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The pair correlation functions for a mixture of two Lennard-Jones particles were computed by both 
the Percus-Yevick equations and by molecular dynamics. The changes in the pair correlation 
function resulting from changes in the composition of the mixtures are quite unexpected. 
Essentially, identical changes are obtained from the Percus-Yevick equations and from molecular 
dynamics simulations. The molecular reason for this unexpected behavior is discussed. © 2008 
American Institute of Physics. [DOl: 10.1063/1.2931940] 

I. INTRODUCTION 

More than 30 years ago, one of us (A.B.) examined the 
form of the pair con'elation functions gJR) in mixtures of 
Lennard-Jones (LJ) particles. l It was found that when the 
mole fractionxA changes from XA=0 to XA = 1, the heights 
and the locations of the first peak of all the pair correlation 
functions almost do not change. The location of the first peak 
of ga/3(R) is roughly at (Ta/3' where (Ta/3 is the distance of the 
closest approach between the particles of species a and /3, 
and is almost independent of the composition. On the other 
hand, the location of the second peak of ga/3(R) is determined 
both by (Ta/3 as well as by the diameter of the particles that 
are most likely to fill the space between a and /3, and de
pends on the composition. For instance, the first peak of 
gAA(R) is at (TAA' The location of the second peak depends on 
the composition of the system. For XA"'" 1, (almost pure A), 
the second peak occurs at (TAA+(TAA (see Fig. 1); on the other 
hand; for XA =0 (A diluted in B), the second peak of gAA(R) 
occurs at (TAA + (TBB' The height of the second peak was found 
to change unexpectedly when the composition is changed 
from XA = 1 to XA = O. Instead of shifting gradually from a 
peak at 2(TAA to a peak at (TAA +(TBB, it was found that the 
height of the maximum at 2(TAA diminishes gradually as XA 
decreases, while at the same time a new peak is built up at 
(TAA +(TSD, reaching a maximal height at XA = O. In the course 
of writing a new monograph on the "molecular theory of 
solutions,"z these calculations were repeated and extended 
for LJ particles of different diameters: (TAA =1 and (TBB= 1.5, 
(TAA=l and (TBB=2, and (TAA=l and (TBB=3. In all of these 
cases, the same kind of changes in the pair correlation func
tions at the second peak was observed. In this article, we 
report on a similar study where the pair correlation functions .. 
were calculated by both the Percus-Yevick (PY) equations 
and by molecular dynamics (MD) simulations. The results 
obtained are not only interesting in themselves, but they also 
provide further demonstration of the capability Of the PY 
equations to accurately reproduce finer details of the behav
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ior of the pair cone1ation functions in mixtures. 
In Sees. II and III, we describe the model used and the 

method of calculations of ga/3 based on the PY equations and 
by MD. In Sec. IV, we compare the results obtained from the 
two methods. The interpretation of the results is discussed in 

. Sec. V. 

II. THE MODEL AND THE METHOD OF
 
CALCULATIONS BY PERCUS-YEVICK EQUATIONS
 

The calculations for this article were done for LJ par
ticles. Let A and B be two simple spherical molecules inter
acting through pair potentials which we denote by UAA(R), 
UAs(R), and UBB(R), of the form 

z 
Uaf3(R) =4Baf3[ ( 7r- ( 7 rJ. (2.1) 

We also assume the combination rules 

(2.2) 

BAB = BBA = (BAABBD) liZ . (2.3) 

The PY equation for pure spherical molecules has the form3 

y(RI>Rz) =1+ P{y(RI>Rz)f(RI>R3) 

X [y(Rz,R3)f(Rz,R3) +y(Rz,R3) - 1]dR3 , 

(2.4) 

where f is the Mayer function defined as 

f(R) =exp[- /3U(R)] - 1 (2.5) 

and y(R) is defined as 

y(R) = g(R)exp[/3U(R)]. (2.6) 

Another simpler and useful form of this equation is obtained 
by transforming to bipolar coordinates 

(2.7) 

The element of volume is expressed as 

0021-9606/2008/128(21 )/214504/G/$23.00. 128,214504-1 © 2M8.American Institute of Physics 

mailto:arieh@fh.huji.ac.il


214504-2 A. Ben-Nairn and R. Mountain J. Chern. Phys. 128,214504 (2008) 

.~.••> ..~ .• ,

~
 " ••• '.'. OF •• ' 

~,.c 
~ 

00 
(J;afJ ., .. 

- .... 
A'c,Q

FIG. 1. Configurations corresponding to the first three peaks of gap(R) for a 
system dominated by A particles. The diameters of the A and the B particles 
are iTA = 1 and iTn= 1.5, respectively. The shaded circles are the particles that 
are most likely to fiIl the space between a and {3, at this composition (xA 
= 1.0). 

dR3 = 21ruVdudv/R (2.8) 

and Eq. (2.4) is transformed into 

y(R) = 1 +21rpR- 1J: y(u)f(u)udu 

I
R+u 

X [y(v)j(v) +y(v) - l]vdv. (2.9) 
IR-ul 

For the numerical solution, it is convenient to transform the 
6PY equation by defining the functionZ

-

z(R) = y(R)R. (2.10) 

Hence, we get an integral equation for z(R), which reads 

2 

0.5 

j 

O.,S 11.5. 2' 2.5: ,3 3;5 iI. 
R/q~ 

i'" l' 

z(R) =R +2npI:Z(U)f(U)dU 

X (R+U [Z(v)j(v)+Z(v)-v]dv. (2.11 ) J1R-ul 

For mixtures, of say, two components, Eq. (2.11) is general
ized to 

(2.12) 

where the sum includes two terms y=A, B. The numerical 
procedure is similar to the case for one component. One 
starts with 

(2.13) 

for all the four functions zcr/3(R) and proceeds to solve the 
four integral equations [Eq. (2.12)] by iteration: (For more 
details, see Refs. 1 and 2). 

III. NPT MOLECULAR DYNAMICS SIMULATIONS 

A FORTRAN code that implements the NPT ensemble7 

was written and tested for a one component LJ fluid. The 
equation of state generated with this code is in close agree
ment with the extensive body of simulation results for that 
system.8 The code was then extended to simulate mixtures of 
LJ particles. 

The mixture studies are for 500 particles of two sizes. 
The smaller type A particle has LJ parameters BAA/ kT=O.5 
and 0"AA = 1 and the larger type B particle has LJ parameters 
BBB/ kT=0.5 and O"BB= 1.5. The mass of the type A particle is 
set to 1 and that of the type B particle is arbitrarily set to 1.3. 
The time unit 7 is 
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FIG. 2. The pair correlation functions gAA(R), gAn(R), and gnn(R) for xA=0,9. Solid lines from PY equations; Dotted curves from simulations. 
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FIG, 3, The pair conelation functions gAA(R), gAo(R), and goo(R) for XA =0, L Solid lines from PY equations; same from simulations, 

(3,1) 

The particular set of simulations of interest has a packing 
fraction 

(3,2) 

where xA and Xo are the mole fractions of type A and type B 
particles, respectively, and P= PA +Po. A series of states with 

'XA between 0.1 and 0.9 were generated by adjusting the 
specified pressure until the volume fraction of 1]=0.45 was 
realized. This typically took three iterations of the system. 
When the desired volume was obtained, a production run of 
1OOOr was made with a time step of O.Olr. The pair correla
tion functions for the fluid were generated and normalized to 
unity at large separations. 

IV. RESULTS FROM THE PERCUS-YEVICK 
EQUATIONS AND THE MOLECULAR DYNAMICS 
SIMULATIONS 

In this section, we describe the results obtained by solv
ing the PY equations for LJ particles and by simulation. We 
shall focus specifically on the variation of ga{iR) at the lo
cation of the second peak. 

The parameters used for these calculations are 

(TAA = 1.0, (TBO = 1.5, 

(4.1) 

BAA __ BOO __ 0.5 045 
kT kT ' 1]=. . 

We have done the calculation on the following compositions: 
xA=O.I, xA=0.9, and around xA=0.65. The results are dis
cussed separately for the three regions. 

(1)	 Systems that are dominated by the presence of A's, be
tween any pair of particles, i.e., XA =1. 
Figure 2 shows the three pair cOITelation functions for a 
system with composition xA =0.9, obtained by both the 
PY and the MD methods. At this composition, gAA(R) is 

almost identical with the pair cOlTelation function for 
pure A. The peaks occur at about (TAA, 2(TAA, and 3(TAA
Since 1]=0.45 in Eq. (3.2) corresponds to quite a high 
density, we have three peaks; two pronounced and one 
weaker peak. The function gAB(R) has the first peak at 
about (TAB' [The value of (TAnis (TAA + (TBB) 12= 1.25. 
However, due to errors in the numerical computation 
and the fact that the minimum of VAO is at 2 L/6(TAB' we 
actually obtain the first maximum at about R= 1.3]. The 
second and the third peaks of gAo(R) are determined 
not by multiples of (TAB, but by the addition of (TAA' 
That is, the maxima are at R=(TAB, (TAo+(TAA, (TAO 
+2(TAA' etc. This is a characteristic feature of a dilute 
solution of B in A, where the spacing between the 
maxima is determined by (TAA, i.e., the diameter of the 
denominating species. Similarly, the first peak of 
gB/j(R) is at about (TOB= 1.5 and the second and third 
peaks occur at (TOO + (TAA and (TBO+ 2(TAA, respectively. 
The molecular reason for this is very simple. The spac
ing between, say the first and second peaks, is deter
mined by the size of the molecule that will most prob
ably fill the space between the two molecules under the 
observation. Because of the prevalence of A molecules 

A 6' 

FIG. 4. As in Fig. I, but for XA =0, i.e., a system dominated by B palticles 
(the shaded circles are ,the particles filling the space between Q' and fJ). 
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FIG. 5. The pair correlation functions gAA(R), gAn(R), and gBB(R) for xA=0.65. Solid lines from PY equations; dotted curves from simulations. 

in this case, they are the most likely to fill the space 
between A and B. The situation is depicted schemati
cally in Fig. 1 where we show the most likely filling of 
space between a pair of molecules for the case xA"'" 1, 
i.e., for a very dilute solution of B in A. The first row 
shows the approximate locations of the first three peaks 
of 8AA(R); other rows correspond successively to 
8An(R)=8BA(R) and 8BB(R). 
For xA"'" I, the component A may be referred to as the 
solvent and B as the solute. For any pair of species af3, 
we can pick up two specific particles (one of species a 
and the other of species (3) and refer to these particles 
as a "dimer." From the second row of Fig. 1, we see 
that the most probable configurations of the dimers oc
cur either when the separation is UAB or when they are 
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FIG. 6. The pair correlation function gAA(R) for xA=0.7 (dashed dot line), 
0.65 (dashed line), and 0.6 (solid line). Only the region between 1.75""R 
"" 3 is shown. 

"solvent separated," i.e., when the distances are R 
""'uAn+nuAA' where n=I,2,3, for the second, third, 
and fourth peaks. Note that because of the approximate 
nature of the computations, the curves gAB(R) and 
8BA(R) may come out a little different; however, theo
retically, they should be identical and in our computa
tion, they are nearly identical and may not be distin
guished on the scale of Fig. 2. Note that the results 
obtained by the PY and the MD are nearly the same as 
shown in Fig. 2. 

(2)	 System dominated by the presence of B's, between any 
pair of particles, i.e., XA "'" O. 
This is the other extreme case where XA "'" 0 or Xn"'" 1. 
Figure 3 shows the pair correlation functions for this 
case obtained by the two methods. Here A is diluted in 
B and the separation between the peaks is determined 
by Unn, since now it is B. that dominates the space 
between any pair of particles. Thus, the first peak of 
8M(R) appears at U AA as expected. However, the sec
ond and third peaks are roughly at uAA+unn and UAA 
+ 2UBB, respectively.
 
Figure 4 shows the configurations con-esponding to first
 
three peaks of 811{iR) for the system of A diluted in B.
 
Note that in this case, it is in the B particles that are
 
most likely to fill the space between the pair of particles
 
for which 8 ll{3(R) is under consideration.
 

(3)	 Systems of intermediate composition: xA =0.65. 

Figure 5 shows the pair correlation functions 811{3(R) for 
the composition xA =0.65. A remarkable feature of these 
curves is the almost complete disappearance of the third and 
fourth peaks. The second peak has developed a broad, nearly 
flat region unlike the case of either xA =0.9 or xA =0.1. Since 
no component is dominant in this case, we cannot describe 
the most likely configuration as we did in Figs. 1 and 4. A 
magnified view of the second peak for region 8AA(R) is pro
vided in Fig. 6 where the MD results are shown for XA =0.7 
(dash-dot line), xA=0.65 (dashed line), and xA=0.6 (solid 
line). In this composition interval the position of the second 
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FIG. 7. A magnified view of the second peak of gM(R) is shown as a 
function of the mole fraction of component A (indicated by the numbers on 
the cW'ves). The arrows indicate how the amplitudes at 2.0 and 2.5 changes 
as the mole fraction of A changes from 0.99 to 0.01 (taken from Ref. I). 

maximum in 8AA(R) shifts from about (TAA +(TBB at XA =0.6 to 
about (TAA +(TAA at XA =0.7. There are corresponding changes 
in the position. of the second peak in gAB(R) and gnB(r). The 
PY results show the same behavior as the MD results. A 
more detailed behavior of the pair correlation function near 
the second peak is shown in Fig, 7, 

V, DISCUSSION 

As it is well known,1,2 the second and the third peaks of 
the pair comilation function disappear when the volume den
sity is low. This is true for all compositions. The phenomena 
we have observed in the mixture at a relatively high volume 
density (77=0.45) is not a result of the scarcity of particles in 
the system but a result of the competition between the spe
cies A and B to occupy the space between the two selected 
particles. 

We recall that the location of the second peak is deter
mined principally by the size of the particles that fill the 
space between the two selected particles. For XA =0.9, it is 
most likely that the space will be filled by A molecules (Fig. 
1). Similarly, for XA =0, 1, it is most probable that the B mol
ecules will be filling the space (Fig. 4). The strong second 
peak of gAA(R) at 2(TAA in the first case and at (TAA +(TBB in 
the second case reflects the high degree of certainty with 
which the system chooses the species for filling the space 
between any pair of selected particles. As the mole fraction 
of A decreases, the B molecules become competitive with A 
for the "privilege" of filling the space. At about XA =0.65, B 
is in a state of emulating A (in the sense of filling the space). 
The fact that this occurs at XA = 0.65 and not, say at XA 

= 0,5 is a result of the difference in the diameters of the two 
components. In our case, the ratio (TAA / (TBB = 1/ 1.5 "'" 0.66. 
The flattening of the second peak reflects the inability of the 
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FIG. 8. Schematic description of the locations of the first peak (at contact), 
and the disappearance of the location of the second peak when there exists 
no dominating molecules to fill the space between the two particles. 

system to "make a decision" as to which kind of particle 
should be filling the space between the two selected par
ticles. This is shown schematically in Fig. 8. 

The flattening of the second peak can be interpreted also 
in terms of the solvent induced force between the two par
ticles in the mixture. For the LJ particles discussed in this 
article, the potential of mean force is related to the pair cor
relation functions by 

Waj3(R) = - kT In 8aj3(R). 

At distances of R;;, 2, the direct forces are negligible for 
all compositions. However, for either XA = 0.1 or XA "'" 0.9, 
and for 77= 0.45, there exists a significant solvent-induced 
force between a and {3. The flattening of the pair correlation 
functions at the location of the second peak can be inter
preted in terms of almost no solute-induced force between 
the pair of particles a and (3. Note however, that although the 
pair correlation functions are nearly flat at the region of the 
second peak, the values of galR) in this region is not unity. 
Thus, the correlation is small but finite, while the solvent 
induced force is nearly zero in this region. 

The fact that the results from the PY and the simulations 
agree both qualitatively and quantitatively, evidently shows 
that the PY approximation is valid, and can reproduce these 
fine details of the behavior of the 'pair correlation functions 
in mixtures. 

We conclude with two notes regarding the phenomenon 
reported in this article. First, it was brought ,to our attention 
by the referee that the influence of the composition and rela
tive size of the mixture components on the position of the 
second maximum was also noted by Ell and by Huber and 
Ely. 10 The simulation gave the correct location of the second 
maximum, but an approximate method, based on mean den
sity approximation, failed. Second, in 1995, Matteoli and 
Mansoori ll published an approximate expression for the pair 
cOl1'elation functions in pure liquids and mixtures. This ap
proximate method also failed to show the qualitative behav
ior of the pair correlation functions reported in this article. 12 
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