

A REAL WORLD PILOT IMPLEMENTATION OF THE CORE MANUFACTURING SIMULATION
DATA MODEL

Marcus Johansson Swee Leong
Björn Johansson Frank Riddick

 Y. Tina Lee
Department of Product

and Production Development
Manufacturing Systems

Integration Division
Chalmers University of Technology National Institute of Standards and Technology
Gothenburg, SE-412 96, SWEDEN Gaithersburg, MD 20889-8261, USA

ABSTRACT

While software for discrete event simulation (DES) has
emerged into sophisticated tools for decision support in a
wide range of contexts, the need to integrate DES tools
with other applications is increasing. In the industrial engi-
neering context, simulation engineers strive to use real-
world data, e.g. logs of machine breakdown, to make be-
havior of DES models imitate reality. However, the format
used for describing simulation data is often specialized to
the current situation. The Core Manufacturing Simulation
Data (CMSD) is a collaborative effort with academia and
industry to standardize the format used for simulation data,
to facilitate data exchange among simulation and manufac-
turing applications. This paper describes the results from a
pilot implementation study at Volvo Trucks, where CMSD
was utilized as the data exchange format between two data
systems and two DES models. The DES tools used were
commercial software packages Unigraphics Plant Simula-
tion and InControl Enterprise Dynamics. Generic and reus-
able interfaces for CMSD-file communication were devel-
oped for each of these tools. The CMSD interfaces were
successfully connected to a model in each simulation tool
describing the same real-world manufacturing process. A
stand alone application was developed to collect and ana-
lyze raw data and to create the CMSD file being used as
input data for both models. The result is a system including
raw data analysis, data reformatting, CMSD interfacing
and model execution. Based on the result, a generic meth-
odology for CMSD interface development in DES tools
has evolved. The most important conclusion is that CMSD
data can be interpretable by both Plant Simulation and En-
terprise Dynamics, and that it saves engineering develop-
ment time during the model building phase.

1 INTRODUCTION

Vendors of discrete event simulation (DES) software mar-
ket their products as powerful tools to analyze various flow
and queue systems. Companies in the automotive industry

often demand outcome estimations of major investments to
be verified through simulation (Ulgen and Gunal 1998).

However, many reasons make simulation expensive.
One of those factors is the need of valid time domain data
to base simulation on. Such data is frequently referred to as
input data. Input data management generally stands for a
big part of the total time needed for a simulation study
(Umeda and Jones 1997). Because of how simulation often
is used: to verify outcome estimation of specific invest-
ments, 70-80% of automotive simulation models have a
short life-cycle (Ulgen and Gunal 1998). Hence, reducing
work associated with input data preparations could lead to
economical benefits for industry.

1.1 Background

Modern factories use sophisticated data systems that logs
events on the shop-floor. Typically the systems logs
start/stop events of machine operation and breakdown cy-
cles. Because of format incompatibility, simulation can
seldom access and use the data directly. Excessive efforts
have to be spent on manually sorting, analyzing, and for-
matting the data in a way that fits the used simulation
package (Skoogh and Johansson 2007).

Voices from the simulation community have stated the
need of interoperability standards (Banks et al. 2003). Ex-
perts’ forums such as the Winter Simulation Conference
host specific tracks for simulation interoperability.

With means of interoperability, simulation and manu-
facturing data storages could automatically exchange in-
formation. To support interoperability, applications need to
structure and communicate information uniformly. Several
standardization efforts address this need. The Core Manu-
facturing Simulation Data (CMSD) is one of those efforts
(Leong et. al. 2006). The United States’ National Institute
of Standards & Technology (NIST) leads this CMSD ef-
fort.

Johansson, Johansson, and Leong

1.2 Problem description

Many simulation packages can already communicate with
other data sources. Excel, ODBC, text file, and XML
represents commonly supported formats. Such formats can
transfer any data and enable basic interoperability. Yet,
they do not specify how the data should be structured.
When using such formats, the modeler not only has to
know what data he needs. He also needs to know where to
get it.

Example 1: When reading input data from Excel files,
the modeler have to map specific Excel cells to spe-
cific attributes of simulation objects. Requests to re-
trieve data must specify exactly where the data can be
found: in what worksheet, in what column, and on
which row.
 To gather and compute a cycle time for Mill 2000
in Figure 1 below, you would have to write a formula
for your machine cycle time such as:

Triangular(
 ExcelRead(4,4), {min}
 ExcelRead(4,5), {mode}
 ExcelRead(4,6) {max}
)

 If data was populated in a common structure, like
CMSD, generic functions such as GetCy-
cleTime(Product A) could be used instead. The
modeler would only need to know what data to get.
The function would figure out where to get it. Manual
work, time, and cost would be reduced. However, cur-
rently no simulation package provides such GetCy-
cleTime functions.

Figure 1: Excel sheet cycle time example. A frame
encloses the data addressed by the command written
above.

1.3 Previous work

Previously, we have successfully conducted a pilot project
to represent input data with CMSD. A paint shop model
was built in the simulation package Enterprise Dynamics
(Johansson and Zachrisson 2006). The model read input

data from a CMSD file by running a specialized script
(Johansson et al. 2007). However, the script was not ge-
neric. It could only be used for that specific paint shop
model.

We concluded that CMSD could represent input data
in a way that could be interpreted by Enterprise Dynamics.
Still, you had to write your own import script for each
model you wanted to connect to a CMSD file.

1.4 Purpose

The purpose of this paper is to go one step further than be-
fore, and show that CMSD data is generic and can be used
by several simulation packages. The approach is to create
generic CMSD interfaces for two simulation packages. The
interfaces shall be usable for many model building occur-
rences. This will in this case be completed for two simula-
tion packages: Plant Simulation and Enterprise Dynamics.

We encourage development of CMSD interfaces for
other simulation packages. For that purpose, our experi-
ences from this project are documented in this paper as a
guideline for others to use.

Figure 2 displays the position of a CMSD interface in
a targeted integrated data flow. The data flow encompasses
transformation of raw data at a manufacturing process to
input data for a simulation model of that process.

Figure 2: The figure shows the input data flow that this
work is intended to support. The CMSD interface shape
represents the focus of this paper.

1.5 Goal

This pilot project reduced the lead-time for modeling a sys-
tem when CMSD structured input data is available. Nov-
ice CMSD skills should be enough for using the CMSD
interfaces.

Users experienced of the involved software shall be
able to further refine the developed interfaces. Modular ar-
chitecture of the interfaces shall ensure extensibility.

1.6 Outline

Section two describes the need of standards through an
everyday example. Current simulation standardization ef-
forts are then briefed. Section two ends with a short de-
scription of CMSD.

Section three shows two examples of implementa-
tions: one in Enterprise Dynamics and another in Plant

Johansson, Johansson, and Leong

Simulation. A real world case study where the CMSD in-
terface was used is also presented.

Section four presents our gathered experience, re-
quirements, supports and guidelines for developing CMSD
interfaces.

Section five discusses the results and its applicability
for future modeling.

Section six describes our future initiatives and devel-
opment plans. It also invites vendors to utilize CMSD as a
part of their software package offerings.

2 INDUSTRIAL NEEDS FOR
INTEROPERABILITY STANDARDS

This section describes the need of standards through an
everyday example. Current simulation standardization ef-
forts are then briefed. Section two ends with a description
of CMSD.

2.1 How standards helps us in everyday life

Imagine you buy some new electronic devices or appli-
ances. It could be an iron, a monitor, or whatever lies close
to your imagination. Imagine you would have to do the
wiring manually each time you want to connect the device
to electric power or peripherals. It would take time and you
would have to know exactly how to connect the wires. For
electric power it would also be unsafe.
 Luckily, you do not face this problem, because the ca-
bles have contacts. Depending on the purpose of the cable,
the contact looks different and fits into a specific slot or
outlet. As an example, the contact that connects your moni-
tor to your computer look different than the one you con-
nect to the power outlet. Different standards specify differ-
ent contacts and the contact plays the part of an interface
between the items you connect.

2.2 Standards and standardization efforts relevant
for simulation

When it comes to simulation, there is no “contact” where
you can plug in your input data. You have to do the “wir-
ing" yourself. But there are standards and efforts to support
development of such contacts or interfaces. Currently we
see standards for simulation that evolve with different fo-
cus:

• Unigraphics SDX specification focuses on auto-
matic model generation based on layout CAD-
drawings (Sly and Moorthy 2001)

• SysML features a UML based neutral language for
systems modeling that covers more than just simu-
lation. (Huang et al. 2007; SysML 2007)

• CSPI evolves to supports High Level Architecture
for runtime communication among simulation mod-
els. (Taylor et al. 2006)

• ISA-95 is a data standard for manufacturing execu-
tion systems, which can be related to simulation
(ANSI/ISA 2000).

CMSD is an information model for exchanging simu-
lation-relevant manufacturing data between manufacturing
applications and simulation systems. CMSD typically ad-
dresses the need to structure data for simulation rather than
describing the behavior of a simulation model.

Maybe in the future, commercial simulation packages
will provide interfaces for each of these standards and ef-
forts. Since our work is focused on reducing work related
to input data, we chose to work with CMSD and develop
interfaces enabling two simulation packages can connect to
CMSD data.

2.3 Brief description of CMSD

Core Manufacturing Simulation Data is intended to be a
neutral file format for manufacturing applications that ex-
change data with simulation models. The file format is
based on the extensible markup language, XML. CMSD is
defined by an information model which is specified
through UML diagrams. Six UML packages group related
data. These packages are:

• CMSD package
• Resource Information Package
• Part and Inventory information Package
• Production Operations Package
• Production Planning Package
• Support Package

The packages contain several structures that can be used to
structure simulation input data with. Leong et al. (2006)
gives a detailed description of these packages. The infor-
mation model (CMSD 2006) provides the complete speci-
fication of CMSD.

3 DEVELOPED CMSD INTERFACES

This section presents the CMSD interfaces developed in
our project: One in Enterprise Dynamics and another in
Plant Simulation. The section ends by presenting a real-
world case study where these CMSD interfaces were used.

3.1 CMSD interfaces – how to use it

The CMSD interfaces are developed as distributable ob-
jects. The user loads the interface into the simulation envi-
ronment using standard routines. Figure 3 shows the inter-
faces loaded into object libraries in Enterprise Dynamics
and Plant Simulation.

Johansson, Johansson, and Leong

Figure 3 The CMSD interface can be seen in the class li-
brary of Plant Simulation to the left, and the atom library
of Enterprise Dynamics to the right.

To use the CMSD interface in the model, you simply

drag it from the objects library and drop it into the model
layout. Figure 4 and Figure 5 show simple example models
in both simulation packages where the CMSD interface is
used.

Figure 4 Plant Simulation example model.

Figure 5 Example Enterprise Dynamics model.

When added to a model, the CMSD interface can be right-
clicked to pop up a context menu. From the context menu
the user can :

• load data from a CMSD XML file – an “open
file” dialog will appear

• reload data from an already chosen file
• examine and edit CMSD data – a table structure

or graphic representation of the data will appear.

The CMSD interface for Plant Simulation provides more
functionality than the interface for in Enterprise Dynamics.
Other than reading and viewing CMSD XML files, the
Plant Simulation implementation also gives the user possi-
bility to:

• turn on safe execution mode – handles non-valid
CMSD files without hangs, but slows down simu-
lation

• turn on debugging – prints log files based on re-
sults from data retrievals and messages from the
safe execution mode

• turn on a work-logging function – adds data to
CMSD based on the simulation

• write CMSD XML files – a “save file” dialog will
appear

Figure 6 shows the context menu for the Plant Simulation
CMSD interface.

Figure 6 The context menu of the CMSD interface for
Plant Simulation.

3.2 CMSD interface - user functions

By adding the CMSD interface to your model, a set of user
functions is enabled. Those user functions can be used in
other simulation objects to easily retrieve CMSD data.
Some user functions instead provide functionality to add
data to CMSD.
 Depending on the implementation, user functions are
named differently. Our intention is to use the same vocabu-
lary as the simulation package to make the user feels famil-
iar with function names. The following sections describes
the Plant Simulation CMSD interface in more details. The
developed user functions are:

• GetProcessingTime
• GetFailureInterval
• GetFailureDuration
• SetResouceSettings
• SetShiftCalendarSettings
• AddValue

Johansson, Johansson, and Leong

• AddEmptyInstance

3.2.1 Get_ user functions

All user functions named Get_ returns specific data. For
example:

GetProcessingTime returns an operation time based on
the involved machine and product.

GetFailureInterval returns a Mean Time Between Fail-
ure duration for a resource.

GetFailureDuration returns a Mean Time To Repair
duration for a resource.

3.2.2 Set_ user functions

All user functions named Set_ changes specific object pa-
rameters. These functions are intended to be used in the
initialization phases of simulations. SetResourceSettings
connects resources to work shift schedules according to
Resource definitions in CMSD. SetShiftCalendarSetting
sets up work shifts according to Shift definitions in CMSD.

3.2.3 Add_ user functions

All user function named Add_ help adding data to CMSD.
AddEmptyInstance creates a new data structure according
to any of hundreds of data structures defined in the CMSD
information model. AddValue is used to set specific attrib-
utes on those data structures. To support
AddEmptyInstance, templates of all CMSD structures are
included in the CMSD interface. Using Add_ functions re-
quires knowledge of CMSD and programming skills in
Plant Simulation.

3.2.4 Advanced about Get_ and Add_ functions

For all Get_ functions above, a duration is returned. No
matter what unit is used in CMSD to define the specific
duration, a value converted to seconds is generated. If the
duration was defined by a distribution function in CMSD, a
value of that distribution function will be randomly gener-
ated each time the function is called.
 A support function called ComputeDuration handles
unit conversion and distribution computations for all user
functions requiring such functionality. Get_ functions lo-
cates the data in the CMSD structure, whereas Comput-
eDuration computes the data.

CMSD interface developers can use the Add_ func-
tions to create their own functions. To demonstrate this, we
created the work logging function. The work logging func-
tion populates Job and Task structures of the current
CMSD data based on generated products in the simulation
model. As an example, Job and Task structures define start
time, stop time and duration of planned and actual work
efforts.

3.3 CMSD interface – real world test case

To test the developed CMSD interfaces, an automotive en-
gine assembly process is modeled in both Enterprise Dy-
namics and Plant Simulation. The engine line assembly
process includes two parallel lines with nine workstations
each. Figure 7 shows an outline of the process. Truck en-
gines arrives at workstation one. Gearbox, clutch, servos,
turbo, and etc. are mounted at the rest of the workstations.
 Both models connected successfully to the same real
world input data, represented with CMSD. The user func-
tions provided a fast and accurate way to establish the con-
nections. Compared to writing explicit scripts to manually
connect the model to the raw data, using CMSD interface
saved engineering time considerably.

AGV

AG
V

AG
V

AGV

Figure 7: Engine line outline.

3.4 CMSD interface – extensibility

In section 3.2.4 above, we explained how all Get_ func-
tions make use of the support function ComputeDuration.
This modular approach is used throughout the CMSD in-
terface architecture. Several support functions further fa-
cilitates CMSD interfaces to a state where complete infor-
mation model could be supported. Interoperability of
functions and the CMSD interface source code are highly
documented.

4 REUSABLE DEVELOPMENT GUIDLINE

One result of this project is a development guideline. The
guideline can be used for other CMSD interface implemen-
tations. This section can also be read as an “behind the cur-
tain” experience by interested readers.
 This section presents the guideline for CMSD inter-
faces in general. The section starts with a summary for
those interested in high level information only.

4.1 Summary of Recommended Development
Guideline Requirements

We have identified some core requirements that CMSD in-
terfaces should fulfill. These requirements include:

Johansson, Johansson, and Leong

• functionality to read XML files
• ability to represent CMSD data internally
• a simple user interface
• user functions that can be used to easily retrieve

CMSD data
• functionality to handle data entries of all quanti-

ties and units recognized by CMSD
• extensible architecture

 Beside these requirements, we also set a list of allevia-
tions. A CMSD interface:

• may assume that a CMSD file fulfills the CMSD
specification

• is not required to be able to write CMSD files
• may recognize a subset of the CMSD specifica-

tion
• may require rich programming and CMSD skills

of the developer that furthers the interface

4.2 Functionality to read XML files

CMSD data is meant to be exchanged through XML files.
A prerequisite to build a CMSD interface in a simulation
package is that XML files can be read. Some simulation
packages provide built-in functionality to exchange data
with XML files. Some packages can act as ActiveX clients.
With means of ActiveX, XML data can be read through
calls to AcitveX objects such as MSXML (MSDN 2007a).

We agree that CMSD interfaces can be developed for
simulation packages supporting any of the solutions men-
tioned here. However, ActiveX may require the developer
to have programming skills that lies beyond what is nor-
mally required for using programming languages in simu-
lation packages. Typically, MSXML can be hard to use
(MSDN 2007b).

Both simulation packages used in this study provide
built-in functions to read and write XML files.

4.3 Ability to represent CMSD data internally

CMSD data should be viewable and editable on the re-
ceiver end of the interface as well as in the CMSD XML-
file itself. In this pilot, the CMSD data is represented with
nested tables in the simulation package.

4.4 A simple user interface

The user interface has to be simple in order to lessen the
requirements on the user and also to enable automatic data
input to the simulation. A simple user interface saves engi-
neering time,

4.5 User functions that can be used to easily
retrieve CMSD data

Name functions according to software nomenclature so as
not to mislead the user. This is also a part of the goals to be
user friendliness and to save enginnering time on the input
data management side of the simulation project.

4.6 Functionality to handle data entries of all
quantities and units recognized by CMSD

The developed CMSD interfaces assume metric (SI) units
are used in the simulation.

4.7 Extensible architecture

The developed CMSD interfaces are open ended, extensi-
ble, and reconfigurable and further modification of the
CMSD structures in the future are welcome. Only one
change in the interface module of CMSD is needed to re-
flect changes allover.

5 ADVANTEGES OF USING THE CMSD
INTERFACES

By introducing CMSD while building models in Enterprise
Dynamics and Plant Simulation a development time reduc-
tion of about 85% can be realized. Decreased time reduc-
tion comes with system complexity, which will need fur-
ther development of the CMSD interface. The interfaces
for Enterprise Dynamics and Plant simulation are already
prepared to allow further extension as it is based on a
modular- structured design.

6 FUTURE WORK

The complete data flow including and surrounding CMSD
is large and many items needs to be in place for a complete
automatic solution. Data storages need to be in such format
which enables CMSD translations. Network and data stor-
age systems need to be accessible online to reach the latest
data.

While developing the CMSD interfaces for Enterprise
Dynamics and Plant Simulation, a generic development ar-
chitecture was established. This architecture could be used
to develop CMSD interfaces for other simulation packages
as well.
 Ongoing work will enable data retrieval from many
different data sources. An application will provide map-
ping tools on how to translate the data from these sources
to CMSD format. The tool will also include distribution
fitting algorithm for stochastic observations of input data.
The user of the application configures the mapping once.
Next time data is updated, the mapping configuration is
automatically reused.

Johansson, Johansson, and Leong

 In addition software vendors are welcome to provide
CMSD interfacing in their solutions using XML-schema of
CMSD.

ACKNOWLEDGMENT AND DISCLAIMER

The funding for this research is granted by VINNOVA
(Swedish Agency for Innovation Systems, integrates re-
search and development in technology, transport and work-
ing life.) through the MERA-program.

The work described was also funded by the United
States Government and is not subject to copyright. No ap-
proval or endorsement of any commercial product by the
National Institute of Standards and Technology is intended
or implied.

REFERENCES

ANSI/ISA 95.00.01-2000, Enterprise/Control System
 Integration Part 1: Models and Terminology,

<www.isa.org>
Banks, J., J. C. Hugan, P. Lendermann, C. McLean, E. H.

Page, C. D. Pedgen, O. Ulgen, J. R. Wilson. 2003. The
future of the simulation industry. In Proceeding of the
2003 Winter Simulation Conference, ed. S. Chick, P. J.
Sánchez, D. Ferrin, and D. J. Morrice, 2033-2043. Pis-
cataway, New Jersey: Institute of Electrical and Elec-
tronics Engineers, Inc.

CMSD 2007. Draft core manufacturing simulation data
information model part 1: UML model. CMSD Prod-
uct Development Group, Simulation Interoperability
Standards Organization. Available via
<http://discussions.sisostds.org/def
ault.asp?action=9&boardid=2&read=395
32&fid=24> [accessed March 19, 2008]

Banks, J., J. S. Carson, B. L. Nelson, and D. M. Nicol.
2005. Discrete-event system simulation. 4th ed. Upper
Saddle River, New Jersey: Prentice-Hall, Inc.

Ericsson, U. 2001. Discrete Event Simulation, The Truth.
Ph.D. thesis, Department of Production Engineering,
Chalmers University of Technology, Sweden.

Hopp, W. J., and M. L. Spearman. 1996. Factory Physics,
Irwin, Chicago, Illinois.

Incontrol 2007. The Enterprise Dynamics simulation soft-
ware, Incontrol. Available at
<http://www.incontrol.nl> [accessed
March 19, 2008]

Huang, E., R. Ramamurthy, and L. F. McGinnis. 2007.
System and Simulation Modeling Using SysML. In
Proceeding of the 2007 Winter Simulation Conference,
ed. S. G. Henderson, B. Biller, M.-H. Hsieh, J.
Shortle, J. D. Tew, and R. R. Barton, 796-803. Pis-
cataway, New Jersey: Institute of Electrical and Elec-
tronics Engineers, Inc.

Johansson, M., and R. Zachrisson, 2006. Modeling auto-
motive manufacturing process. Master’s thesis. De-
partment of Product and Production Development,
Chalmers University of Technology, Gothenburg.

Law, A. M., and W. D. Kelton. 2000. Simulation modeling
& analysis. 3rd ed. New York: McGraw-Hill, Inc.

Lee, Y. T., and Y. Luo. 2007. Machine Shop Information
Model Application, Next Step. Technical report
NISTIR 7388, National Institute of Standards and
Technology, Gaithersburg, Maryland.

Leong, S, Y. T. Lee, and F. Riddick. 2006. A Core Manu-
facturing Simulation Data Information Model for
Manufacturing Applications. Simulation Interoperabil-
ity Workshop, Simulation Interoperability and Stan-
dards Organization, September 10-15, 2006, Orlando.

McLean, C., Y. T. Lee, G. Shao, and F. Riddick. 2005.
Shop Data Model and Interface Specification. Techni-
cal report NISTIR 7198, National Institute of Stan-
dards and Technology, Gaithersburg, Maryland.

MSDN 2007a. Microsoft XML Core Services. Microsoft
Developer Network, Microsoft Corporation. Available
via <http://msdn2.microsoft.com/en-
us/library/ms763742.aspx> [accessed
March 19, 2008]

MSDN 2007b. Building MSXML Applications. Microsoft
Developer Network, Microsoft Corporation. Available
via <http://msdn2.microsoft.com/en-
us/library/ms753804(VS.85).aspx> [Ac-
cessed March 17, 2008]

SysML 2007. OMG Systems Modeling Language V1.0.
Object Management Group. Available via
http://www.sysml.org/docs/specs/OMGS
ysML-v1.0-07-09-01.pdf [Accessed March
18, 2008]

Skoogh, A., and B. Johansson, 2007. Time-consumption
Analysis of Input Data Activities in Discrete Event
Simulation Projects, In Proceedings of the Swedish
Production Symposium 2007, Gothenburg.

Sly, D., M. Moorthy. 2001. Simulation Data Exchange
(SDX) Implementation and Use. In Proceeding of the
2001 Winter Simulation Conference, ed. B. A. Peters,
J. S. Smith, D. J. Medeiros, and M. W. Rohrer, 1473-
1477. Piscataway, New Jersey: Institute of Electrical
and Electronics Engineers, Inc.

Taylor, S. J. E., S. Strassburger, S. J. Turner, M. Y. H.
Low, X. Wang, and J. Ladbrook, 2006. Developing In-
teroperability Standards for Distributed Simulation
and COTS Simulation Packages with CSPI PDG. In
Proceeding of the 2006 Winter Simulation Conference,
ed. L. F. Perrone, F. P. Wieland, J. Liu, B. G. Lawson,
D. M. Nicol, and R. M Fujimoto, 1101-1110. Piscata-
way, New Jersey: Institute of Electrical and Electron-
ics Engineers, Inc.

Ulgen, O., A. Gunal. 1998. Simulation in the Automobile
Industry. In Handbook of Simulation. ed. J. Banks,

http://www.isa.org/
http://discussions.sisostds.org/default.asp?action=9&boardid=2&read=39532&fid=24
http://discussions.sisostds.org/default.asp?action=9&boardid=2&read=39532&fid=24
http://discussions.sisostds.org/default.asp?action=9&boardid=2&read=39532&fid=24
http://msdn2.microsoft.com/en-us/library/ms763742.aspx
http://msdn2.microsoft.com/en-us/library/ms763742.aspx
http://msdn2.microsoft.com/en-us/library/ms753804(VS.85).aspx
http://msdn2.microsoft.com/en-us/library/ms753804(VS.85).aspx
http://www.sysml.org/docs/specs/OMGSysML-v1.0-07-09-01.pdf
http://www.sysml.org/docs/specs/OMGSysML-v1.0-07-09-01.pdf

Johansson, Johansson, and Leong

547-570 City of New York, New York: Wiley-
Interscience. Available via
<http://www.knovel.com/web/portal/ba
sic_search/display?_EXT_KNOVEL_DISPL
AY_bookid=1452> [accessed March 19, 2008]

Umeda, S., A. Jones. 1997. Simulation in Japan: State-of-
the-art update, Technical Report NISTIR 6040, Na-
tional Institute of Standards and Technology,
Gaithersburg, Maryland

W3C 2007. Extensible Markup Language, World Wide
Web Consortium. Available via
<http://www.w3.org> [accessed March 19,
2008]

AUTHOR BIOGRAPHIES

MARCUS JOHANSSON is from Gothenburg in Sweden
where he is employed as a project assistant at the Depart-
ment of Product and Production Development at Chalmers
University of Technology. He is currently a guest re-
searcher in the Manufacturing Simulation and Modeling
Group at the National Institute of Standards and Technol-
ogy where he works with implementation and development
of Core Manufacturing Simulation Data. He has a M.Sc.
degree in the specialized discipline Automation and
Mechatronics Engineering. His e-mail address is
<johamarc@gmail.se>.

BJÖRN JOHANSSON is an assistant professor at Product
and Production Development, Chalmers University of
Technology. His research interest is in the area of discrete
event simulation for manufacturing industries. He is inter-
ested in the specifics of modular modeling methodology
for effective and swift model-building, which is accompa-
nied by software development, user interfaces, and input
data architectures. His email address is
<bjorn.johansson@chalmers.se>.

SWEE LEONG is a senior manufacturing engineer in the
Manufacturing Simulation and Modeling Group at the Na-
tional Institute of Standards and Technology (NIST) Man-
ufacturing System Integration Division since 1994. Prior to
joining NIST, he worked at Ford Motor Company, John
Deere, and IBM on different factory automation projects.
His research interests are in modeling and simulation ac-
tivities for the manufacturing industries and engineering
tools integration. Currently, Swee manages the Simulation
Standards Consortium at NIST. He is Chairman of the
Core Manufacturing Simulation Data Product Develop-
ment Group. He received a Bachelor and Master Degrees
in Industrial Engineering from Purdue University in West
Lafayette, Indiana. He is a senior member of the Society of
Manufacturing Engineers. His e-mail address is
<leong@nist.gov>.

Y. TINA LEE is a computer scientist in the Manufacturing
Simulation and Modeling Group at NIST. She joined NIST
in 1986. Her major responsibility in recent years has been
to develop information models to support various manufac-
turing application areas. Previously she worked at Contel
Federal Systems and Sperry Corporation. She received her
BS in Mathematics from Providence College and MS in
Applied Science from the College of William and Mary.
Her e-mail address is <leet@cme.nist.gov>.

FRANK RIDDICK is a computer scientist in the Manu-
facturing Simulation and Modeling Group in The National
Institute of Standards and Technology (NIST) Manufactur-
ing Systems Integration Division. He has participated in
research and authored several papers relating to manufac-
turing simulation integration and product data modeling.
He holds a Master's Degree in Mathematics from Purdue.
His email address is <riddick@nist.gov>.

http://www.knovel.com/web/portal/basic_search/display?_EXT_KNOVEL_DISPLAY_bookid=1452
http://www.knovel.com/web/portal/basic_search/display?_EXT_KNOVEL_DISPLAY_bookid=1452
http://www.knovel.com/web/portal/basic_search/display?_EXT_KNOVEL_DISPLAY_bookid=1452
http://www.w3.org/
mailto:%3Cjohamarc@gmail.se%3E
mailto:bjorn.johansson@chalmers.se
mailto:leong@nist.gov
mailto:leet@cme.nist.gov
mailto:riddick@nist.gov

	1 INTRODUCTION
	1.1 Background
	1.2 Problem description
	1.3 Previous work
	1.4 Purpose
	1.5 Goal
	1.6 Outline

	2 INDUSTRIAL NEEDS FOR INTEROPERABILITY STANDARDS
	2.1 How standards helps us in everyday life
	2.2 Standards and standardization efforts relevant for simulation
	2.3 Brief description of CMSD

	3 DEVELOPED CMSD INTERFACES
	3.1 CMSD interfaces – how to use it
	3.2 CMSD interface - user functions
	3.2.1 Get_ user functions
	3.2.2 Set_ user functions
	3.2.3 Add_ user functions
	3.2.4 Advanced about Get_ and Add_ functions

	3.3 CMSD interface – real world test case
	3.4 CMSD interface – extensibility

	4 REUSABLE DEVELOPMENT GUIDLINE
	4.1 Summary of Recommended Development Guideline Requirements
	4.2 Functionality to read XML files
	4.3 Ability to represent CMSD data internally
	4.4 A simple user interface
	4.5 User functions that can be used to easily retrieve CMSD data
	4.6 Functionality to handle data entries of all quantities and units recognized by CMSD
	4.7 Extensible architecture

	5 ADVANTEGES OF USING THE CMSD INTERFACES
	6 FUTURE WORK

