
Interoperability Testing for
Shop Floor Measurement

Fred Proctor
NIST

100 Bureau Drive, Stop 8230
Gaithersburg, MD 20899

frederick.proctor@nist.gov

Bill Rippey
NIST

100 Bureau Drive, Stop 8230
Gaithersburg, MD 20899

John Horst, Joe Falco and
Tom Kramer

NIST
100 Bureau Drive, Stop 8230

Gaithersburg, MD 20899

Abstract— Manufactured parts are typically measured to
ensure quality. Measurement involves equipment and software
from many different vendors, and interoperability is a major
problem faced by manufacturers. The I++ Dimensional
Measuring Equipment (DME) specification was developed to
solve interoperability problems and enable seamless flow of
information to and from dimensional metrology equipment.
This paper describes validation testing of the I++ DME
specification. The testing was intended to improve the
specification and also to speed up its adoption by vendors.
Testing issues are described, and a software test suite is
detailed. Interoperability testing with real equipment was done
over several years, and lessons learned from the testing will
be presented. The paper concludes with recommendations for
improving this type of testing.

Keywords: interoperability, measurement, software testing

I. INTRODUCTION

Automated geometric inspection of parts is done using
coordinate measuring machines (CMMs). Traditionally, CMM
vendors have sold a tightly-coupled software-hardware system
for programming and controlling the inspection process. The
last 15 years have seen large manufacturers acquire CMMs
from many different vendors and endure the overhead of
supporting multiple software applications. Further, 3rd party
software vendors have been offering high quality products
that often cannot be used because they are incompatible with
some CMMs.
Automakers are major users of measurement equipment, and

suffer from the cost and time to work around these
incompatibilities. They have responded by supporting a
specification for dimensional measurement equipment
interoperability, called the I++ Dimensional Measuring
Equipment Interface specification (I++ DME). The goal of
I++ DME is to allow automakers, and any other
manufacturers, to select the best software and equipment for
their purposes and budgets and ensure that they work together
seamlessly out of the box.
Specifications, like any result of a human endeavor, are

never perfect and need to be tested (validated) to make sure
they fulfill their requirements. For I++ DME, this means

answering the questions, “Does I++ DME handle all of
today’s measurement activities, or are important types of
measurements or equipment left out? Is the specification
written clearly and unambiguously, or will implementers have
to make assumptions?” Likewise, products that claim to
support I++ DME are never perfect and need to be tested
(verified) to make sure they comply with the specification.
This means answering the questions, “Does the product send
only valid I++ DME messages? Does it respond appropriately
to both valid and invalid messages?”
NIST has written an I++ DME test suite designed to help the

specification writers make a better specification and the
product vendors make better products. The test suite includes
a simulated client that acts as the software that runs
measurement plans, and a simulated server that acts as the
equipment that makes the measurements. Test scripts cover all
measurement activities, from startup through measurement
and shutdown, including error conditions. A logging feature
allows for later analysis of test results.
The I++ DME has undergone testing in a series of

demonstrations involving real software and equipment at
several important international quality technology expositions,
including the 2004 International Manufacturing Technology
Show (IMTS), the 2005 Quality Expo, and the 2005 – 2007
Control Shows. These multivendor demonstrations have
included combinatorial testing of several software packages
with several measurement machines. Comments from the
participants, and their continuing participation, show that this
level of testing rigor is valuable and helps to ensure quality
products that meet customer requirements.

II. THE MEASUREMENT PROCESS

Before parts can be measured, they must be designed and at
least partially manufactured. Design is normally done using
computer-aided design (CAD) workstations that generate
electronic design files that define the product requirements for
subsequent downstream manufacturing operations. From the
point of view of measurement, the design files contain
dimensions and tolerances, and other requirements such as
surface finish. A standard for the output of CAD information
is ISO 10303, “Standard for the Exchange of Product Model
Data,” also known as STEP [1]. STEP Application Protocol

289

mailto:frederick.proctor@nist.gov

(AP) 203 deals with design data; the second edition includes
geometric dimensioning and tolerancing.
Although not part of the measurement process, computer-

aided manufacturing (CAM) and computer- numerical control
(CNC) are steps that define how the part is to be
manufactured. It is worth noting that manufacturers would
like to inspect as much as possible on the equipment used to
manufacture the parts, in order to save the time it takes to
move parts between equipment. Supporting this flexibility is
one goal of interoperability specifications like I++ DME.
Given a part design, measurement plans are then developed

which guide how specialized equipment or human experts are
to inspect the part. A standard for the output of measurement
planning is the Dimensional Measuring Interface Standard
(DMIS) [2]. DMIS plans define the measurement sensors to
be used (typically touch probes), features to be measured
(such as surfaces and holes), and reports to be made.
Measurement plans are executed by software that connects to

measurement equipment such as coordinate measuring
machines. During this phase, commands are directed toward
the equipment to select sensors, capture points of interest and
return the results. Measurement plans may consist of
thousands of individually acquired points, with coordinate
systems set and branch points taken depending on
intermediate results. The I++ DME specification covers the
exchange of data between the execution software and the
measurement equipment.
Once measurement data has been acquired, an analysis phase

is performed in which the raw results are compared against
the design requirements (e.g., dimensions and tolerances) so
that quality conclusions can be made. A draft standard for
reporting results is the Dimensional Markup Language (DML),
being prepared by the Automation Industry Action Group.
While interoperability between these different phases of

measurement is the overall goal, this paper focuses on
validation testing of the I++ DME specification. The authors
are conducting similar testing on STEP, DMIS and DML.

III. CHALLENGES FOR STANDARDS-BASED MEASUREMENT

A challenge for any standards-based activity is constraining
the data exchange to a set that can be documented and thus
standardized, while enabling vendors to innovate their
products and thereby benefit manufacturers. For measurement,
this challenge is made more difficult by the wide range of
equipment used for measurement, and the many types of
measurements done. For example, measurement equipment
includes sensors such as touch-trigger probes, capacitance
gages, lasers and other optical sensors; and machines ranging
from small hand-moved portable arms through large
granite-based fully automatic coordinate measuring machines.
This technology continually evolves, and defining a set of
capabilities to be used as the basis for a standard is difficult
and requires compromise. In any case, there must be a process
in place to revise the standard as technology improves and
new sensors and measurement capabilities become available.

IV. THE I++ DME SPECIFICATION

The I++ committee is comprised of measurement equipment
end users primarily from the automobile manufacturing sector.
The I++ Dimensional Measuring Equipment (DME)
specification [3] was written by I++ members and targeted
toward equipment and software vendors. The goal was to
enable manufacturers to pick best-in-class equipment and
software reflecting their particular needs for sensor type, part
size and measurement tasks.
I++ DME is a messaging protocol between measurement

plan executors and measurement equipment. It uses TCP/IP
sockets as the communication mechanism, and defines a
message set and a client-server architecture. Clients are
measurement plan executors, and servers are the equipment
that carries out the measurements. For example, a client could
read DMIS measurement plans produced by some upstream
application, interpret the DMIS statements, send I++ DME
messages to the measuring equipment, accumulate the
measurement results that return as I++ DME messages from
the server, and output a DMIS or DML measurement report.
This is shown in Figure 1.

I++ DME consists of Unified Modeling Language (UML)

descriptions of the messages, accompanied by natural
language (English) that describes the semantics. Production
rules in Backus-Naur Form (BNF) are provided that define the
syntax of message composition. Numerous examples are
provided as guidance to implementers. A sample I++ DME
session is shown below, with messages from the client not
underlined and responses from the server underlined.

00002 StartSession()
00002 &
00002 %
00003 GetDMEVersion()
00003 &
00003 # DMEVersion(1.4.2)
00003 %
00027 ChangeTool("ProbeB")
00027 &
00027 %
00078 SetProp(Tool.GoToPar.Speed(25.0))
00078 &
00078 %
00079 GoTo(X(2.626), Y(-4.656), Z(-4.100))
00079 &
00079 %
00094 PtMeas(X(2.47), Y(-4.13), Z(-5.10),
IJK(-0.01,-0.99,-0.00))
00094 &
00094 # X(2.44), Y(-4.64), Z(-5.99),
IJK(-0.019,-0.997,0.074)
00094 %

V. I++ DME TESTING

As a product of a human endeavor, the I++ DME
specification inevitably contains errors. The purpose of
validation testing is to find the errors and suggest changes to
the specification that fix the errors, before the specification is
published and implementations are released. Validation
ensures that the specification is complete, correct and

290

unambiguous. “Complete” means that it covers all the
requirements set forth by the I++ members. Due to
compromises, these may not completely satisfy the
requirements of everyone. Nevertheless, it is the job of
validation testing to discover any requirements that are not
expressible in I++ DME. “Correct” means that there are no
factual errors, including typographical errors but also
inconsistencies in descriptions and conflicts with stated
requirements. “Unambiguous” means that two readers of the
specification will agree what is meant. This is difficult to
achieve in practice, if for no other reason that the authors do
not all speak the chosen natural language (English) as their
native language. Ambiguity can be mitigated through the use
of pictures or figures, and good examples.
Another objective of testing was to speed the

commercialization of products that support I++ DME. This
was achieved as a side effect of including vendors in the
testing activities.
Testing can also lead to product conformance, if the testing

tools persist after validation testing has concluded. In this case,
all the hard work of testing can benefit newcomers, who can
run the tests themselves privately and improve their products
before releasing them.
The approach to testing taken by the authors was to provide a

software test suite that enables controlled, comprehensive
testing, in source code, paired with a series of public
interoperability tests and demonstrations at trade shows that
included real products and real measurement tasks.

VI. THE I++ DME TEST SUITE

The I++ DME Test Suite [4] was written by the authors as a
utility to enable internal testing of conformance to the
specification. It is comprised of two applications, a server and
a client, many test scripts, and source code for a C++ class
library and parsers that parse client and server messages. The
source code is free and intended to help newcomers
implement I++ DME without having to incur the tedium of
developing message handling code.
Figure 2 shows the I++ Server Utility. The server simulates

the response of measurement equipment to I++ commands,
maintaining a coarse world model and simulation of a
coordinate measuring machine and responding plausibly to
requests from a client. Developers of client software typically

use the Server Utility as a stand-in for real servers (e.g.,
coordinate measuring machines) that are expensive to obtain.
Developers of client software can use the Server Utility to
verify that their commands are valid, and to see what
responses they should be prepared to receive. The Server first
opens up a socket on a port specified by the user, and awaits
connections from a client. Every message received or sent by
the Server is logged, displayed in a window and written to a
file. Some attributes of the simplified models are configurable,
for example the radius of the probe.

Fig. 1. The I++ DME activity model.

Figure 3 shows the I++ Client Utility. The client simulates
the actions of plan execution software, sending requests to the
server to select sensors and measure attributes of the part, and
collecting responses back for later analysis. Developers of
server equipment typically use the Client Utility as a stand-in
for execution software. This allows them to see what
commands they are expected to handle, and to check that their
responses are valid. The client connects to a running server on
a socket specified by the user, who then loads a script file for
reading and execution, similar to the excerpt shown below:

Fig. 2. The I++ DME Server Utility used is a surrogate for
measuring equipment, used for testing client software.

291

AlignPart(1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 2.0)
AlignTool(0, 0, 1, 30)
CenterPart(2.0, 3.0, 4.0, 0.1)
ChangeTool("Probe1")

Each script file of I++ DME commands has an associated

response file that is compared against what is received from
the server. If responses don’t match what is expected, errors
are noted in the log file. These errors are not necessarily true
errors, since the server messages in general include data
points that vary depending on the actual sensed values of
probe points. Strict comparisons against a pre-written
response file may not match exactly yet still be valid. This is a
challenge for automated testing, and one that requires
balancing the difficulty of building an intelligent automated
analysis tool against the value it provides, given that people
will eventually be viewing the results and can be expected to
make more difficult determinations of acceptability.

T
app
rel
wi
int
im
int
pu
T

the

varied during each show, with the intent to include some
number of client providers (e.g., measurement plan execution
software developers) and some number of server providers
(e.g., coordinate measuring machine builders). In 2007, the
public demonstration included six clients and four servers, for
24 combinations possible for testing.

Fig. 4. Representative automobile part used for public
demonstrations.

Unlike private testing with the I++ Test Suite, public
demonstrations used real measurement plans (e.g., DMIS or
some vendor proprietary plan formats) and real parts. A
representative automobile part was selected, as shown in
Figure 4. No test scripts were used, and thus no pre-written
response files were written. Tests were done point-to-point,
client-to-server, with people observing the measurement
process on the machines and determining if the results of the
measurement were acceptable.
The burden on the test judges was lessened somewhat by

their experience with the test part. It was usually obvious
when failures occurred, and where the source of the problem
lay. If each test took place with a randomly-generated part,
understanding what constitutes correct measurement would
have been more difficult. The challenge is therefore to select a
part with enough features to cover what is required by most
manufacturers, simple enough to machine easily.

VIII. RECOMMENDATIONS

Practical experience with the I++ Test Suite and the series of
public demonstrations has led to some recommendations for

Fig. 3. The I++ DME Client Utility is a surrogate for measuring
plan execution software, used for testing measuring equipment.
VII. PUBLIC DEMONSTRATIONS

he I++ Test Suite allows developers to build compliant
lications within their companies and test them before

easing them to their customers. At some point, applications
ll be run in production at customer facilities, and will
erface with compliant applications from other vendors. It is
portant to have some experience with production
eroperability prior to full release. This is the purpose of
blic demonstrations.
hree I++ public demonstrations have taken place, during
 Control Shows in 2005, 2006 and 2007. The participants

others who are undertaking similar validation efforts.
• Pre-testing components with simulated “mates” uncovers

many simple errors that can be fixed early, saving time at
the more expensive public demonstrations or installations
on plant floors.

• Misinterpretation of specifications by people is to be
expected. Formal methods of describing syntax and if
possible semantics are preferred over natural language,
especially when the audience members do not all speak the
natural language natively.

• Examples should be provided where possible. Forgo the
temptation to write all examples in the same style. For

292

example, if the specification allows variations in white
space, examples should show this variation.

• Where the specification is ambiguous, expect that two
developers will each interpret it differently. In cases where
the resolution is a choice between two arbitrary options,
each vendor will argue that their choice is the right one.
There must be an arbiter whom all parties agree has the
final word, and everyone must be prepared to go back to
their benches and change.

• Standards validation is expensive, and should include
line-by-line reading of the specification by experts;
ongoing meetings to discuss revisions to the specification;
development of testing tools to be shared by all
participants; and commitment to a series of public
interoperability testing under real-world conditions.

REFERENCES
[1] S. Kemmerer, Editor, “STEP: The Grand Experience.” NIST Special
Publication 939, July 1999.
[2] Consortium for Advanced Manufacturing - International, “Dimensional
Measuring Interface Standard,” Revision 3.0, ANSI/CAM-I 101-1995.
[3] International Association of CMM Vendors, “I++ DME,” Version 1.5.
Available: www.isd.mel.nist.gov/projects/
metrology_interoperability/specs/idmespec.1.5.pdf
[4] J. Horst, T. Kramer, J. Falco, W. Rippey, F. Proctor and A. Wavering,
“User's Manual for Version 3.0 of the NIST DME Interface Test Suite for
Facilitating Implementations of Version 1.4 of the I++ DME Interface
Specification,” October 4, 2002.
Available: www.isd.mel.nist.gov/projects/metrology_interoperability/
NISTI++DMEtestSuite3.0UsersManual.pdf

293

	Interoperability Testing for�Shop Floor Measurement
	I. Introduction
	II. The measurement process
	III. Challenges for standards-based measurement
	IV. The I++ DME Specification
	V. I++ DME Testing
	VI. The I++ DME Test Suite
	VII. Public Demonstrations
	VIII. Recommendations
	References

