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Abstract. In order to expedite the research and development of robotic
systems and foster development of novel robot configurations, it is es-
sential to develop tools and standards that allow researchers to rapidly
develop, communicate, and compare experimental results. This paper de-
scribes the Mobility Open Architecture Simulation and Tools Framework
(MOAST). The MOAST framework is designed to aid in the develop-
ment, testing, and analysis of robotic software by providing developers
with a wide range of open source robotic algorithms and interfaces. The
framework provides a physics-based virtual development environment for
initial testing and allows for the seamless transition of algorithms to real
hardware. This paper details the design approach, software architecture
and module-to-module interfaces.

1 Introduction and Related Work

The usefulness of simulation for developing control systems is well established.
The role of simulation is to provide convincing sensor measurements in response
to a controller’s actuator outputs in an environment observable to developers.
Ideally the simulation should be accurate enough so that performance parameters
tuned in simulation work as well in the real world. In practice, attaining this
level of simulation is often more costly than real-world testing, and simulators
that respond plausibly if not accurately are acceptable. Plausible simulation
then complements real-world testing to minimize the time and effort needed to
build controllers that work well. Several such simulation systems exist; several
of which are open source, including the Unified System for Automation and
Robot Simulation (USARSim) [1] 1 and the Stage and Gazebo components of
Player/Stage [2].

While the typical simulation system allows one to directly connect and exper-
iment with servo-level controllers, they in general lack any form of intelligence

1 No approval or endorsement of any commercial product by the National Institute of
Standards and Technology is intended or implied. Certain commercial equipment,
instruments, or materials are identified in this report in order to facilitate under-
standing. Such identification does not imply recommendation or endorsement by the
National Institute of Standards and Technology, nor does it imply that the materials
or equipment identified are necessarily the best available for the purpose.



or ability to interpret sensor readings and issue meaningful commands. For this
reason, it is necessary to connect the simulation engine to a control framework.
Several such systems exist in the literature and on the web. Perhaps the most
popular of which is the Player portion of Player/Stage.

Player/Stage combines a robot server interface, called Player, with a simu-
lation system, called Stage, so that Player-enabled robots can be easily inter-
changed with each other and their simulated counterparts. The Player interface
is installed on robotic vehicles, providing an interface to the robot’s sensors and
actuators over a TCP/IP network. Stage simulates a population of robotic ve-
hicles and sensors in a 2-D environment. Gazebo is a 3-D counterpart provided
for outdoor simulation. While Player started as a robot interface with drivers
that directly control hardware, it has grown to include several abstract drivers
since then. These abstract drivers use other drivers, instead of hardware, as the
sources for data and the sinks for commands. Several well-known algorithms are
now included with the system thus providing services such as way-point naviga-
tion and obstacle avoidance.

Several component-based architectures have been developed. These include
the middleware project RT-Middleware [3] and the component architecture OCRA
[4]. These architectures provide a component specification that prescribes a com-
ponent’s interfaces, activity, and input/output ports. They do not provide a
functional architecture. In the case of RT-Middleware, a graphical tool may be
used to interconnect various components and create a fully functional robotic
system.

USARSim provides robot and sensor models and a standardized actuator/raw-
sensor level interface for communicating with a physics-based simulation engine.
Many of the robots and sensors have been validated against their real counter-
parts. In addition, USARSim supports a Player driver that allows algorithms
coded to its interface specification to utilize Player to communicate with real
hardware.

A new entry to the robot simulation/control arena is Microsoft Robotics
Developer Studio (MSRDS) [5]. MSRDS includes support for simulation and
implements services to control robotic platforms. While MSRDS is not as mature
as Player/Stage or USARSim, it promises to build a library of services that will
be available to robot developers.

1.1 Adding an Architecture: MOAST

Player, USARSim, and MSRDS focus on the interfaces to mobile robots that
allow developers to build their own controllers, with portability across robots
that support Player or MSRDS made easier. Rt-Middleware and OCRA provide
a component level specification. None of the systems defines an overall architec-
ture or high-level interface specification that guides the development of robot
controllers. We have found that an architecture is essential to the efficient devel-
opment of intelligent systems. An architecture assigns roles and responsibilities
among controllers and dictates what services are necessary. It defines module
timing, data and control interfaces, and planning extents. An architecture also



Fig. 1. Generic 4D/RCS Control Node.

provides the framework in which the rest of the intelligent system resides and
dictates the rules that the modules must follow. For these reasons, we built
the Mobility Open Architecture Simulation and Tools Framework (MOAST).
MOAST begins with a well defined architecture, and adds simulations, services,
and controllers. The entire MOAST framework is intended to provide tools to
lead a researcher through all of the phases of development and testing of an
autonomous agent system.

MOAST is made up of the following components:

1. A reference model architecture that dictates how control responsibilities are
divided between modules.

2. Communication interface specifications that dictate how and what modules
will communicate.

3. Sample control modules for the control of a sample simulated robotic plat-
form. These modules include sensor processing, world modeling, and be-
havior generation for 4 levels of the hierarchical architecture and provide a
complete control system.

4. Validated sensors and robot models in the simulation.
5. Tools to aid in development and debug of the control system.

The remainder of this paper will address the components of MOAST. Sec-
tion 2 describes the reference model architecture that is utilized by MOAST.
Section 3 describes the various services and capabilities that are provided by the
framework, Section 4 describes how MOAST transitions from simulation to real
hardware. Finally, Section 5 describes future work and concludes the paper.

2 Reference Model Architecture

The capabilities of the MOAST framework are encapsulated in components that
are designed based on the 4D/RCS Reference Model Architecture [6][7]. The
RCS reference model architecture is a hierarchical, distributed, real-time control



system architecture that decomposes a robotic system into manageable pieces
while providing clear interfaces and roles for a variety of functional elements.

Figure 1 depicts the general structure of each echelon (level) of the 4D/RCS
hierarchy. Each echelon in 4D/RCS contains a systematic regularity and is com-
posed of control nodes that perform the same general type of functions: sensory
processing (SP), world modeling (WM), value judgment (VJ), and behavior gen-
eration (BG). Sensory processing is responsible for populating the world model
with relevant facts. These facts are based on both raw sensor data and the results
of previous SP (in the form of partial results or predictions of future results).
WM must store this information, information about the system self, and general
world knowledge and rules. Furthermore, it must provide a means of interpreting
and accessing this data. BG computes possible courses of action to take based
on the knowledge in the WM, the system’s goals, and the results of plan simu-
lations. VJ aids in the BG process by providing a cost/benefit ratio for possible
actions and world states.

The principal difference between control nodes at the same echelon is in the
set of resources managed, while the principal difference between nodes at differ-
ent echelons is in the knowledge requirements and the fidelity of the planning
space.

This regularity in the structure enables flexibility in the system architecture
that allows scaling of the system to any arbitrary size or level of complexity [8].

2.1 Generic Module

While 4D/RCS provides a reference model for the architecture, MOAST is an
implementation of that architecture. Therefore, specific responsibilities, knowl-
edge requirements, and interfaces have been designed for each control module.
Each control module is based upon a generic core controller that is shown in Fig-
ure 2. The MOAST hierarchical decomposition in terms of its control modules
is depicted in Figure 3.

The control module core has the following flow:

1. Initialize: The initialization opens any communication buffers, places the
system in a safe known state, and initializes any control parameters.

2. Read Command: Command information is received, and the system is
prepared to execute the command. When a new command is received, the
old command is immediately replaced by this command.

3. Read Config: Configuration information is received, and the system is pre-
pared to change its settings. A separate configuration channel is provided to
allow for control parameters to be changed without interrupting the current
controller. For example, a user may want to change a system’s cycle time
without interrupting a complex control function.

4. Handle Command State Tables: All of the modules run on a fixed cycle
time. Therefore, command functions must either guarantee that they fin-
ish in under the cycle time, or provide for being re-entrant. Although this
text refers to the command execution as being finite state machine (FSM)



Fig. 2. Generic core of control module.

based, search based planning systems have also been implemented under this
framework.

5. Handle Config State Tables: Requests to change configuration settings
are carried out similarly to handling command state tables.

6. Write Status and Settings: The current module status and the configu-
ration’s settings are sent out over communication buffers.

2.2 RCS Library

Support for developing software conforming to the 4D/RCS methodology is pro-
vided by the RCS Library [9]. The RCS library includes portable utilities for
creating and synchronizing real-time tasks following the 4D/RCS architecture.
Code generation and diagnostics tools simplify much of the application setup
and debugging. Communication between RCS control modules is provided by
the Neutral Message Language (NML), a software library for communication
ported to a variety of platforms including Linux, Solaris, VxWorks, LynxOS,
QNX, Windows and MacOS. Applications using NML define a message vocab-
ulary as C++ classes and call C++ methods to open buffers, read and write
messages. Java bindings are also available. NML applications running on one
platform can communicate with ones running on any other platform. The lo-
cation of buffers and processes that connect to them is selected at run time,
and a running application can be extended to communicate with new processes
dynamically. NML source code is freely available at [10] and documented in [9].



Fig. 3. Modular decomposition of MOAST framework that provides modularity in
broad task scope and time.

3 MOAST Provided Functions

The development and maintenance of an advanced mobile robot require expertise
ranging from sensor processing, path planning, and communications protocols, to
basic auto repair. While many of the algorithms for accomplishing these functions
are well known, freely available code that implements these functions tends to
be incompatible with other code or robotic platforms. This necessitates interface
and functional tweaks before the code modules become useful.

Part of the original design philosophy of MOAST was to provide “out of the
box” functionality that would reduce the breadth of expertise required to con-
duct research with mobile robots. The developers of MOAST have taken many
well known algorithms and implemented them within the 4D/RCS framework.
The result is a fully functional framework that allows researchers and students
to immediately begin to experiment with functional robots in both simulated
and real environments. Researchers are then free to examine the code modules
that address functions in their areas of expertise. The hope is that as improve-
ments are made, the researchers will contribute the improved modules back to
the community. The basic functionality of the mobile robot may be broken down
in the the areas of sensor processing and mobility.

3.1 Sensor Processing

The majority of the sensor processing work performed in MOAST is in the de-
tection of obstacles. The decomposition of this responsibility by echelon in the
MOAST framework is shown in Table 1. For the laser scanner, the Primitive
(Prim) Echelon provides a series of data tuples as shown in Figure 4. The data



Fig. 4. Laser range data from Prim includes the start and end of each beam.

Table 1. Sensor processing requirements and responsibilities.

Data Out Description

Primitive Echelon laser scan data Beam start and hit point
Autonomous Mobility Echelon height map Cellular map of 2.5D elevations
Autonomous Mobility Echelon obstacle probabil-
ity

Cellular map of obstacle probabili-
ties

Vehicle Echelon obstacle map Concave hull of obstacle areas from
AM

is available over the communications interface and includes the location of the
device when the beam was fired and the beam hit point in vehicle relative coor-
dinates. Under the current system, the laser is constrained to be fixed mounted
and facing straight ahead of the vehicle in a level orientation. While this presents
an instantaneous snapshot of the environment, the data tends to be noisy, and
encompass a very small region. This data is further processed to produce a cel-
lular height map of the environment as shown in Figure 5. Due to the mounting
constraint on the laser, whenever the vehicle is driving on a flat level surface the
height of every cell that has been observed is either the height of the floor or the
height of the laser above the floor.

While the external representation is transmitted as a cellular height map, in-
ternally, the cell’s height, range, hits history, and obstacle probability are stored.
The model for the terrain being observed is like a 3D bar chart, where solid blocks
of various heights extend through cells in the XY plane. The height of each cell
records the estimated distance its block extends above the local XY plane. The



Fig. 5. Cellular height map generated from laser data. Yellow represents cells that have
never been seen, and cells that are observed are shown in shades of aqua based on their
height. Due to the mounting configuration of the laser, only heights of “ground,” shown
as very dark aqua (i.e. black), or heights of above the laser, shown as bright aqua, are
displayed (hard copies of this paper should be printed in color).

height is negative if the top of the block is below the XY plane. The range of
a cell records the largest distance from which a cell has been seen to contain
an obstacle. Some obstacles are seen only when they are close to the sensor. It
is desired to avoid having the system decide that an obstacle no longer exists
because it is not seen when the system is farther away than its range. It is ex-
pected that if a cell containing an obstacle is viewed from within the cell’s range,
the obstacle will be seen again, but if the cell is viewed from beyond its range,
the obstacle might not be seen. The range is used in setting the hits history, as
described below.

The hits for a cell encodes the seven most recent viewings of the cell. A cell
is regarded has having been viewed whenever a ladar ray passes through it (the
cell is not seen) or bounces off an obstacle in it (the cell is seen).

Obstacle probability is a real number from 0.0 to 1.0. It represents the sys-
tem’s best estimate of the chances that the cell is occupied by an obstacle. A
separate map of obstacle probability is exported over a communication channel
for use by other modules.

3.2 Mobility

The mobility functions consist of a family of planning algorithms that are able to
compute obstacle free paths for Ackerman, skid-steered, and omni-drive ground
robot platforms as well as helicopter-like air platforms and sub-like underwater
vehicles. When examining the planning systems, it is useful to note the knowledge



Table 2. Mobility planning requirements and responsibilities.

Plan Out Command In Knowledge In

Prim actuator/motor commands Constant curvature arcs Kinematics
AM constant curvature arcs Way-points Dynamics
Vehicle way-points Named location a priori map
Section vehicle actions Behaviors Vehicle Capabilities

required by each module as well as the module’s output format, i.e., the form
the plan takes. This information is represented in Table 2.

At the lowest echelon, the output of the planning system consists of actuator
and motor commands that are sent through MOAST’s generic interface known
as SIMware [11]. These commands are platform steering type dependent and
consist of such things as left and right wheel velocities for a skid-steered vehicle
or steering curvature and velocity for an Ackerman steered vehicle. This module
requires a series of obstacle free constant curvature arcs as input. In addition
to the command input, the module requires knowledge of the specific robot
kinematics. Item such as wheelbase, tire diameter, and minimum turning radius
must be provided.

An additional way-point interface exists into the planning hierarchy. This
interface accepts a series of way-points as its commands and computes a series
of obstacle-free constant curvature arcs as output. This module reads in the ob-
stacle probability map from the sensor processing chain and also has knowledge
of the vehicle dynamics. A graphical example of this module’s output is shown
in Figure 6.

This planning module has two main strengths. It quickly plans realistic
smooth paths with appropriate speeds and curve radii while keeping within the
allowed deviation and avoiding obstacles. Second, it plans paths dynamically in
environments with moving obstacles (such as other vehicles). Weaknesses of this
planner stem primarily from not getting enough sensory information and not
attempting to use all the information available.

If a priori data is available, then a planning module exists to take advantage
of this data. This module ingests a priori vector data and computes a visibility
graph based plan that starts at the way-point planner’s planning horizon and
terminates at a named point (for example an address). This system currently
reads .mif formatted vector data. An example of the plan output is shown in
Figure 7. The system accepts a named point as its input and outputs a list of
way-points for the platform to follow.

Finally, a planning system capable of coordinating groups of vehicles exists.
This planner accepts behavior based commands (i.e. explore, or deliver packages)
and coordinates the actions of several platforms to accomplish the tasks. The
system accepts the behavior command as its input and outputs named points
and tasks for the platforms to accomplish. The system must have knowledge of
individual platform capabilities.



Fig. 6. Cellular obstacle map generated from obstacle probability data. Yellow repre-
sents cells that are unknown. Green represents free-space, orange represents the edge
of obstacles, and red represents obstacles. The obstacles are grown by half the vehicle
width to allow for the planner to plan on a point-sized robot. The white path represents
the planned path for the platform and the platform’s current location is shown as the
black dot (hard copies of this paper should be printed in color).

4 Migration to Real Hardware

The Servo Echelon in Figure 3 is implemented outside of MOAST by real or simu-
lated vehicles. To limit the spread of vehicle-specific source code into MOAST, an
external middleware layer was built that bridges different controllers to different
vehicles or vehicle simulations. This Simulation Interface Middleware (SIMware)
defines a software application programming interface (API) based on the notion
of “skins” that customize an environment to particular controllers and simula-
tions or real vehicles [11]. Skins are divided into superior skins that interface
SIMware to vehicle controllers, and inferior skins that interface SIMware to sim-
ulations or real vehicles. Programmers build a SIMware middleware layer by
instantiating a particular superior skin that interfaces to a controller, instantiat-
ing a particular inferior skin that interfaces to a robot and sensor environment,
and defining configuration information specific to each skin.



Fig. 7. Vector-based a priori map used by the a priori planner. The red areas are
obstacle polygons and the white is free space. The computed path is shown in green,
and the robot location is shown with a large green circle. The small green dots represent
the planning horizon of the way-point planning system.

Inferior skins have been created that communicate with the simulator US-
ARSim, the Player interface library, and directly to smart motor drives. This has
allowed for the direct application of simulated code to real platforms. Since all of
the interfaces above the Servo Echelon do not change, no modifications to the al-
gorithms under test are necessary. In fact, by using a validated simulation engine
such as USARSim, the authors have been able to migrate the entire MOAST
framework from simulation to an ATRV platform without changing any lines
of code. In addition, real/virtual operation is possible where part of the system
operates in simulation while other aspects are run on real hardware. This has
been demonstrated with the use of real mobility and simulated perception. In
this case, mobility planning algorithms are able to take advantage of perceived
attributes that may not be available from the current generation of perception
algorithms.

5 Future Work and Conclusions

The MOAST framework has been used to control virtual robots in both urban
search and rescue environments and manufacturing settings, and physical robots
(automated guided vehicles) on real shop floors. By utilizing the Player inferior
skin of SimWare, identical algorithms that have been tuned in simulation are
being experimented with on real hardware in identical environments. The idea
is to validate performance in both the real and virtual worlds in order to verify
simulated models and control system utility.



In addition, new algorithms are constantly being added to the framework.
Work is progressing on Simultaneous Localization and Mapping (SLAM) as well
as the inclusion of a true 3D world model. The MOAST website highlights the
latest improvements.
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