

w

Fig. 13. Behavior generalization and behavior relations.

Modeling
Language
(M2)

Behavior
involves

Class

Product Model
specifies

Artifact

2..*

1..*

Requirement Design

1..*

Fig. 14. Product models.

C. Bock et al. / Advanced Engineering Informatics 24 (2010) 510–524 521



an M1 geometry are objects that have a specified shape. For exam-
ple, an ingot of steel conforms to the M1 STEEL material, while a

cylindrically shaped piece of wood conforms to the M1 CYLINDER

geometry. The same M0 individual can conform to both a material
and geometry (the classes are not disjoint), for example, a cylindri-
cally shaped piece of steel conforms to both STEEL and CYLINDER.
Taxonomies of materials and geometries can be defined, for exam-
ple, Fig. 16 has STAINLESS STEEL and RIGHT CYLINDER generalized by STEEL

and CYLINDER, respectively. Other taxonomies might include materi-
als that are alloys of other materials, or geometries that apply to
both hollow and solid objects, but these are not proposed in this
paper.

Forms of artifacts are specified by generalization, as shown at
the M1 level in Fig. 16. All pipes are cylindrical, with two kinds,
one made of plastic, another of copper. The M0 individuals con-
forming to these also conform to the generalizations, for example,
an individual stainless steel pipe conforms to both CYLINDER and
STAINLESS STEEL. Materials at M1 can generalize any artifact that is
made completely of a single material, including assemblies of parts
all made of the same material. Geometries at M1 can generalize
any kind of artifact, including assemblies, because geometry is con-
cerned only with surfaces, regardless of the composition of the
artifact.

Another way for modeling languages to make ontology more
accessible to engineers is derived relations, for example, in assem-
bly and form, as shown in Fig. 17. The relations are based on (de-
rived from) other information in the M1 model, and notated with
a slash at the beginning of the name, borrowed from derived rela-
tions in UML [8]:

2

Class

Relation relates
Modeling
Language
(M2)

Containment 
Relation

Artifact
composes

2..*

Assembly Relation
assembles

2

AssemblyPart

Simple Part Compound Part

Fig. 15. Containment and assembly relations, artifact taxonomy.

Modeling
Language
(M2)

Material Geometry

Steel Cylinder

Model
(M1)

Class

Form Artifact

Pipe

Copper

Stainless Steel Pipe

Copper Pipe

Individuals
(M0)

An ingot of 
stainless steel

A right cylindrical
shaped piece of wood

Stainless
Steel

Right Cylinder

A right cylindrical, 
stainless steel pipe

Fig. 16. Forms and artifacts.

powered
wheelInCar

/shapedLike

Artifact

Assembly Part

/assemblyOf

/subartifactOf

Geometry

Material
/madeOf

Wheel

Car
engine
InCar

Engine

Block

block
InEngine

hub
InWheel

Steel
Aluminum

Hub 
BRep

Assembly Relation Simple Part

Modeling
Language
(M2)

Model
(M1)

HubLight
Hub

/madeOf

/assemblyOf

2..* *

*

/sh
apedLike

/madeOf

Fig. 17. Derived relations.

522 C. Bock et al. / Advanced Engineering Informatics 24 (2010) 510–524



� /ASSEMBLYOF, /SUBARTIFACTOF: Subartifacts in an assembly are
derived from containment relations. For example, in Fig. 17
CAR is an assembly of ENGINE and WHEEL (only one derived link
shown at M1 for brevity).
� /MADEOF: The materials in an assembly are the material general-

izations of the assembly or its components. For example, in
Fig. 17 CAR is made of STEEL and ALUMINUM (only one derived link
shown for brevity).
� /SHAPEDLIKE: The geometries of an artifact are the geometry gen-

eralizations. For example, in Fig. 17 the geometry of LIGHT HUB is
HUB BREP.

Derived relations such as the ones above provide engineers with
a familiar view of the M1 model while preserving capabilities
depending on M0 individuals (M1 generalization and categoriza-
tion of M0 individuals). They can be added as necessary to tie engi-
neering-friendly modeling languages at M2 to product ontologies
at M1.

5. Conclusion

This paper describes an example product modeling language
combining the benefits of ontology with expanded capabilities in
conventional product modeling languages to improve support for
collaborative design exploration over earlier approaches. The lan-
guage treats product models as ontological classifications of total
systems, including behavior of the environment of engineered
devices, within a model-based architecture that provides engi-
neer-friendly terminology. It is flexible and accurate in refining,
combining, and checking consistency of models of the same prod-
uct from multiple, disparate sources. The language captures partial
and high-level product descriptions, and supports reliable inter-
pretation before and after model interchange.

Disclaimer

Commercial equipment and materials might be identified to
adequately specify certain procedures. In no case does such
identification imply recommendation or endorsement by the U.S.
National Institute of Standards and Technology, nor does it imply
that the materials or equipment identified are necessarily the best
available for the purpose.

Acknowledgements

The authors thank Steven Fenves, Vei-Chung Liang, Fabian Neu-
haus, Sudarsan Rachuri, Eswaran Subrahamian, and Joshua Lubell
for their input to this paper.

References

[1] N. Wognum, A. Trappey, PLM challenges, Advanced Engineering Informatics 22
(4) (2008) 419–420.

[2] R. Sriram, S. Szykman, D. Durham, Special issue on collaborative engineering,
Guest Editorial, Journal of Computing and Information Science in Engineering 6
(2) (2006) 93–95.

[3] R. Sriram, Distributed and Integrated Collaborative Engineering Design, Sraven
Publishers, 2002.

[4] S. Szykman, R. Sriram, W. Regli, The role of knowledge in next-generation
product development systems, American Society of Mechanical Engineers
Journal of Computing and Information Sciences in Engineering 1 (1) (2001) 3–
11.

[5] W. Shen, J. Barthès, Special Issue on collaborative design and manufacturing,
Advanced Engineering Informatics 22 (3) (2008) 281.

[6] International Organization for Standardization, Process specification language,
ISO 18629, June 2006.

[7] P. Zave, M. Jackson, Four dark corners of requirements engineering, Association
for Computing Machinery Transactions on Software Engineering and
Methodology 6 (1) (1997) 1–30.

[8] Object Management Group, Unified Modeling Language: Superstructure.
Available from: <http://doc.omg.org/formal/2010-05-05/>, May 2010.

[9] World Wide Web Consortium, OWL 2 Web Ontology Language Document
Overview. Available from: <http://www.w3.org/TR/2009/REC-owl2-overview-
20091027/>, October 2009.

[10] C. Bock, UML 2 composition model, Journal of Object Technology 3 (10) (2004)
47–73.

[11] J. Owen, STEP: An Introduction, Information Geometers, 1993.
[12] Object Management Group, Systems Modeling Language. Available from:

<http://doc.omg.org/formal/2010-06-01/>, June 2010.
[13] S. Fenves, S. Foufou, C. Bock, R. Sriram, CPM 2: a core product model for

product data, journal of computing and information science in engineering,
special issue on engineering informatics, Transactions of the American Society
of Mechanical Engineers 8 (1) (2008). 014501-1–014501-6.

[14] S. Rachuri, Y. Han, S. Foufou, S. Feng, U. Roy, W. Fujun, R. Sriram, K. Lyons, A
model for capturing product assembly information, Journal of Computing and
Information Science in Engineering 6 (1) (2006) 11–21.

[15] M. Stokes (Ed.), Managing Engineering Knowledge: MOKA Methodology for
Knowledge Based Engineering Applications, Professional Engineering
Publishing, 2001.

[16] P. Gu, K. Chan, Product modeling using STEP, Computer-Aided Design 27 (3)
(1995) 163–179.

[17] International Organization for Standardization, Integrated generic resource:
product structure configuration, ISO 10303-44, 2000.

[18] International Organization for Standardization, Integrated application
resource: kinematic and geometric constraints for assembly models, ISO
10303-109, 2004.

[19] International Organization for Standardization, Application protocol: product
life cycle support, ISO 10303-239, 2003.

[20] T. Liu, An Object-Oriented Assembly Applications Methodology for PDES/STEP
based Mechanical Systems, Ph.D. thesis, The University of Iowa, 1992.

[21] X. Zha, H. Du, A PDES/STEP-based model and system for concurrent integrated
design and assembly planning, Computer-Aided Design 34 (14) (2002) 1087–
1110.

[22] Object Management Group, Model-Driven Architecture. Available from:
<http://www.omg.org/mda/>, 2010.

[23] S. Fenves, Y. Choi, B. Gurumoorthy, G. Mocko, R. Sriram, Master Product Model
for the Support of Tighter Design-Analysis Integration, U.S. National Institute
of Standards and Technology Interagency Report 7004, May 2003.

[24] A. Biswas, S. Fenves, V. Shapiro, R. Sriram, Representation of heterogeneous
material properties in the core product model, Engineering with Computers 24
(1) (2007) 43–58.

[25] C. Xu, S. Gupta, Z. Yao, M. Gruninger, R. Sriram, Towards computer-aided
conceptual design of mechatronic devices with multiple interaction-states, in:
Proceedings of the American Society of Mechanical Engineers Design
Engineering Technical Conferences, 2005.

[26] F. Wang, S. Fenves, R. Sudarsan, R. Sriram, Towards modeling the evolution of
product families, in: Proceedings of the American Society of Mechanical
Engineers Design Engineering Technical Conferences, 2003.

[27] X. Zha, S. Fenves, R. Sriram, A feature-based approach to embedded system
hardware and software co-design, in: Proceedings of the American Society of
Mechanical Engineers Design Engineering Technical Conferences, 2005.

[28] X. Zha, S. Foufou, R. Sudarsan, R. Sriram, Analysis and evaluation for STEP-
based electromechanical assemblies, Journal of Computing and Information
Science in Engineering 6 (3) (2006) 276–287.

[29] X. Zha, R. Sriram, S. Gupta, Information and knowledge modeling for computer
supported microelectromechanical systems design and development, in:
Proceedings of the American Society of Mechanical Engineers Design
Engineering Technical Conferences, 2005.

[30] F. Metzger, The challenge of capturing the semantics of STEP data models
precisely, in: Proceedings of Workshop on Product Knowledge Sharing for
Integrated Enterprises, Product Data Technology Advisory Group, ESPRIT
Project 9049, 1996.

[31] N. Guarino, S. Borgo, C. Masolo, Logical modelling of product knowledge:
towards a well-founded semantics for STEP, in: Proceedings of European
Conference on Product Data Technology, 1997, pp. 183–190.

[32] M. Yoshioka, Y. Umeda, H. Takeda, Y. Shimomura, Y. Nomaguchi, T. Tomiyama,
Physical concept ontology for the knowledge intensive engineering
framework, Advanced Engineering Informatics 18 (2) (2004) 95–113.

[33] P. Borst, H. Akkermans, J. Top, Engineering ontologies, International Journal of
Human–Computer Studies 46 (2–3) (1997) 365–406.

[34] D. Leal, ISO 15926 ‘Life Cycle Data for Process Plant’: an overview, Oil and Gas
Science and Technology 60 (4) (2005) 629–638.

[35] E. Chan, K. Yu, A framework of ontology-enabled product knowledge
management, International Journal of Product Development 4 (3–4) (2007)
241–254.

[36] D. Yang, M. Dong, R. Miao, Development of a product configuration system
with an ontology-based approach, Computer-Aided Design 40 (8) (2008) 863–
878.

[37] J. Nanda, T. Simpson, S. Kumara, S. Shooter, A methodology for product family
ontology development using formal concept analysis and web ontology
language, Journal of Computing and Information Science in Engineering 6 (2)
(2006) 103–113.

[38] Y. Kitamura, A functional concept ontology and its application to automatic
identification of functional structures, Advanced Engineering Informatics 16
(2) (2002) 45–163.

C. Bock et al. / Advanced Engineering Informatics 24 (2010) 510–524 523



[39] J.X. Lin, M.S. Fox, T. Bilgic, A requirement ontology for engineering design,
Concurrent Engineering Research and Applications 4 (3) (1996) 279–291.

[40] K.Y. Kim, D.G. Manley, H. Yang, Ontology-based assembly design and
information sharing for collaborative product development, Computer-Aided
Design 38 (12) (2006) 1233–1250.

[41] L. Patil, D. Dutta, R. Sriram, Ontology-based exchange of product data
semantics, Institute of Electrical and Electronics Engineers Transactions on
Automation Science and Engineering 2 (3) (2005) 213–255.

[42] X. Fiorentini, S. Rachuri, M. Mani, S. Fenves, R. Sriram, An Evaluation of
Description Logic for the Development of Product Models, U.S. National
Institute of Standards and Technology Interagency Report 7481, April
2008.

[43] A. Gehlert, E. Werner, Toward a formal research framework for ontological
analyses, Advanced Engineering Informatics 21 (2) (2007) 119–131.

[44] P. Ackermann, D. Eichelberg, Product Knowledge Management, International
Conference on Economic, Technical and Organizational Aspects on Product
Configuration Systems, Technical University of Denmark, Copenhagen, June
2004.

[45] J. Lee, H. Suh, Ontology-based multi-layered knowledge framework for
product lifecycle management, Concurrent Engineering: Research and
Applications 16 (4) (2008) 301–311.

[46] D. Brown, D. Leal, Chris. McMahon, R. Crossland, J. Devlukia, A Web-enabled
virtual repository for supporting distributed automotive component
development, Advanced Engineering Informatics 18 (3) (2004) 173–190.

[47] S. Shooter, W. Keirouz, S. Szykman, S. Fenves, A model for the flow of design
information in product development, Engineering with Computers 16 (3–4)
(2000) 178–194.

[48] M. Winston, R. Chaffin, D. Herrmann, A taxonomy of part–whole relations,
Cognitive Science 11 (4) (1987) 417–444.

[49] J. Odell, Six different kinds of composition, Journal of Object-Oriented
Programming 5 (8) (1994) 10–15.

[50] Object Management Grsoup, Unified Modeling Language: Infrastructure.
Available from: <http://doc.omg.org/formal/2010-05-03/>, May 2010.

[51] R. Flatscher, Metamodeling in EIA/CDIF—meta-metamodel and metamodels,
Association of Computing Machinery Transactions on Modeling and Computer
Simulation 12 (4) (2002) 322–342.

524 C. Bock et al. / Advanced Engineering Informatics 24 (2010) 510–524


	Ontological product modeling for collaborative design
	1. Introduction
	2. Requirements on product models and languages forcollaboration
	3. Previous work
	4. An ontological product modeling language
	5. Conclusion
	Acknowledgements
	References



