doi:10.1088/0026-1394/43/1/C01

Erratum

Simple flow meter and viscometer of high accuracy for gases

R F Berg 2005 Metrologia 42 11-23

Table 2 was incorrect due to a sign error of the viscosity ratios $C_{\rm N_2}({\rm gas})$ and a misinterpretation of literature values for helium, nitrogen and argon. The corrected table is below. For helium, the corrected measured value differs from the *ab initio* calculated value of (19.823 \pm 0.006) $\mu {\rm Pa}$ s by twice the combined uncertainty of 0.05%.

Table 1. Values of the low density viscosity η_0 at 25 °C obtained from the literature and from the present measurements. For optimum consistency, the measured values were derived only from flow measurements made with De < 20 and $P_2 \approx 100$ kPa, and the literature ratios were derived only from measurements made in a single laboratory (Vogel and co-workers). The absolute uncertainties of the last column correspond to a standard uncertainty of 0.037%.

Gas	η ₀ (literature)/ (μPa s)	$[C_{N_2}(gas) - 1] \times 100$	η ₀ (present work)/ (μPa s)
He	19.844 [31]	$+0.039 \pm 0.010$	19.842 ± 0.007 17.762 ± 0.007
N ₂	17.777 [31]	0.000 ± 0.010	
Ar	22.586 [31]	$+0.050 \pm 0.008$	22.582 ± 0.008
C ₃ H ₈	8.146 [18, 32]	$+0.162 \pm 0.010$	8.148 ± 0.003
SF ₆	15.234 [28, 33]	$+0.076 \pm 0.009$	15.226 ± 0.006