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An equation of state is presented for the thermodynamic properties of propane that is valid for temperatures
from the triple point temperature (85.525 K) to 650 K and for pressures up to 1000 MPa. The formulation
can be used for the calculation of all thermodynamic properties, including density, heat capacity, speed of
sound, energy, and saturation properties. Comparisons to available experimental data are given that establish
the accuracy of calculated properties. The approximate uncertainties of properties calculated with the new
equation are 0.01 % to 0.03 % in density below 350 K, 0.5 % in heat capacities, 0.03 % in the speed of
sound between (260 and 420) K, and 0.02 % in vapor pressure above 180 K. Deviations in the critical
region are higher for all properties except vapor pressure.

Introduction

Characteristics of Propane. Propane (C3H8, R-290) is the
third alkane in the saturated hydrocarbon (paraffin) series starting
with methane. Propane is a gas at atmospheric conditions and
can be compressed into a liquid for transportation. As a
commodity in this state, it is often termed liquefied petroleum
gas (LPG) and contains small amounts of propylene, butane,
and butylene. Because it can be stored as a liquid at atmospheric
temperatures, propane has a huge advantage over natural gas,
which must be highly compressed to store the same amount of
energy in a similar sized tank.

Propane is extracted from natural gas processing or from the
removal of light hydrocarbons in oil recovery. Propane is
nontoxic but is considered an asphyxiate in large doses. It is
used in many applications, primarily as a fuel, but also as a
propellant or chemical feedstock in the production of other
chemicals, including propyl alcohol. It is the third most common
vehicle fuel after gasoline and diesel and has a lower greenhouse
gas emission than that typical of motor fuels.

Propane is becoming popular as a refrigerant as traditional
refrigerants are being replaced due to their ozone depletion
potential or global warming potential. Propane is one of the
so-called “natural refrigerants”, a group that also includes water,
carbon dioxide, and ammonia. It can be used in its pure form
or mixed with isobutane. Some applications mix propane with
other refrigerants to improve the oil solubility.

With so many industrial and scientific uses, propane has been
widely measured to characterize its chemical, thermal, caloric,
and combustion properties. Numerous experimental studies have
been carried out over the full temperature and pressure range
of nearly all applications. In the thermodynamics arena,
experimental data are available for density, vapor pressure, speed
of sound, virial coefficients, heat capacities, enthalpies, and
enthalpies of vaporization as given in refs 1 to 186. These data

have been used over the last century to develop many equations
of state to describe the gas phase, the liquid phase, or the full
surface of state of propane. The work presented here represents
the latest development on equations of state for propane and is
part of an international collaboration between the Ruhr-
University in Bochum, the Helmut-Schmidt University of the
Federal Armed Forces in Hamburg, and the National Institute
of Standards and Technology in Boulder to characterize the
properties of ethane (Bücker and Wagner187), propane (this
work), and the butanes (Bücker and Wagner188). This work
relies heavily on new measurements from these three
laboratories. Pressure-density-temperature and vapor pres-
sure measurements were made by Glos et al.48 in Bochum
and by McLinden120 in Boulder; heat capacities and derived
vapor pressures were made by Perkins et al.139 in Boulder;
and speed of sound measurements were made by Meier121 in
Hamburg. These data together with other selected literature data
form the basis of the new equation of state. The physical
characteristics and properties of propane are given in Table 1.

Equations of State. Equations of state are used to calculate
the thermodynamic properties of pure fluids and mixtures and
are often expressed as a function of the pressure with indepen-
dent variables of temperature and density or as a function of
the Helmholtz energy with independent variables of temperature
and density. Equations expressed in terms of the Helmholtz
energy have the advantage that all thermodynamic properties
are simple derivatives of the equation of state, and thus only
one equation is required to obtain any thermodynamic property,
including those that cannot be measured, such as entropy. The
location of the saturation boundaries requires an iterative
solution of the physical constraints on saturation (the so-called
Maxwell criteria, i.e., equal pressures and Gibbs energies at
constant temperature for phases in equilibrium). Equations
expressed in terms of pressure require integration to calculate
caloric properties such as heat capacities and sound speeds.* Corresponding author. E-mail: eric.lemmon@nist.gov.
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Equations of state are generally composed of an ideal gas
contribution and a real gas contribution. The ideal gas portion
is composed of the ideal gas law, p ) FRT (where p is pressure,
F is molar density, T is temperature, and R is the gas constant),
and an equation to describe the isobaric heat capacity at zero
pressure. The real gas is generally composed of an analytical
equation with multiple terms, with typical equations comprising
10 to 50 terms. High accuracy equations have often required
more terms than those of low accuracy; however, the most recent
equation by Lemmon and Jacobsen189 for the properties of
pentafluoroethane (R-125) introduced a modified functional form
that allowed the magnitude of the exponents on temperature to
be reduced dramatically. This allowed fitting the experimental
data with fewer terms but with high accuracy. The work on
R-125 was the forerunner for the development of the propane
equation presented here.

Most equations of state that are explicit in the Helmholtz
energy are made up of a combination of up to four different
types of terms. The two most common are simple polynomial
terms, FdT t (where d and t are exponents in the polynomial
terms), polynomial terms with the addition of an exponential
part, FdT t exp(-Fl), Gaussian bell-shaped terms (which will be
explained later), and nonanalytical terms that are present in only
a few high accuracy equations and will not be discussed in this
work. Further information is given by Span and Wagner.190

Equations have almost always required high values of the
exponent t to accurately calculate the properties of the fluid.
These high values have led to some extremely unphysical
behavior of the equation within the two-phase portion of the
fluid. Although this area is not encountered in typical usage, it
can cause problems with poorly written root solving routines
and introduces false roots for two-phase states that appear to
have a lower energy state and thus a more favorable state as
compared with the true properties of the fluid. Various mixture
models use states in the two-phase region of at least one of the
pure fluid components in the calculation of the mixture
properties, and in such applications, it is important that the two-
phase region be well behaved. The modification of the functional
form in the R-125 work expanded the exponential terms to
include a temperature dependency, FdT t exp(-Fl)exp(-Tm). This
final piece allowed much lower values on the exponent t, which
resulted in a more physically correct functional form and
removed the possibility of false two-phase state points.

The work on propane continued the research into a functional
form that can more correctly represent the true physical
properties. The new term introduced in the R-125 equation was
not used in this work, but rather emphasis was placed on
redefining the usage of the Gaussian bell-shaped terms so that
they would describe the change in the critical region, allowing
the polynomial terms to model only the vapor and liquid states
away from the critical region. This produced a similar effect in
that the magnitude of the exponent t was greatly reduced.

Although pure compounds generally exist as an identifiable
fluid only between the triple point temperature at the low
extreme and the dissociation limit at the other extreme, every
effort has been made to shape the functional form of the equation
of state so that it extrapolates well to extreme values of
temperature, pressure, and density. For example, at low tem-
peratures, virial coefficients should approach negative infinity,
and at extremely high temperatures and densities, isotherms
should not cross one another and pressures should not be
negative. Although such conditions exceed the physical limits
of a normal fluid, there are applications that may extend into
such regions, and the equation of state should be capable of
describing these situations. Calculated properties shown here
at extreme conditions that are not defined by experiment are
intended only for qualitative examination of the behavior of
the equation of state, and reliable uncertainty estimates cannot
be established in the absence of experimental data.

Propane has a very low reduced triple point temperature (Ttp/
Tc) of 0.23 that makes it a prime candidate for corresponding
states applications. There are only a handful of other fluids, such
as 1-butene, that have slightly lower values. In addition, a
substantial quantity of high accuracy measurements is available
for propane, allowing a reference equation of state to be
developed. This reference equation of state can then be used in
corresponding states models (described below) to predict
properties of a host of other fluids. Since nearly all other fluids
have reduced triple point temperatures higher than propane, all
calculations for other fluids will be at states where experimental
data were used to develop the propane surface.

Phase Equilibria of Propane

The single most important state of any fluid in the develop-
ment of equations of state is the critical point. This point
becomes the reducing parameter for the equation and defines
liquid and vapor states, as well as supercritical states that behave
like gases (when the density is less than the critical density)
and like liquids (when the density exceeds the critical density).
Nearly all fluids show similar behavior when their properties
are scaled by the critical parameters. The law of corresponding
states uses this aspect to predict properties for any fluid by
mapping the surface of an unknown substance onto that for a
well-known substance. The prediction can be improved as
additional experimental data become available.

The triple point of a fluid defines the lowest temperature at
which most substances can remain in the liquid state. Below
this temperature only solid and gas states are possible in most
applications, and the boundary between these states is known
as the sublimation line. The melting (or freezing) line describes
the boundary between the liquid and solid states for temperatures
above the triple point. Equations of state such as that described
here can calculate the properties at the melting point in the liquid
phase but cannot calculate properties of the solid phase.

Critical and Triple Points. Critical parameters for propane
have been reported by numerous authors and are listed in Table 2
(temperatures are given on ITS-90). The difficulties in the

Table 1. Physical Constants and Characteristic Properties of
Propane

symbol quantity value

R molar gas constant 8.314 472 J ·mol-1 ·K-1

M molar mass 44.09562 g ·mol-1

Tc critical temperature 369.89 K
pc critical pressure 4.2512 MPa
Fc critical density 5.00 mol ·dm-3

Ttp triple point temperature 85.525 K
ptp triple point pressure 0.00017 Pa
Ftpv vapor density at the triple point 2.4 ·10-10 mol ·dm-3

Ftpl liquid density at the triple point 16.626 mol ·dm-3

Tnbp normal boiling point temperature 231.036 K
Fnbpv vapor density at the normal

boiling point
0.0548 mol ·dm-3

Fnbpl liquid density at the normal
boiling point

13.173 mol ·dm-3

T0 reference temperature for ideal
gas properties

273.15 K

p0 reference pressure for ideal
gas properties

0.001 MPa

h0
0 reference ideal gas enthalpy at T0 26148.48 J ·mol-1

s0
0 reference ideal gas entropy at T0

and p0

157.9105 J ·mol-1 ·K-1
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experimental determination of the critical parameters and impurities
in the samples cause considerable differences among the results
obtained by the various investigators. The critical density is difficult
to determine accurately by experiment because of the infinite
compressibility at the critical point and the associated difficulty of
reaching thermodynamic equilibrium. Therefore, reported values
for the critical density are often calculated by extrapolation of
rectilinear diameters with measured saturation densities or by
correlating single-phase data close to the critical point.

Figures 1, 2, and 3 show the critical temperature, pressure, and
density as a function of the year that they were published. It is
interesting to note how the differences between the reported values
and the true critical point cannot be described as a function of the
year published. With the availability of new high accuracy density
data in the critical region, we allowed the reducing parameters
(critical point) of the equation of state to be determined simulta-
neously with the other coefficients and exponents in the equation
(as explained later). This is one of the first successful attempts to
accurately derive the critical temperature and density solely from
fitting experimental data for both the single phase and saturated
states of a substance during the fitting process (also see Schmidt
and Wagner191). Other such equations used critical parameters taken
from a single experimental source. During many months of fitting,
the range of the fitted values for the reducing parameters was

monitored closely. For temperature, it ranged from (369.86 to
369.92) K but was most stable around 369.89 K. This latter value
was chosen as the critical temperature of propane. The critical
density was also monitored closely and stayed remarkably centered
around a value of 5.00 mol ·dm-3, which was taken as the final
value for the critical point. The critical pressure was determined
from the final equation of state as a calculated point at the critical
temperature and density. The resulting values of the critical
properties are

Tc ) (369.89 ( 0.03) K (1)

Fc ) (5.00 ( 0.04) mol · dm-3 (2)

and

pc ) (4.2512 ( 0.005) MPa (3)

where all uncertainties are estimated as 2σ combined values.
These values should be used for all property calculations with
the equation of state.

Figure 4 shows calculations of the saturation properties
from the equation of state very close to the critical point.
The rectilinear diameter (the average of the saturated liquid
and vapor densities) is also shown to be linear on this scale
as it approaches the critical density value of 5.00 mol · dm-3

(as expected). In recent work on equations of state, including
some of the equations in the work of Lemmon and Span,192

where equations of state were presented for 20 different
fluids, the shape of the rectilinear diameter was checked to
ensure that it was linear in the critical region. Cases where
this line curved to the left or right indicated incorrect
representation of the critical region properties, and either the
critical density was modified or the values of the saturation
states were changed until the rectilinear diameter was linear.
This was especially important for fluids with limited or low
accuracy data in the critical region because the high flexibility
in the equation resulted in properties that were often incorrect.
Adjusting the saturation lines and critical density so that the
rectilinear diameter was linear resulted in much better
representation of the critical properties, as is shown in this
work.

The triple point temperature of propane was measured by
Perkins et al.139 by slowly applying a constant heat flux to a
frozen sample contained within the cell of an adiabatic
calorimeter and noting the sharp break in the temperature rise,
resulting in

Ttp ) 85.525 K (4)

Pavese and Besley193 also measured the triple point temperature
and reported a value of 85.528 K. The triple point pressure is
extremely low and very difficult to measure directly, and thus
it was calculated from the equation of state with a value of ptp

) 0.00017 Pa.
Vapor Pressures. The boundaries between liquid and vapor

are defined by saturation states, and ancillary equations can
be used to give good estimates. These ancillary equations
are not required when a full equation of state is available
since application of the Maxwell criteria to the equation of
state can yield the saturation states. This criteria for a pure
fluid requires finding a state in the liquid and a state in the
vapor that have the same temperature, pressure, and Gibbs
energy. The ancillary equations can be used to give close
estimates for the pressure and densities required in the
iterative procedure to find the saturation states.

Table 3 summarizes the available experimental data for
propane, including vapor pressures. Data labeled as “TRC” were

Table 2. Summary of Critical Point Parameters

Tc pc Fc

author year K MPa mol ·dm-3

Abdulagatov et al.2 1996 369.96 5.044
Abdulagatov et al.3 1995 369.948 4.995
Ambrose and Tsonopoulos5 1995 369.83 4.248 4.989
Barber8 1964 369.693 4.261 5.13
Barber et al.9 1982 369.995 4.26 5.063
Beattie et al.12 1935 369.934 4.2567 5.13
Brunner15 1985 369.955 4.243
Brunner16 1988 369.885 4.26
Chun et al.25 1981 369.695 4.261 5.128
Clegg and Rowlinson28 1955 369.784 4.2486 4.92
Deschner and Brown36 1940 369.974 4.2658 5.08
Glowka49 1972 369.725 4.3529 5.025
Gomez-Nieto and Thodos51 1977 369.945 4.2567
Hainlen57 1894 375.124 4.9143
Higashi64 2004 369.818 4.2465 5.148
Holcomb et al.70 1995 369.77 4.244 4.996
Honda et al.72 2008 370.01 4.26 5.035
Horstmann et al.73 2001 369.7 4.25
Jou et al.80 1995 369.75 4.27
Kay85 1964 369.924 4.2557
Kay and Rambosek86 1953 369.79 4.2492 5.122
Kratzke98 1980 369.775 4.239
Kratzke97 1983 369.825 4.246 4.955
Kreglewski and Kay100 1969 369.994 4.2603 5.125
Kuenen102 1903 370.124 4.3468
Lebeau106 1905 370.624 4.5596
Maass and Wright114 1921 368.723
Matschke and Thodos116 1962 369.862 4.2568
Matteson117 1950 369.935 4.2568 4.976
Mousa127 1977 369.715 4.2537 4.853
Mousa et al.128 1972 369.715 4.2537 4.853
Olszewski132 1895 370.124 4.4583
Opfell et al.133 1956 369.946 4.2548 4.987
Reamer et al.144 1949 369.957 4.2568 5.003
Roof148 1970 369.797 4.2492
Sage and Lacey150 1940 369.679 4.2885 5.272
Sage et al.151 1934 373.235 4.4354 5.268
Scheeline and Gilliland154 1939 372.013 4.3851
Sliwinski161 1969 369.816
Thomas and Harrison168 1982 369.825 4.2471 4.955
Tomlinson170 1971 369.797 4.914
Yasumoto et al.178 2005 369.84 4.247 4.898
Yesavage et al.180 1969 369.957 4.2541
this work 2009 369.89 4.2512 5.00
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taken from Frenkel et al.194 and are explained in the data
comparison section. The vapor pressure can be represented with
the ancillary equation

ln(pσ

pc
) )

Tc

T
[N1θ + N2θ

1.5 + N3θ
2.2 + N4θ

4.8 + N5θ
6.2]

(5)

where N1 )-6.7722, N2 ) 1.6938, N3 )-1.3341, N4 )-3.1876,
N5 ) 0.94937, θ ) (1 - T/Tc), and pσ is the vapor pressure. This
equation is a modification of the equation first proposed by
Wagner195 in 1974. The original form of the equation has
been used to model the vapor pressures for a large number
of substances. The exponents on the first two terms are fixed
by theory as explained by Wagner or by Lemmon and
Goodwin.196 In the modified form, the exponents on the last
three terms are substance specific, and when accurate data

are available, the exponents can be fitted nonlinearly to
produce an equation with very low uncertainties. In this work,
the values of the coefficients and exponents were determined
simultaneously with nonlinear fitting techniques. The values
of the critical parameters are given above in eqs 1 to 3.

Saturated Densities. Table 3 summarizes the saturated liquid
and vapor density data for propane. The saturated liquid density
can be represented by the ancillary equation

F′
Fc

) 1 + N1θ
0.345 + N2θ

0.74 + N3θ
2.6 + N4θ

7.2 (6)

where N1 ) 1.82205, N2 ) 0.65802, N3 ) 0.21109, N4 )
0.083973, θ ) (1 - T/Tc), and F′ is the saturated liquid
density. The saturated vapor density can be represented by
the equation

Figure 1. Reported critical temperatures Tc of propane as a function of the year a published.
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ln(F′′
Fc

) ) N1θ
0.3785 + N2θ

1.07 + N3θ
2.7 + N4θ

5.5 +

N5θ
10 + N6θ

20 (7)

where N1 ) -2.4887, N2 ) -5.1069, N3 ) -12.174, N4 )
-30.495, N5 ) -52.192, N6 ) -134.89, and F′′ is the saturated
vapor density. Values calculated from the equation of state with
the Maxwell criteria were used in developing eq 7. The values
of the coefficients and exponents for eqs 6 and 7 were
determined with nonlinear least-squares fitting techniques.

Functional Form of the Equation of State

Modern equations of state are often formulated with the
Helmholtz energy as the fundamental property with independent
variables of density and temperature

a(F, T) ) a0(F, T) + ar(F, T) (8)

where a is the Helmholtz energy, a0(F,T) is the ideal gas
contribution to the Helmholtz energy, and ar(F,T) is the residual
Helmholtz energy, which corresponds to the influence of
intermolecular forces. Thermodynamic properties can be cal-
culated as derivatives of the Helmholtz energy. For example,
the pressure is

p ) F2(∂a
∂F)T

(9)

Additional equations are given in Appendix A.

In modern applications, the functional form is explicit in the
dimensionless Helmholtz energy, R, with independent variables of
dimensionless density and temperature. The form of this equation is

a(F, T)
RT

) R(δ, τ) ) R0(δ, τ) + Rr(δ, τ) (10)

where δ ) F/Fc and τ ) Tc/T.
Properties of the Ideal Gas. The Helmholtz energy of the

ideal gas is given by

a0 ) h0 - RT - Ts0 (11)

The ideal gas enthalpy is given by

h0 ) h0
0 + ∫T0

T
cp

0dT (12)

where cp
0 is the ideal gas heat capacity. The ideal gas entropy is given

by

Figure 2. Reported critical densities Fc of propane as a function of the year a published.

Journal of Chemical & Engineering Data, Vol. xxx, No. xx, XXXX E



s0 ) s0
0 + ∫T0

T cp
0

T
dT - R ln( FT

F0T0
) (13)

where F0 is the ideal gas density at T0 and p0 [F0 ) p0/(T0R)], and T0

and p0 are arbitrary reference states. Combining these equations results
in the following equation for the Helmholtz energy of the ideal
gas

a0 ) h0
0 + ∫T0

T
cp

0dT - RT - T[s0
0 + ∫T0

T cp
0

T
dT -

R ln( FT
F0T0

)] (14)

The ideal gas Helmholtz energy is given in dimensionless form
by

R0 )
h0

0τ
RTc

-
s0

0

R
- 1 + ln

δτ0

δ0τ
- τ

R ∫τ0

τ cp
0

τ2
dτ + 1

R ∫τ0

τ cp
0

τ
dτ

(15)

where δ0 ) F0/Fc and τ0 ) Tc/T0. The ideal gas Helmholtz energy
is often reported in a simplified form for use in equations of
state as

R0 ) ln δ - a1 ln τ + ∑ akτ
ik + ∑ ak ln[1 - exp(-bkτ)]

(16)

where standard models to describe the ideal gas heat capacity
have been assumed.

Properties of the Real Fluid. Unlike the ideal gas, the real
fluid behavior is often described with empirical models that
are only loosely supported by theoretical considerations.
Although it is possible to extract values such as second and

Figure 3. Reported critical pressures pc of propane as a function of the year a published.
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third virial coefficients from the fundamental equation, the
terms in the equation are empirical, and any functional
connection to theory is not entirely justified. The coefficients
of the equation depend on the experimental data for the fluid
and are constrained by various criteria explained elsewhere
in this manuscript and in the works of Span and Wagner197

and Lemmon and Jacobsen.189

The common functional form for Helmholtz energy equations
of state is

Rr(δ, τ) ) ∑ Nkδ
dkτtk + ∑ Nkδ

dkτtk exp(-δlk) (17)

where each summation typically contains 4 to 20 terms and
where the index k points to each individual term. The values of
tk should be greater than zero, and dk and lk should be integers
greater than zero. The functional form used in this work contains
additional Gaussian bell-shaped terms

Rr(δ, τ) ) ∑ Nkδ
dkτtk + ∑ Nkδ

dkτtk exp(-δlk) +

∑ Nkδ
dkτtk exp(-ηk(δ - εk)

2 - �k(τ - γk)
2)

(18)

These terms were first successfully used by Setzmann and
Wagner198 for the methane equation of state. In that work, these
terms are significant only near the critical point and rapidly go
to zero away from the critical point. As such, they are extremely
sensitive but powerful in modeling the properties of fluids in
the critical region, especially for densities; their ability to model
caloric properties (e.g., the steep increase of cV near the critical
point) is limited. As explained by Wagner and Pruss,199 the

strong sensitivity of these terms made it difficult to determine
the values automatically in the optimization and nonlinear fitting
process. Thus, they determined these parameters based on
comprehensive precalculations, and only two of them were fitted
at a time in their nonlinear regression.

In this work, because linear optimization was not used, the
coefficients and exponents of the Gaussian bell-shaped terms were
fitted simultaneously with all of the other parameters in the equation
of state. The terms had to be monitored closely to ensure that
irregular behavior did not creep into the equation, as was evident
by plots of heat capacities or speeds of sound. Initially, the values
of η and � were forced to be in the same range as values in other
equations reported by Wagner’s group. However, the fitting
algorithm tended toward much smaller values, indicating that these
terms would be numerically significant over a broader range of
temperature and density. The final values of these two coefficients
in this work are significantly different from those of other equations,
except for the very last term in the equation.

Most multiparameter equations of state have shortcomings
that affect the determination of phase boundaries, the calculation
of metastable states within the two-phase region, and the shapes
of isotherms in the low-temperature vapor phase. These can
be traced to the magnitude of t in τt in eq 17. As the temperature
goes to zero, τt goes to infinity for values of t > 1, causing the
pressure to increase rapidly to infinity. The effect is more
pronounced for higher values of t. The primary use of terms
with high values of t is for modeling the area around the critical
region, where the properties change rapidly. Outside the critical
region, the effect is dampened out with the δd contribution in

Figure 4. Saturation data in the critical region, the phase boundaries calculated from the Maxwell criteria, and the rectilinear diameter (average of the
saturation values) as a function of density F and temperature T.
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Table 3. Summary of Experimental Data for Propane

temperature range pressure range density range

author year no. of points (T/K) (p/MPa) (F/mol ·dm-3) AARDa (%)

Ideal Gas Isobaric Heat Capacities
Beeck13 1936 4 273 to 573 4.36
Chao et al.22 1973 19 50 to 1500 0.22
Dailey and Felsing31 1943 8 344 to 693 0.591
Ernst and Büsser42 1970 4 293 to 353 0.205
Esper et al.43 1995 26 230 to 350 0.297
Goodwin and Lemmon52 1995 14 265 to 355 1.02
He et al.62 2002 4 293 to 323 0.206
Kistiakowsky et al.92 1940 14 148 to 259 0.523
Kistiakowsky and Rice93 1940 4 272 to 369 0.361
Scott156 1974 8 272 to 369 0.282
Trusler and Zarari172 1996 7 225 to 375 0.028
Yesavage179 1968 7 339 to 422 0.646

Vapor Pressures
TRC (Frenkel et al.)194 120 130 to 426 0.00002 to 4.25 1.54
Barber et al.10 1982 18 329 to 370 1.94 to 4.23 0.48
Beattie et al.12 1935 17 323 to 348 1.71 to 2.85 0.018
Bobbo et al.14 2002 5 248 to 295 0.203 to 0.875 0.095
Burrell and Robertson18 1916 16 149 to 229 0.0004 to 0.101 18.3
Calado et al.19 1997 13 175 to 211 0.003 to 0.037 0.786
Carruth and Kobayashi21 1973 12 97.6 to 179 10-8 to 0.005 13.9
Chun24 1964 10 348 to 367 2.85 to 4.09 0.6
Clark26 1973 10 327 to 370 1.88 to 4.21 0.494
Clegg and Rowlinson28 1955 9 323 to 370 1.72 to 4.25 0.184
Coquelet et al.29 2003 17 277 to 353 0.536 to 3.13 0.108
Dana et al.32 1926 43 210 to 323 0.037 to 1.71 0.512
Delaplace35 1937 27 90.2 to 126 10-8 to 0.00001 40.9
Deschner and Brown36 1940 36 302 to 370 1.05 to 4.26 0.996
Djordjevich and Budenholzer38 1970 6 128 to 255 0.00001 to 0.259 6.92
Echols and Gelus40 1947 4 134 to 250 0.00003 to 0.215 11.6
Francis and Robbins45 1933 34 301 to 337 1.05 to 2.4 4.72
Giles and Wilson47 2000 4 273 to 333 0.474 to 2.12 0.144
Glos et al.48 2004 5 130 to 170 0.00002 to 0.002 0.741
Glos et al.48 2004 17 180 to 340 0.005 to 2.43 0.002
Hainlen57 1894 13 240 to 375 0.182 to 4.91 6.76
Hanson et al.58 1952 4 270 to 330 0.425 to 2 0.225
Harteck and Edse59 1938 145 163 to 232 0.001 to 0.107 0.846
Higashi et al.65 1994 8 283 to 313 0.644 to 1.38 0.891
Hipkin66 1966 4 267 to 366 0.385 to 3.92 1.25
Hirata et al.67 1969 5 197 to 273 0.016 to 0.476 0.728
Ho et al.69 2006 6 273 to 313 0.474 to 1.37 0.086
Holcomb et al.70 1995 19 240 to 364 0.149 to 3.79 0.198
Holcomb and Outcalt71 1998 4 290 to 350 0.769 to 2.95 0.09
Honda et al.72 2008 4 320 to 369 1.6 to 4.23 0.164
Im et al.77 2006 6 313 to 363 1.37 to 3.77 0.201
Kahre81 1973 5 278 to 328 0.548 to 1.88 0.581
Kay83 1970 10 332 to 368 2.07 to 4.14 0.41
Kay84 1971 9 332 to 390 2.07 to 4.83 0.438
Kayukawa et al.87 2005 13 240 to 360 0.148 to 3.55 0.102
Kemp and Egan89 1938 12 166 to 231 0.002 to 0.103 0.252
Kim and Kim90 2005 8 253 to 323 0.244 to 1.71 0.08
Kim et al.91 2003 8 253 to 323 0.244 to 1.72 0.134
Kleiber95 1994 3 255 to 298 0.261 to 0.949 0.034
Kratzke98 1980 14 312 to 368 1.33 to 4.07 0.05
Kratzke and Müller99 1984 5 300 to 357 1.01 to 3.36 0.01
Laurance and Swift105 1972 10 311 to 344 1.3 to 2.64 0.068
Lee et al.107 2003 7 268 to 318 0.408 to 1.53 0.313
Lim et al.110 2004 4 273 to 303 0.475 to 1.08 0.103
Lim et al.111 2004 6 268 to 313 0.408 to 1.36 0.362
Lim et al.112 2006 13 268 to 323 0.408 to 1.71 0.228
Maass and Wright114 1921 6 230 to 250 0.114 to 0.269 15.3
Manley and Swift115 1971 5 244 to 311 0.176 to 1.3 0.177
McLinden120 2009 38 270 to 369 0.431 to 4.18 0.017
Miksovsky and Wichterle122 1975 6 303 to 369 1.08 to 4.19 0.269
Miranda et al.123 1976 5 266 to 355 0.385 to 3.28 0.66
Miyamoto and Uematsu125 2006 8 280 to 369 0.583 to 4.18 0.082
Mousa127 1977 11 335 to 370 2.2 to 4.25 0.496
Niesen and Rainwater130 1990 4 311 to 361 1.3 to 3.63 0.08
Noda et al.131 1993 4 273 to 293 0.473 to 0.836 0.182
Outcalt and Lee135 2004 12 260 to 360 0.311 to 3.55 0.064
Park and Jung136 2002 5 273 to 313 0.475 to 1.37 0.049
Park et al.137 2007 5 273 to 313 0.472 to 1.37 0.298
Perkins et al.139 2009 53 85.5 to 241 10-8 to 0.154 0.162
Prasad141 1982 14 298 to 368 0.941 to 4.07 1.76
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Table 3. Continued

temperature range pressure range density range

author year no. of points (T/K) (p/MPa) (F/mol ·dm-3) AARDa (%)

Ramjugernath et al.142 2009 6 263 to 323 0.344 to 1.72 0.194
Reamer et al.144 1949 10 313 to 370 1.38 to 4.26 0.316
Reamer et al.145 1951 6 278 to 361 0.545 to 3.62 0.183
Sage et al.151 1934 21 294 to 371 0.862 to 4.31 0.511
Scheeline and Gilliland154 1939 5 315 to 372 1.41 to 4.39 1.1
Schindler et al.155 1966 8 173 to 348 0.007 to 2.9 10.5
Seong et al.159 2008 6 273 to 323 0.476 to 1.71 0.302
Skripka et al.160 1970 10 123 to 273 0.000005 to 0.472 4.34
Teichmann166 1978 15 325 to 363 1.77 to 3.78 0.047
Thomas and Harrison168 1982 25 258 to 370 0.292 to 4.25 0.022
Tickner and Lossing169 1951 13 105 to 165 10-7 to 0.001 6.13
Uchytil and Wichterle173 1983 32 296 to 368 0.893 to 4.12 0.156
Wichterle and Kobayashi177 1972 9 130 to 214 0.00002 to 0.044 2.47
Young182 1928 12 161 to 312 0.001 to 1.33 11.7
Yucelen and Kidnay184 1999 5 240 to 344 0.151 to 2.64 0.582
Zanolini185 1964 13 273 to 347 0.475 to 2.79 0.412
Zhang et al.186 2007 13 241 to 247 0.155 to 0.199 0.645

Saturated Liquid Densities
TRC (Frenkel et al.)194 15 85.5 to 363 7.7 to 16.6 0.836
Abdulagatov et al.3 1995 26 305 to 370 5.04 to 10.9 0.596
Anisimov et al.6 1982 5 271 to 370 5.08 to 12 2.41
Barber et al.10 1982 9 329 to 370 5.83 to 9.83 1.66
Carney20 1942 34 228 to 333 9.78 to 13.3 0.162
Clark26 1973 5 327 to 370 6.37 to 9.9 2.59
Clegg and Rowlinson28 1955 9 323 to 370 4.92 to 10.2 2.92
Dana et al.32 1926 12 273 to 329 9.96 to 12 0.557
Deschner and Brown36 1940 14 303 to 368 6.64 to 11 0.979
Ely and Kobayashi41 1978 18 166 to 288 11.5 to 14.8 0.061
Glos et al.48 2004 27 90 to 340 9.34 to 16.5 0.003
Haynes and Hiza61 1977 16 100 to 289 11.5 to 16.3 0.088
Helgeson and Sage63 1967 16 278 to 361 7.76 to 11.9 0.251
Holcomb et al.70 1995 14 313 to 364 7.42 to 10.6 0.071
Holcomb and Outcalt71 1998 4 290 to 350 8.66 to 11.5 0.268
Jensen and Kurata78 1969 5 93.2 to 133 15.5 to 16.4 0.043
Kahre81 1973 10 278 to 328 9.94 to 11.9 0.104
Kaminishi et al.82 1988 6 273 to 323 10.2 to 12 0.034
Kayukawa et al.87 2005 13 240 to 360 7.89 to 12.9 0.078
Klosek and McKinley96 1968 4 94.8 to 130 15.6 to 16.4 0.036
Kratzke and Müller99 1984 5 245 to 325 10.1 to 12.8 0.043
Legatski et al.108 1942 20 228 to 333 9.78 to 13.3 0.21
Luo and Miller113 1981 6 220 to 289 11.5 to 13.5 0.055
Maass and Wright114 1921 13 195 to 249 12.7 to 14.1 0.31
McClune118 1976 17 93.2 to 173 14.6 to 16.4 0.037
Miyamoto and Uematsu126 2007 6 280 to 365 7.2 to 11.8 0.144
Niesen and Rainwater130 1990 4 311 to 361 7.71 to 10.7 0.038
Orrit and Laupretre134 1978 31 86.7 to 244 12.8 to 16.6 0.026
Reamer et al.144 1949 10 313 to 370 5 to 10.6 0.54
Rodosevich and Miller147 1973 4 91 to 115 15.9 to 16.5 0.049
Sage et al.151 1934 21 294 to 371 6.51 to 11.4 2.42
Seeman and Urban157 1963 27 278 to 299 11.1 to 11.9 0.056
Sliwinski162 1969 14 283 to 372 5.67 to 11.7 0.342
Thomas and Harrison168 1982 22 258 to 369 6.08 to 12.4 0.12
Tomlinson170 1971 11 278 to 323 10.2 to 11.8 0.047
van der Vet174 1937 9 283 to 323 10.2 to 11.7 0.079

Saturated Vapor Densities
Abdulagatov et al.3 1995 11 342 to 370 1.4 to 4.7 1.65
Anisimov et al.6 1982 1 368 3.61 0.833
Barber et al.10 1982 9 329 to 370 1.02 to 4.21 0.886
Clark26 1973 5 327 to 370 0.981 to 3.67 3.9
Clegg and Rowlinson28 1955 9 323 to 370 0.859 to 4.92 1.55
Dana et al.32 1926 5 290 to 323 0.381 to 0.859 0.967
Deschner and Brown36 1940 14 303 to 368 0.454 to 3.58 3.69
Glos et al.48 2004 24 110 to 340 0 to 1.34 2.11
Helgeson and Sage63 1967 16 278 to 361 0.267 to 2.4 0.597
Holcomb and Outcalt71 1998 4 290 to 350 0.374 to 1.72 1.1
Holcomb et al.70 1995 14 313 to 364 0.689 to 2.69 0.958
Niesen and Rainwater130 1990 4 311 to 361 0.646 to 2.42 1.36
Reamer et al.144 1949 10 313 to 370 0.695 to 5 1.89
Sage et al.151 1934 21 294 to 371 0.433 to 4.05 2.42
Sliwinski162 1969 15 283 to 370 0.314 to 4.32 0.557
Thomas and Harrison168 1982 11 323 to 369 0.876 to 3.92 0.115
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Table 3. Continued

temperature range pressure range density range

author year no. of points (T/K) (p/MPa) (F/mol ·dm-3) AARDa (%)

Enthalpies of Vaporization
Dana et al.32 1926 14 234 to 293 1.12
Guigo et al.54 1978 12 186 to 363 0.49
Helgeson and Sage63 1967 14 311 to 330 0.931
Kemp and Egan89 1938 1 231 0.046
Sage et al.149 1939 16 313 to 348 2.21

Densities
Aalto and Liukkonen1 1996 55 343 to 373 3.99 to 6.99 5.58 to 9.97 0.988
Babb and Robertson7 1970 63 308 to 473 63.8 to 1070 13 to 18.5 0.368
Beattie et al.12 1935 82 370 4.25 to 4.29 4.2 to 5.92 9.12
Burgoyne17 1940 41 243 to 294 0.507 to 6.08 11.4 to 13.2 1.26
Cherney et al.23 1949 25 323 to 398 1.08 to 4.98 0.383 to 2.58 0.1
Claus et al.27 2002 130 340 to 520 1.99 to 30.2 0.543 to 11.5 0.015
Dawson and McKetta33 1960 18 243 to 348 0.049 to 0.184 0.021 to 0.071 0.034
Defibaugh and Moldover34 1997 945 245 to 372 1.2 to 6.51 6.23 to 13 0.094
Deschner and Brown36 1940 275 303 to 609 0.101 to 14.8 0.023 to 11.7 0.667
Dittmar et al.37 1962 335 273 to 413 0.981 to 103 7.26 to 13.4 0.218
Ely and Kobayashi41 1978 222 166 to 324 0.096 to 42.8 11.5 to 14.8 0.09
Galicia-Luna et al.46 1994 60 323 to 398 2.5 to 39.5 6.34 to 12.1 0.075
Glos et al.48 2004 72 95 to 340 0.201 to 12.1 0.078 to 16.5 0.003
Golovskoi et al.50 1991 155 88.2 to 272 1.54 to 61 13.5 to 16.7 0.204
Haynes60 1983 196 90 to 300 0.614 to 37.5 11.2 to 16.8 0.123
Huang et al.74 1966 36 173 to 273 0 to 34.5 12 to 15.2 0.386
Jepson et al.79 1957 8 457 to 529 0.993 to 3.29 0.273 to 0.815 0.521
Kayukawa et al.87 2005 192 240 to 380 0.148 to 7.07 0.27 to 13.1 0.104
Kayukawa and Watanabe88 2001 26 305 to 380 0.583 to 3.81 0.253 to 1.93 0.169
Kitajima et al.94 2005 38 270 to 425 3.66 to 28.7 6.81 to 12.2 0.171
Kratzke and Müller99 1984 60 247 to 491 2.24 to 60.9 10 to 12.8 0.035
Manley and Swift115 1971 19 244 to 333 2.07 to 11 10 to 13.1 0.111
McLinden120 (excluding critical region) 2009 261 265 to 500 0.262 to 35.9 0.101 to 13.2 0.021
McLinden120 (critical region) 2009 33 369 to 372 4.24 to 4.42 4.0 to 5.56 0.750
Miyamoto and Uematsu125 2006 63 340 to 400 3 to 200 7.59 to 14.3 0.099
Miyamoto and Uematsu126 2007 59 280 to 365 0.581 to 4.03 7.21 to 11.8 0.153
Miyamoto et al.124 2007 147 280 to 440 1 to 200 7.59 to 15 0.094
Perkins et al.139 2009 253 99.7 to 346 1.61 to 34.7 10.4 to 16.3 0.012
Prasad141 1982 111 373 to 423 0.177 to 4.66 0.052 to 2.5 0.634
Reamer et al.144 1949 306 311 to 511 0.101 to 68.9 0.024 to 13.1 0.145
Richter et al.146 2009 1 273 0.101 0.046 0.009
Rodosevich and Miller147 1973 4 91 to 115 0.013 to 0.05 15.9 to 16.5 0.048
Sage et al.151 1934 154 294 to 378 0.172 to 20.7 0.056 to 12.3 1.15
Seeman and Urban157 1963 28 203 to 230 0.101 13.2 to 13.9 0.038
Seibt158 2008 108 373 0.07 to 29.8 0.023 to 10.7 0.568
Starling et al.163 1984 25 273 to 323 0.05 to 1.4 0.021 to 0.657 0.027
Straty and Palavra164 1984 144 363 to 598 0.221 to 34.6 0.051 to 7.88 0.179
Teichmann166 1978 148 323 to 573 2.77 to 60.9 2.44 to 10.5 0.075
Thomas and Harrison168 1982 834 258 to 623 0.511 to 40 0.8 to 12.5 2.73
Tomlinson170 1971 40 278 to 328 1.06 to 13.8 10.3 to 12 0.123
Warowny et al.176 1978 51 373 to 423 0.319 to 6.31 0.105 to 3.85 0.332

Second Virial Coefficientsa

TRC (Frenkel et al.)194 27 244 to 523 5.11
Barber et al.10 1982 8 329 to 398 4.55
Barkan11 1983 18 220 to 560 1.36
Chun24 1964 7 370 to 493 20.1
Dawson and McKetta33 1960 6 243 to 348 11
Esper et al.43 1995 13 230 to 350 10
Eubank et al.44 1973 13 260 to 550 15.4
Glos et al.48 2004 5 260 to 340 0.852
Gunn55 1958 11 311 to 511 6.69
Hahn et al.56 1974 10 211 to 493 2.49
Hirschfelder et al.68 1942 17 303 to 570 6.83
Huff et al.75 1963 5 311 to 511 4.99
Kretschmer and Wiebe101 1951 3 273 to 323 16.2
Lichtenthaler and Schäfer109 1969 5 288 to 323 8.18
McGlashan and Potter119 1962 12 295 to 413 4.2
Patel et al.138 1988 4 373 to 423 2.39
Pompe and Spurling140 1974 34 294 to 609 8.49
Prasad141 1982 6 373 to 423 2.15
Schäfer et al.153 1974 5 353 to 512 9.2
Strein et al.165 1971 11 296 to 493 1.15
Thomas and Harrison168 1982 23 323 to 623 0.71
Trusler et al.171 1996 7 225 to 375 0.695
Warowny et al.176 1978 6 373 to 423 2.02
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the vapor phase and the exp(-δl) part in the liquid phase. Thus,
at temperatures approaching the triple point temperature in the
vapor phase, where the density is very small, higher values of d in
the δd part of each term result in a smaller influence of the
exponential increase in temperature. Likewise, in the liquid region
at similar temperatures, a higher value of l dampens out the effect
of the τt part in the term. At densities near the critical density, δd

exp(-δl) approaches a constant of around 0.4, and the shape of
the τt contribution can greatly affect the critical region behavior of
the model. Additional graphs and descriptions of these effects from
different terms are explained below and in the work of Tillner-
Roth.200 Equations of state should use the smallest possible value
for t in the polynomial terms; in the new equation for propane
developed here, the highest value of t is 4.62.

Table 3. Continued

temperature range pressure range density range

author year no. of points (T/K) (p/MPa) (F/mol ·dm-3) AARDa (%)

Second Acoustic Virial Coefficientsa

Esper et al.43 1995 26 230 to 350 11.4
Goodwin and Lemmon52 1995 14 265 to 355 7.03
He et al.62 2002 4 293 to 323 12.4
Trusler and Zarari172 1996 7 225 to 375 4.85

Third Virial Coefficientsa

Chun24 1964 7 370 to 493 21.5
Glos et al.48 2004 5 260 to 340 3.71
Patel et al.138 1988 4 373 to 423 4.89
Pompe and Spurling140 1974 37 294 to 609 10.2
Thomas and Harrison168 1982 19 343 to 623 1.31
Trusler et al.171 1996 7 225 to 375 16.2
Warowny et al.176 1978 6 373 to 423 1.66

Third Acoustic Virial Coefficientsa

Trusler and Zarari172 1996 7 225 to 375 31.3

Enthalpies
Van Kasteren and Zeldenrust175 1979 17 110 to 270 5.07 0.091

Speeds of Sound
Goodwin and Lemmon52 1995 80 265 to 355 0.008 to 1.76 0.077
He et al.62 2002 24 293 to 323 0.203 to 0.669 0.086
Hurly et al.76 2003 11 298 0.099 to 0.831 0.006
Lacam103 1956 200 298 to 498 1.01 to 101 1.48
Meier121 2009 298 240 to 420 1.3 to 100 0.012
Niepmann129 1984 227 200 to 340 0.02 to 60.6 0.323
Rao143 1971 10 143 to 228 <0.9 16.4
Terres et al.167 1957 95 293 to 448 <11.8 1.99
Trusler and Zarari172 1996 68 225 to 375 0.01 to 0.851 0.004
Younglove183 1981 180 90 to 300 <35 0.05

Isobaric Heat Capacities
Beeck13 1936 4 273 to 573 0.101 4.35
Dobratz39 1941 4 294 to 444 0.101 5.22
Ernst and Büsser42 1970 36 293 to 353 0.049 to 1.37 0.141
Kistiakowsky and Rice93 1940 5 294 to 361 0.101 0.405
Lammers et al.104 1978 16 120 to 260 2.53 to 5.07 1.21
Sage et al.152 1937 10 294 to 444 0.101 4.84
Van Kasteren and Zeldenrust175 1979 24 110 to 270 2.53 to 5.07 1.68
Yesavage et al.181 1969 199 116 to 422 1.72 to 13.8 2.38

Saturation Heat Capacities
Cutler and Morrison30 1965 7 91.1 to 105 0.768
Dana et al.32 1926 12 242 to 292 3.15
Goodwin53 1978 78 81.1 to 289 0.277
Guigo et al.54 1978 22 163 to 363 0.354
Kemp and Egan89 1938 22 89.7 to 230 0.349
Perkins et al.139 2009 223 88.9 to 344 0.321

Isochoric Heat Capacities
Abdulagatov et al.2 1996 88 370 to 472 5.04 7.3
Abdulagatov et al.3 1995 37 305 to 370 1.4 to 10.9 12.2
Anisimov et al.6 1982 52 271 to 374 3.61 to 12 10.3
Goodwin53 1978 128 85.6 to 337 11.2 to 16.3 1.23
Kitajima et al.94 2005 38 270 to 425 6.81 to 12.2 6.05
Perkins et al.139 2009 231 101 to 345 10.4 to 16.3 0.843

Two-Phase Isochoric Heat Capacities
Abdulagatov et al.2 1996 70 292 to 370 5.04 1.4
Abdulagatov et al.4 1997 1582 288 to 370 1.4 to 10.9 1.88
Anisimov et al.6 1982 95 85.7 to 370 3.61 to 12 1.7
Guigo et al.54 1978 22 163 to 363 7.32 0.348
Perkins et al.139 2009 223 88.9 to 344 9.08 to 16.5 1.0

a Values are given as average absolute differences in cm3 ·mol-1 for the second virial coefficients and in cm6 ·mol-2 for the third virial coefficients.
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Fitting Procedures. The development of an equation of state
is a process of correlating selected experimental data by least-
squares fitting methods with a model that is generally empirical
in nature but is designed to exhibit proper limiting behavior in
the ideal gas and low density regions and to extrapolate to
temperatures and pressures higher than those defined by
experiment. In all cases, experimental data are considered
paramount, and the validity of any equation of state is
established by its ability to represent the thermodynamic
properties of the fluid within the uncertainty of the experimental
values. The selected data are usually a subset of the available
database determined by the correlator to be representative of
the most accurate values measured. The type of fitting procedure
(e.g., nonlinear versus linear fitting of the parameters) determines
how the experimental data will be used. In this work, a small
subset of data was used in nonlinear fitting due to the extensive
calculations required to develop the equation. The resulting
equation was then compared to all experimental data to verify
that the data selection was sufficient to accurately represent the
available data.

One of the biggest advantages in nonlinear fitting is the ability
to fit experimental data using all of the properties that were
measured. For example, in linear fitting of the speed of sound,
a preliminary equation of state is required to transform measured
values of pressure and temperature to the independent variables
of density and temperature required by the equation of state.
Additionally, the ratio cp/cV is required (also from a preliminary
equation) to fit sound speed with linear methods. Nonlinear
fitting can use pressure, temperature, and sound speed directly
without any transformation of the input variables. Shock wave
measurements of the Hugoniot curve are another example where
nonlinear fitting can directly use pressure-density-enthalpy
measurements even when the temperature for any given point
is unknown. Another advantage in nonlinear fitting is the ability
to use “greater than” or “less than” operators for controlling
the extrapolation behavior of properties such as heat capacities
or pressures at low or high temperatures. In linear fitting, only
equalities can be used; thus curves are often extrapolated by
hand, and data points are manually taken from the curves at
various temperatures to give the fit the proper shape. With
successive fitting, the curves are updated until the correlator is
satisfied with the final qualitative behavior. In nonlinear fitting,
curves can be controlled by ensuring that a calculated value
along a constant property path is always greater (or less) than
a previous value; thus, only the shape is specified, not the
magnitude. The nonlinear fitter then determines the best value
for the properties based on other information in a specific region.

Equations have been developed with linear regression tech-
niques for several decades by fitting comprehensive wide-
ranging sets of pFT data, isochoric heat capacity data, linearized
sound speed data (as a function of density and temperature),
second virial coefficients, and vapor pressures calculated from
an ancillary equation. This process typically results in final
equations with 25 to 40 terms. A cyclic process is sometimes
used consisting of linear optimization, nonlinear fitting, and
repeated linearization. Ideally this process is repeated until
differences between the linear and nonlinear solutions are
negligible. In certain cases, this convergence could not be
reachedsthis led to the development of the “quasi-nonlinear”
optimization algorithm. However, since this algorithm still
involves linear steps, it could not be used in combination with
“less than” or “greater than” relations. Details about the quasi-
nonlinear regression algorithm can be found elsewhere
(Wagner,195 Wagner and Pruss199).

In the case of propane, only nonlinear methods were used
here to arrive at the final equation. A good preliminary equation
is required as a starting point in the nonlinear fitting process;
in this work, the equation of Bücker and Wagner187 for ethane
was employed. Nonlinear fitting techniques were used to shorten
and improve upon this equation. The exponents for density and
temperature, given in eq 18 as tk, dk, and lk, along with the
coefficients and exponents in the Gaussian bell-shaped terms,
were determined simultaneously with the coefficients of
the equation. In addition, the terms in the ideal gas heat capacity
equation and the reducing parameters (critical point) of the
equation of state were fitted. Thus, with an 18 term equation,
there were at times up to 90 values being fitted simultaneously
to derive the equation presented here. The end result has very
little similarity to the functional form for ethane with which it
began.

The nonlinear algorithm adjusted the parameters of the
equation of state to minimize the overall sum of squares of the
deviations of calculated properties from the input data, where
the residual sum of squares was represented as

S ) ∑ WFFF
2 + ∑ WpFp

2 + ∑ WcV
FcV

2 + ... (19)

where W is the weight assigned to each data point and F is the
function used to minimize the deviations. The equation of state
was fitted to pFT data with either deviations in pressure, Fp )
(pdata - pcalc)/pdata, for vapor phase and critical region data, or
deviations in density, FF ) (Fdata - Fcalc)/Fdata, for liquid phase
data. Since the calculation of density as a function of temperature
and pressure requires an iterative solution that greatly increases
calculation time during the fitting process, the nearly equivalent,
noniterative form

FF )
(pdata - pcalc)

Fdata
(∂F∂p)T

(20)

was used instead, where pcalc and the derivative of density with
respect to pressure were calculated at the F and T of the data
point. Other experimental data were fitted in a like manner, e.g.,
Fw ) (wdata - wcalc)/wdata for the speed of sound. The weight
for each selected data point was individually adjusted according
to type, region, and uncertainty. Typical values of W are 1 for
pFT and vapor pressure values, 0.05 for heat capacities, and 10
to 100 for vapor sound speeds. The equation of state was
constrained to the critical parameters by adding the values of
the first and second derivatives of pressure with respect to
density at the critical point, multiplied by some arbitrary weight,
to the sum of squares. In this manner, the calculated values of
these derivatives would be zero at the selected critical point
given in eqs 1 to 3.

To reduce the number of terms in the equation, terms were
eliminated in successive fits by either deleting the term that
contributed least to the overall sum of squares in a previous fit
or by combining two terms that had similar values of the
exponents (resulting in similar contributions to the equation of
state). After a term was eliminated, the fit was repeated until
the sum of squares for the resulting new equation was of the
same order of magnitude as the previous equation. The final
functional form for propane included 18 terms, 11 of which
were extended polynomials and 7 were Gaussian bell-shaped
terms.

The exponents on density in the equation of state must be
positive integers so that the derivatives of the Helmholtz energy
with respect to density have the correct theoretical expansion
around the ideal gas limit. Since noninteger values for the
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density exponents resulted from the nonlinear fitting methods,
a sequential process of rounding each density exponent to the
nearest integer, followed by refitting the other parameters to
minimize the overall sum of squares, was implemented until
all of the density exponents in the final form were positive
integers. A similar process was used for the temperature
exponents to reduce the number of significant figures to one or
two past the decimal point.

In addition to reducing the number of individual terms in
the equation compared to that produced by conventional linear
least-squares methods, the extrapolation behavior of the shorter
equations is generally more accurate, partially because there
are fewer degrees of freedom in the final equation. In the longer
equations, two or more correlated terms are often needed to
match the accuracy of a single term in the nonlinear fit. The
values of these correlated terms can be large in magnitude and
can lead to unreasonable behavior outside the range of validity.
Span and Wagner197 discuss the effects at high temperatures
and pressures from intercorrelated terms.

The new fitting techniques and criteria that were created for
the development of the R-125 equation of state (Lemmon and
Jacobsen189) were also used in the development of the propane
equation of state. The details, which will not be repeated here,
included proper handling of the second and third virial coef-
ficients, elimination of the curvature of low-temperature iso-
therms in the vapor phase, control of the two-phase loops and
the number of false two-phase solutions, convergence of the
extremely high temperature isotherms to a single line (resulting

from the term with t ) 1 and d ) 4), and proper control of the
ideal curves (e.g., the Joule inversion curve). The R-125 paper
describes what properties were added to the sum of squares so
that the equation of state would behave properly and meet these
criteria. As was done with R-125, a minimum number of simple
polynomial terms (five) were used: three to represent the second
virial coefficients (d ) 1), one for the third virial coefficients
(d ) 2), and one for the term for the extreme conditions (d )
4). This final term is described in detail by Lemmon and
Jacobsen.189

Upon completion of the equation of state for propane, we
began fitting an equation for propylene and have since found
even better constraints and methods to control the derivatives
of the equation of state and to force the extrapolation of the
equation to near 0 K without any adverse behavior. This new
work was not applied to propane since the equation had been
completed and released in version 8 of the REFPROP software
(Lemmon et al.201). These new techniques will be described in
the forthcoming publication of Lemmon et al.202

Equation of State of Propane

PreWious Equations of State. Researchers worldwide have
developed many equations of state for propane. Although a
preliminary equation of state was presented in the work on the
butanes by Bücker and Wagner188 in 2006, it was intended only
as an interim equation of state until the one presented here was
finished, and it will not be referred to hereafter. A short equation

Figure 5. Comparisons of ideal gas heat capacities cp
0 calculated with the equation of state to experimental and theoretical data as a function of

temperature T.
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of state was presented for propane in the work of Span and
Wagner203 in 2003 to demonstrate the applicability of one
functional form with fixed exponents to represent the properties
of a broad range of nonpolar fluids. This form was not aimed
at reaching the highest accuracy possible but to establish a new
class of equations with a stable functional form that could be
applied to fluids for which only limited experimental data were
available. Their equations were designed for technical applica-
tions and do not compete with high-accuracy equations of state
dedicated to a particular fluid. The Span and Wagner equation203

was used by Kunz et al.204 during the development of the
GERG-2004 equation of state for natural gas mixtures. Miya-
moto and Watanabe205 presented a 19-term equation in 2000
that is explicit in the Helmholtz energy with only simple and
extended polynomial terms of the type described earlier. The
1987 equation of Younglove and Ely206 is a 32-term modified
Benedict-Webb-Rubin equation. Sychev et al.207 published
an equation of state in 1991 in terms of the compressibility factor
with 50 terms with only simple polynomials (without the
exponential part).

One of the earlier equations of state that covered the full fluid
range was that of Goodwin and Haynes208 from 1982; however,
this equation used a unique functional form that cannot be easily
implemented in computer algorithms, and it has seen little use
since its publication. Their work extensively documents the
available measurements prior to 1982. Even earlier equations
include those of Bühner et al.209 in 1981 and Teja and Singh210

in 1977 that were based on the Bender type of equation, which,
although able to compute properties for both liquid and vapor
states, lacked the higher accuracies obtained with the more
recent equations.

These equations suffer from one or more shortcomings that
have been removed in the current equation. These shortcomings
include:

(1) State-of-the-art thermodynamic data for propane are not
represented to within their experimental uncertainties. These new
data were described in the Introduction and were not available
when the other equations were developed.

(2) Some of the equations show unacceptable behavior in
regions where experimental data were not available at the time
of fitting. These regions represent accessible valid states of the
fluid surface.

(3) The magnitudes of pressure and other properties within
the two-phase region reached enormous values (e.g., some

equations of state can reach up to pressures of ( 1050 MPa)
caused by large exponents on the temperature term.

(4) The extrapolation behavior outside the range of validity
of the equations is poor or incorrect, especially at high pressures
(densities) or at low temperatures.

(5) Data in the extended critical region are not represented
within their uncertainty.

(6) The ITS-90 temperature scale was not used.

The new equation presented here is an 18-term fundamental
equation explicit in the reduced Helmholtz energy that over-
comes all of these shortcomings. New optimization techniques,
extrapolation criteria, and experimental data all contribute to
make the equation state of the art. The range of validity of the
equation of state for propane is from the triple point temperature
(85.525 K) to 625 K at pressures to 1000 MPa, but it can be
extended in all directions (higher temperatures, pressures, and
densities, and lower temperatures) while maintaining physically
reasonable behavior. In addition to the equation of state,
ancillary functions were developed for the vapor pressure and
for the densities of the saturated liquid and saturated vapor.
These ancillary equations can be used as initial estimates in
computer programs for defining the saturation boundaries but
are not required to calculate properties from the equation of
state.

The units adopted for this work were in kelvin (ITS-90)
for temperature, megapascals for pressure, and moles per
cubic decimeter for density. Units of the experimental data
were converted as necessary from those of the original
publications to these units. Where necessary, temperatures
reported on IPTS-48 and IPTS-68 scales were converted to
the International Temperature Scale of 1990 (ITS-90) (Pre-
ston-Thomas211). The pFT and other data selected for the
determination of the coefficients of the equation of state are
described later along with comparisons of calculated proper-
ties to experimental values to verify the accuracy of the model
developed in this research. Data used in fitting the equation
of state for propane were selected to avoid redundancy in
various regions of the surface.

New Equation of State. The critical temperature and density
required in the reducing parameters for the equation of
state given in eq 10 are 369.89 K and 5.00 mol · dm-3. The
ideal gas reference state points are T0 ) 273.15 K, p0 )
0.001 MPa, h0

0 ) 26148.48 J ·mol-1, and s0
0 )

157.9105 J ·mol-1 ·K-1. The values for h0
0 and s0

0 were chosen
so that the enthalpy and entropy of the saturated liquid state
at 0 °C are 200 kJ · kg-1 and 1 kJ · kg-1 ·K-1, respectively,
corresponding to the common convention in the refrigeration
industry. Other values for h0

0 and s0
0 can be used, depending

on the user’s interest.

In the calculation of the thermodynamic properties of propane
with an equation of state explicit in the Helmholtz energy, an
equation for the ideal gas heat capacity, cp

0, is needed to calculate
the Helmholtz energy for the ideal gas, R0. Values of the ideal gas
heat capacity derived from low-pressure experimental heat capacity
or speed of sound data are given in Table 3 along with theoretical
values from statistical mechanics based on spectroscopic data
(fundamental frequencies). Differences between the different sets
of theoretical values arise from the use of different fundamental
frequencies and from the models used to calculate the various
couplings between the vibrational modes of the molecule. The
equation for the ideal gas heat capacity for propane, used throughout
the remainder of this work, was developed in part by fitting values
reported by Trusler and Zarari172 and is given by

Table 4. Parameters and Coefficients of the Equation of State

k Nk tk dk lk ηk �k γk εk

1 0.042910051 1.00 4 -
2 1.7313671 0.33 1 -
3 -2.4516524 0.80 1 -
4 0.34157466 0.43 2 -
5 -0.46047898 0.90 2 -
6 -0.66847295 2.46 1 1
7 0.20889705 2.09 3 1
8 0.19421381 0.88 6 1
9 -0.22917851 1.09 6 1
10 -0.60405866 3.25 2 2
11 0.066680654 4.62 3 2
12 0.017534618 0.76 1 - 0.963 2.33 0.684 1.283
13 0.33874242 2.50 1 - 1.977 3.47 0.829 0.6936
14 0.22228777 2.75 1 - 1.917 3.15 1.419 0.788
15 -0.23219062 3.05 2 - 2.307 3.19 0.817 0.473
16 -0.092206940 2.55 2 - 2.546 0.92 1.500 0.8577
17 -0.47575718 8.40 4 - 3.28 18.8 1.426 0.271
18 -0.017486824 6.75 1 - 14.6 547.8 1.093 0.948
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cp
0

R
) 4 + ∑

k)3

6

Vk

uk
2 exp(uk)

[exp(uk) - 1]2
(21)

where V3 ) 3.043, V4 ) 5.874, V5 ) 9.337, V6 ) 7.922, u3 )
393 K/T, u4 ) 1237 K/T, u5 ) 1984 K/T, u6 ) 4351 K/T,
and the gas constant, R, is 8.314472 J ·mol-1 ·K-1 (Mohr et
al.212). The Einstein functions containing the terms u3, u4,
u5, and u6 were used so that the shape of the ideal gas heat
capacity versus temperature would be similar to that derived
from statistical mechanical models. However, these are

empirical coefficients and should not be confused with the
fundamental frequencies.

Comparisons of values calculated with eq 21 to the ideal
gas heat capacity data are given in Figure 5. The sound speeds
reported by Goodwin and Lemmon52 are greater than those
determined by Trusler and Zarari172 and Hurly et al.76 with
differences that increase with decreasing temperature. All of
the heat capacities derived from sound speed measurements
are lower than values obtained from spectroscopic data, for
example, as reported by Chao et al.22 A higher sound speed

Figure 6. Comparisons of vapor pressures pσ calculated with the equation of state to experimental data as a function of temperature T. The line corresponds
to values calculated from the ancillary equation, eq 5.
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implies a lower heat capacitysone plausible source of this
difference is an impurity that has a speed of sound greater
than propane, which is about 250 m · s-1. The possible
impurities include both air and argon that both have sound
speeds of about 300 m · s-1. It is possible to estimate the
quantity of air required to give rise to the differences shown.
However, no measurements have been performed to verify
this conjecture, and neither Trusler and Zarari172 nor Esper
et al.43 give information about this discrepancy. This
observation may be resolved by further experiments that are
outside the realm of this work.

The ideal gas Helmholtz energy equation, derived from
eqs 15 and 21, is

R0 ) ln δ + 3 ln τ + a1 + a2τ + ∑
i)3

6

Vi ln[1 - exp(-biτ)]

(22)

where a1 ) -4.970583, a2 ) 4.29352, b3 ) 1.062478, b4 )
3.344237, b5 ) 5.363757, b6 ) 11.762957, and the values of
Vk are the same as those used in eq 21. The values of bk are
equal to uk divided by the critical temperature.

The coefficients Nk and other parameters of the residual part
of the equation of state [given in eq 18 and repeated below] are
given in Table 4.

Rr(δ, τ) ) ∑
k)1

5

Nkδ
dkτtk + ∑

k)6

11

Nkδ
dkτtk exp(-δlk) +

∑
k)12

18

Nkδ
dkτtk exp(-ηk(δ - εk)

2 - �k(τ - γk)
2) (23)

Experimental Data and Comparisons to the Equation
of State

Since the identification of propane in 1910 by Dr. Walter O.
Snelling at the U.S. Bureau of Mines, many experimental studies
of the thermodynamic properties of propane have been reported,
e.g., pFT properties, saturation properties, critical parameters,
heat capacities, speeds of sound, second virial coefficients, and
ideal gas heat capacities (see refs 1-186). Goodwin and
Haynes208 summarized most of the experimental data published
for propane prior to 1982. Selected data were used for the
development of the new thermodynamic property formulation
reported here. Comparisons were made to all available experi-

Figure 7. Comparisons of vapor pressures pσ calculated with the equation of state to high-accuracy experimental data as a function of temperature T. The
line corresponds to values calculated from the ancillary equation, eq 5.
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mental data, including those not used in the development of
the equation of state. Much of the data reported here was
obtained from the Thermodynamic Data Engine (TDE) program
(Frenkel et al.194) available from the Thermodynamic Research
Center (TRC) of NIST. Data sets with only one to three data
points were not included in this work unless the data points
were important to the development of the equation of state.
Approximately 50 literature sources contained only one to three
data points, and they are not identified here. However, these
extra measurements are shown in the figures and are labeled as
“TRC”.

The accuracy of the equation of state was determined by
statistical comparisons of calculated property values to experi-
mental data. These statistics are based on the percent deviation
in any property, X, defined as

∆X ) 100(Xdata - Xcalc

Xdata
) (24)

With this definition, the average absolute relative deviation is
defined as

AARD ) 1
n ∑

i)1

n

|∆Xi| (25)

where n is the number of data points. The average absolute
relative deviations between experimental data and calculated

values from the equation of state are given in Table 3. In
this table, measured saturation properties are compared with
the equation of state, not with the ancillary equations. The
comparisons given in the sections below for the various data
sets compare values calculated from the equation of state to
the experimental data with the average absolute relative
deviations given by eq 25 unless otherwise stated (such as
the maximum value). Discussions of maximum errors or of
systematic offsets use the absolute values of the deviations.
Data points with excessive deviations are shown at the outer
limits of the plots to indicate where these outliers were
measured.

Comparisons with Saturation Thermal Data. Figures 6
through 8 compare vapor pressures calculated from the equation
of state with experimental data. Figure 6 gives an overview of
deviations of the equation from most of the data; Figure 7
provides an expanded view of the highest accuracy data (those
that were used to test the equation of state); and Figure 8 shows
data of low accuracy or at low temperature where the pressures
are extremely small (less than 1 Pa) and percentage deviations
can be high. The lines in these figures represent the ancillary
equation, eq 5. Most of the experimental vapor pressures for
propane fall within 1 % of the equation of state above 300 K.
Below this, the number of experimental data decreases, and the
data that are available fall within 0.5 %. All of these data are
scattered evenly around the equation. Of all the data measured

Figure 8. Comparisons of vapor pressures pσ calculated with the equation of state to low-accuracy or low-temperature experimental data as a function of
temperature T.
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before 1990, only 5 fall within the 0.1 % range: the data of
Beattie et al.,12 Kratzke,98 Kratzke and Müller,99 Teichmann,166

and Thomas and Harrison.168 Of these, only the data of Beattie
et al. were measured before 1970. Thus, unlike the data for the
critical point, experimentalists have been able to greatly reduce
the uncertainty in vapor pressure measurements with time. This
is especially evident with the data measured after 2000 and
which were used in the development of the equation of state.
The data of Glos et al.48 from the Ruhr Universität have an
uncertainty in pressure ranging from 0.007 % at the highest
temperature to 0.02 % at 230 K, and the equation shows
deviations of less than 0.005 % (50 ppm) in the temperature
range between (180 and 320) K. Below 150 K, the deviations
increase to above 1 %, but the pressure at these low temperatures
is extremely low, less than 300 Pa, and it becomes very difficult
to make high accuracy measurements, even with very pure
samples. The deviations between the data of Glos et al. and the
equation are all less than the uncertainties in the measurements,
even at the lowest temperatures. Above 300 K, there is a slight

difference between the data of Glos et al. and the data measured
at NIST by McLinden120 on the order of 0.03 %. Since the data
of Glos et al. extend only to 340 K, the equation was fitted to
the data of McLinden above this, resulting in a deviation of
0.015 % in the highest temperature measurement of Glos et al.
Above 340 K, the data of McLinden are fitted within 0.005 %.
These data extend to the critical point. The data of Outcalt and
Lee,135 also measured at NIST with a different apparatus, are
fitted to within 0.06 %.

At low temperatures, there is a data set available that used
heat capacities in the two-phase region to determine the vapor
pressure. These heat capacities are derived from internal energy
measurements. This technique is often better than vapor pressure
measurements at extremely low pressures, due to the difficulty
inherit in experimental techniques. The data of Perkins et al.139

show deviations of +0.19 % at 100 K and a maximum deviation
of +2.2 % at the triple point temperature, where their derived
vapor pressure is about 0.17 mPa. The derived values given by
Perkins et al. were obtained while the equation presented here

Figure 9. Comparisons of saturated liquid densities F′ calculated with the equation of state to experimental data as a function of temperature T. The line
corresponds to values calculated from the ancillary equation, eq 6.
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was being developed, and the measurements and the equation
benefitted from an iterative process in which each was influenced
by the other’s modifications. In the region where the data of
Perkins et al. and Glos et al. overlap, the data of Perkins et al.
closely follow (generally within 0.01 %) the data of Glos et al.
Above 105 K, differences between the equation of state and
the data of Perkins et al. are generally less than 0.1 %.

The consistency between saturated liquid densities below
273 K is quite remarkable; for the most part, the data are all
within 0.2 %, as shown in Figures 9 and 10. Figure 9 shows all
of the data, and Figure 10 provides an expanded view of the
highest-accuracy data. The lines in these figures represent the
ancillary equations reported in eq 6. The data sets that fall within
0.05 % include those of Haynes and Hiza,61 Jensen and Kurata,78

Klosek and McKinley,96 Luo and Miller,113 McClune,118 Orrit
and Laupretre,134 and Rodosevich and Miller.147 The data of
Haynes and Hiza exceed 0.05 % below 150 K. The data
measured by Glos et al.48 have uncertainties of 0.015 % and

are represented by the equation of state to within 0.005 %
(50 ppm). Above 273 K, the data of Glos et al. are still
represented to within 0.005 % up to their maximum temperature
of 340 K. Although McLinden120 did not measure saturated
liquid densities, his pFT measurements are concentrated around
the critical region and close to the saturation boundaries. Other
data above 273 K show higher scatter, especially toward the
critical point. Most of the data are within 0.5 %, with many
inconsistent data sets showing scatter of up to 0.2 %. Aside
from the data of Glos et al., none of the data sets stand out as
exceptional.

The scatter in saturated vapor phase measurements is
substantially higher, up to 2 % for a number of data sets, as
shown in Figure 11. The data sets showing the highest degree
of consistency are those of Clark,26 Clegg and Rowlinson,28

Sliwinski,162 and Thomas and Harrison,168 although these data
are still 0.5 % or more from the equation of state, except for
the data of Thomas and Harrison, which are generally within

Figure 10. Comparisons of saturated liquid densities F′ calculated with the equation of state to high-accuracy experimental data as a function of temperature
T. The line corresponds to values calculated from the ancillary equation, eq 6.
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0.1 %. The data of Thomas and Harrison have been one of the
most accurate sets published for propane before 2000 and have
been the foundation for many previous equations of state. The
new data of Glos et al.48 are a combination of measurements
down to 230 K and a truncated virial equation of state at lower
temperatures where measurements of density become impossible
due to their extremely low values. These data are represented
by the equation of state to within 0.02 % for temperatures
between (150 and 280) K and within 0.01 % up to their
maximum temperature of 340 K.

pGT Data and Virial Coefficients. The experimental pFT data
for propane are summarized in Table 3 and shown graphically
in Figure 12. For clarity, data in the extended critical region
are also shown on temperature-density coordinates in Figure
13. As can be seen in this figure, there is a substantial number
of high-quality data in the extended critical region, which is
unusual for most fluids. Figure 14 compares densities calculated
from the equation of state with experimental data; Figure 15
shows comparisons with only high-accuracy measurements in
a similar manner; and Figure 16 compares pressures calculated
from the equation of state with the experimental data in the
extended critical region of propane. In the figures, the deviations
are shown in groups containing data generally within a 10 K
interval. The temperature listed at the top of each small plot is
the lower bound of the data in the plot.

Three key sets of pressure-density-temperature data are now
available to characterize the properties of propane with very

high accuracy. These are the data of Glos et al.,48 Claus et al.,27

and McLinden,120 and these data are compared in Figure 15 to
the equation of state. The first two data sets were available when
the fitting of the equation of state began. The third set was
measured during the fitting process and was used as both a check
on how the equation was progressing and an aid to determine
how much more, and in what regions, new data should be
measured. Careful attention was given in the critical region so
that sufficient data were measured such that the critical
parameters could be determined simultaneously with the coef-
ficients and exponents of the equation of state, as described
earlier. The apparatuses of McLinden and of Glos et al. are both
two-sinker densimeters and use the most accurate measuring
technique for density currently available. The high-temperature
measurements of Claus et al.,27 which are reported in the work
of Glos et al., were performed in a single-sinker apparatus. In
the low-temperature region, where only the data of Glos et al.
are available (up to 260 K), the equation represents these data
with an AARD of 0.002 % (20 ppm). In the liquid region where
the data of Glos et al. overlap the data of McLinden [(260 to
340) K], this trend continues, while the equation represents the
data of McLinden with an AARD of 0.004 %. Glos et al.
measured 13 points in the vapor phase below 340 K and the
equation represents these to within 0.005 %. The data of Claus
et al. extend the measurements from (340 to 520) K, and the
equation shows an AARD of 0.015 % with respect to these data.
This data set contains only a few critical region values. The

Figure 11. Comparisons of saturated vapor densities F′′ calculated with the equation of state to experimental data as a function of temperature T. The line
corresponds to values calculated from the ancillary equation, eq 7.
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work of McLinden also studied the critical region and has to
be divided into several areas to give informative statistics that
help understand how the equation behaves. Since the slope of
pressure with respect to density approaches zero near the critical
point, density variations can become large with small changes
in temperature or pressure. Thus it is more meaningful instead
to report deviations in pressure, which will be done here for
the points close to the critical point. The following statistics
for the data of McLinden apply to those points above 340 K.
At densities greater than 8 mol ·dm-3, the equation represents
the data on average to within 0.004 % in density. Between (6
and 8) mol · dm-3, the average deviations in density are
0.03 %. In the vapor region with densities less than 4 mol ·dm-3,
the average deviations in density are 0.02 %. In the critical
region between (4 and 6) mol ·dm-3, the average deviations in
pressure are 0.009 %. The deviations are much higher for
density (0.7 %) but are less meaningful for reasons described
above. All of the data of McLinden above 380 K are represented
on average to within 0.017 % in density.

Aside from the data of Glos et al.,48 Claus et al.,27 and
McLinden,120 there are several other data sets for pFT that have
low uncertainties and help validate the equation of state.
Although the data of Perkins et al.139 show average deviations
of 0.012 %, these data were based on an experimental volume
calibrated with the present propane equation and thus cannot
be used for validation. The calibration was performed so that
measurements with other fluids could be made with lower
uncertainties. Richter et al.146 measured one experimental data
point with an uncertainty of 0.02 % at 273 K and 1 atm in the
vapor phase with a special two-sinker densimeter designed to
very accurately measure densities of gases under standard
conditions at very low densities. The deviation of the equation
from this point is 0.009 %. Other data that are well represented
in the vapor phase include those of Starling et al.163 and Dawson
and McKetta,33 both with average deviations of 0.03 %. In the
liquid phase, the data of Kratzke and Müller99 span the
temperature range from (250 to 490) K and are represented to
within 0.035 %. The deviations for the four data points of

Figure 12. Experimental pFT data as a function of temperature T and pressure p.
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Rodosevich and Miller147 between (90 and 115) K are about
0.04 %. Teichmann166 measured data at temperatures from (322
to 573) K, and the equation shows average deviations of
0.07 %. Similar deviations are visible with the data of Galicia-
Luna et al.46 Differences of around 0.09 % are seen in the data
sets of Defibaugh and Moldover,34 Ely and Kobayashi41 (which
extend down to 166 K), and Miyamoto and Uematsu.125 The
latter measured densities up to 200 MPa. The equation of state
represents the data of Miyamoto and Uematsu best at 200 MPa,
where the deviations are about 0.03 %. The only data set that
extends to higher pressures is that of Babb and Robertson,7

which extends to nearly 1000 MPa. These data show deviations
of around 0.4 % and appear to be systematically high when
compared to the data of Miyamoto and Uematsu. However, this
conclusion is subjective and needs further experimental work
to ascertain the true thermodynamic properties of propane at
very high pressures. The data of Thomas and Harrison168 extend
up to 623 K, and the deviations range from less than 0.1 %
below 18 MPa to generally less than 0.2 % below 40 MPa (the
upper pressure limit of the data).

In the critical region, the data of Thomas and Harrison168

have been used for decades in fitting because they were the
most accurate data in the critical region. With the new
measurements of McLinden, this situation has now changed,

and the data of Thomas and Harrison appear to be systematically
higher by 0.03 % in pressure. Although this is a small amount,
such small changes have large impacts on the calculation of
density in the critical region. The data still serve a vital purpose
in making it possible to extrapolate between the limited
measurements made by McLinden. As seen in Figure 16,
Thomas and Harrison report about 10 times as many measure-
ments, and these measurements show that the equation is smooth
in between the data points where McLinden measured. The data
of Beattie et al.12 serve a similar purpose; these data differ in
pressure by about 0.05 % from the equation of state.

Table 3 summarizes the sources for the second virial coefficients
of propane. Deviations from the equation of state are shown in
Figure 17. Many of the data are scattered within 5 cm3 ·mol-1 above
300 K. Additional information about the high uncertainties in the
second virial coefficients at low temperatures was reported by
Wagner and Pruss.199 The data of Glos et al.48 (which extend from
(260 to 340) K) are represented to within a maximum of 1.8
cm3 ·mol-1 (0.3 %). Comparisons of third virial coefficients
calculated with the equation of state with those presented in the
literature are shown in Figure 18. Figure 19 shows a plot of (Z -
1)/F vs F and demonstrates the behavior of the second and third
virial coefficients as well as the shape of the equation of state in
the two-phase region. The lines show isotherms calculated from

Figure 13. Experimental pFT data in the extended critical region as a function of density F and temperature T.
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the equation of state presented here, and the curve represents the
saturated vapor density. The y-intercept (zero density) represents
the second virial coefficients at a given temperature, and the third

virial coefficients are the slope of each line at zero density. Many
equations of state show curvature in the lines at low temperatures
caused by high values of the exponent t on temperature. As can

Figure 14. Comparisons of densities F calculated with the equation of state to experimental data as a function of pressure p.
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be seen in this plot, there is no curvature in the lines, and the
equation is extremely smooth and linear at low densities, as it

should be. The paper describing the R-125 equation by Lemmon
and Jacobsen189 discusses this point in more detail.

Figure 14. Continued.
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Caloric Data. The sources of experimental data for the caloric
properties of propane are summarized in Table 3. Comparisons of
values calculated from the equation of state for the enthalpy of
vaporization are shown in Figure 20. There have been no new
measurements on the enthalpy of vaporization of propane over the
last 30 years, and many of the data that are available are generally
fitted within 1 %. Comparisons of values calculated from the
equation of state for the speed of sound are shown in Figure 21
for the liquid phase and in Figure 22 for the vapor phase. As part
of the new work on propane, speed of sound measurements were
made by Meier.121 These data have an uncertainty of 0.03 % and
are among the most accurate of any liquid phase speed of sound
data available. The equation of state represents these data generally
to within 0.03 % with an AARD of 0.012 %. The data of
Younglove183 measured in 1981 at NIST overlap the data of Meier
from (240 to 310) K and then extend down to temperatures near
the triple point. These data show an offset of about 0.03 % from
the data of Meier, and this offset was left as such over all
temperatures during the fitting of the equation of state. By so doing,

the scatter in the data of Younglove near the triple point lies
between (0 and -0.1) %, but the uncertainty in the equation is
most likely 0.05 % at the lowest temperatures. Figure 21 shows
how the comparisons would appear if the data of Younglove were
modified based on the differences with the new data of Meier (the
data are indicated as “adjusted Younglove” in the figure). There is
an unexplainable dip in the data of Younglove between (160 and
180) K, and it is unclear why these data are inconsistent with his
other data. There are other data sets in the liquid phase that overlap
these two data sets, but their uncertainties are much higher (1 %
or more) and do not contribute to the development of the equation
or in its evaluation.

Several data sets are also available for vapor phase speeds
of sound, as shown in Figure 22. The data of He et al.62 deviate
by 0.2 % from the equation, and the data of Trusler and Zarari172

and Hurly et al.76 are represented to within 0.01 % (and an
AARD of 0.006 %). The data of Hurly were measured at
298 K, and the data of Trusler and Zarari were taken over the
range from (225 to 375) K. This latter set was of extreme

Figure 15. Comparisons of densities F calculated with the equation of state to high-accuracy experimental data as a function of pressure p.
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importance in the development of the equation because of its
low uncertainty and its position on the surface of state of
propane, i.e., in the gas phase at very low pressures, where it is
difficult to make pFT measurements. Additionally, these mea-
surements contributed to the ideal gas heat capacity equation,
which was fitted simultaneously with the equation of state.

The reported measurements of the isochoric heat capacity,
saturation liquid heat capacity, and isobaric heat capacity for
propane are summarized in Table 3. Comparisons of values
calculated from the equation of state are shown for the saturation
liquid heat capacities in Figure 23, the isobaric heat capacities in
Figure 24, and isochoric heat capacities in Figure 25. There are a
number of good measurements for the saturation heat capacity of
propane (cσ) and for the isobaric heat capacity at saturation (cp).
At low temperatures, these two properties are nearly identical. They
start to diverge near 270 K, and by 350 K, they differ by about
15 %. Up to 320 K, the equation of state evenly splits the data
sets into two groups: the data of Perkins et al.139 and of Guigo et

al.54 show positive deviations, and the data of Cutler and Morri-
son,30 Dana et al.,32 Goodwin,53 and Kemp and Egan89 show
negative deviations as shown in Figure 23. Between (90 and 220)
K, the data are fitted to within 0.5 %, which is the uncertainty of
these data sets. There is somewhat higher scatter above 220 K in
the data of Perkins et al. up to 315 K (the data have higher
uncertainties as they approach the critical point). Above this
temperature, there is a sharp downward shift as the data approach
the critical region. Because of the analytical nature of the equation
of state, these data are not as well represented as could be done
with a scaling equation developed solely for the critical region.

The data available for the isobaric heat capacity show quite high
scatter and were not used in developing the equation of state. In
the vapor phase, only the data of Ernst and Büsser42 and
Kistiakowsky and Rice93 show deviations less than 0.5 %.
Generally, speed of sound data are a much better choice for fitting
the vapor phase than are isobaric heat capacities, and the latter are
rarely used, except for the correlation of the ideal gas heat capacity.

Figure 15. Continued.
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The situation in the liquid phase is not much better. The data of
Kemp and Egan89 show deviations of 0.5 %, and the rest of the
available data are scattered by 2 % or more. Fortunately, the
extremely accurate speed of sound data of Meier121 and of
Younglove,183 along with the saturation heat capacities, are

available, and their use in fitting was sufficient to fully define the
liquid phase of propane without the need for heat capacity data at
higher pressures. This is possible because an equation of state
requires consistency among all of its various properties. For
example, fitting very accurate vapor pressures will result in good

Figure 16. Comparisons of pressures p calculated with the equation of state to experimental data in the extended critical region as a function of
density F.
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values of the enthalpies of vaporization. Likewise, fitting extremely
accurate density, speeds of sound, and saturation heat capacity data
will result in accurate calculations of the isobaric and isochoric
heat capacities. It is not possible to force the equation to fit isobaric
heat capacities having deviations of 2 % or more when these other
accurate data are available.

There are a number of measurements for the isochoric heat
capacity in the liquid phase of propane. These include the
data of Perkins et al.,139 Goodwin,53 Abdulagatov et al.,2,3

and Anisimov et al.6 The data of Abdulagatov et al. and
Anisimov et al. were measured in the critical region and at
high temperatures. The equation shows substantial deviations
from these data sets, and it is unclear whether this is due to
deficiencies in the data or in the equation of state. The data
of Perkins et al. and of Goodwin show deviations of 0.5 %
above 290 K and deviations of 1 % below this, except near
100 K for the data of Perkins et al., where the deviations are
again around 0.5 %. This is discussed further in the work of
Perkins et al.139

Extrapolation BehaWior. Because the equation of state for
propane can be used as a reference formulation in corresponding
states applications due to its extremely long saturation line and
high-quality data, extreme attention was given to the low-
temperature regime below the triple point. Although it is possible
to cool a liquid below its triple point and maintain its liquid state,

these property measurements are difficult and rare, and thus such
data are generally not available. However, it is possible to easily
extrapolate the equation to lower temperatures. This extrapolation
is important for a number of reasons: (1) if the extrapolation is
correct, then state points in normal regions should be more accurate
(since bad extrapolations outside the normal range result from
incorrect slopes in normal regions, and properties such as heat
capacities are highly slope dependent); (2) there are some fluids
such as 1-butene that have an even longer saturation line (i.e., a
lower reduced triple point temperature); and (3) mixture models
can access regions outside the range of validity of the equation of
state, depending on what it is mixed with and how nonideal the
mixture is.

New fitting techniques developed in the R-125 equation of state
(Lemmon and Jacobsen189) allowed good extrapolation to well
below the triple point. One of the best techniques for determining
how low an equation can be used is to find the point at which the
speed of sound is no longer linear with respect to temperature along
the saturated liquid line (ignoring the critical region). For R-125,
the speed of sound calculated from the equation started to diverge
from a linear trend at about 150 K. This is below its triple point
temperature of 172.52 K and represents an approximate reduced
temperature of 0.44. For propane, the reduced triple point is 0.23,
and thus the functional form for R-125 would have to be modified
to allow a proper representation to this lower reduced temperature.

Figure 17. Comparisons of second virial coefficients B calculated with the equation of state to experimental data as a function of temperature T.
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The improved fitting techniques developed in this work
achieved this goal and further decreased the lowest point at
which the speed of sound remained linear. Figure 26 shows the
speed of sound versus temperature along the saturation lines
and along isobars. The melting line is shown on this plot as
the curve that starts at the saturated liquid state at the triple
point temperature and then intersects the liquid phase isobars.
This figure shows that the saturation line for the liquid
remains straight down to about 40 K, a reduced temperature
of 0.11. We are currently developing an equation of state
for propylene, and the new preliminary equation shows
excellent extrapolation down to a reduced temperature of

0.005, which will be very useful in future plans to develop
an equation for helium-3.

Additional plots of constant property lines on various
thermodynamic coordinates were made to assess other
behaviors of the equation of state. Figures 27 and 28 show
plots of temperature versus isochoric heat capacity and
isobaric heat capacity. These plots indicate that the equation
of state exhibits reasonable behavior over all temperatures
and pressures within the range of validity and that the
extrapolation behavior is reasonable at higher temperatures
and pressures. The plot of isochoric heat capacities shows
an upward trend in the liquid phase at low temperatures. This
is quite common among many fluids and has been validated
experimentally for these fluids.

Figure 29 shows a plot of temperature vs density to
extremely high conditions that are far beyond the limits of
propane as a stable molecule (where dissociation has oc-
curred). The purpose of this plot is to demonstrate that the
equation continues to extrapolate extremely well to extremely
high pressures, densities, and temperatures and that there are
no hidden irregularities beyond normal applications. Most
often these regions are overlooked, and most equations of
state show adverse behavior at extreme values. Similar to
the arguments given above for extrapolation to low temper-
atures, it is important that the curvature of the equation
remains correct in regions of validity. Small changes in these
regions have large effects on heat capacities and speeds of
sound. One test to determine whether the curvature is correct
is to look at extreme values where the curvature becomes
apparent. If these regions are bad, then small changes in the
curvature are most likely present within the range of validity

Figure 18. Comparisons of third virial coefficients C calculated with the equation of state to experimental data as a function of temperature T.

Figure 19. Calculations of (Z - 1)/F along isotherms versus density F in
the vapor phase region and two-phase region. Isotherms are shown from
temperatures of (160 to 500) K in steps of 20 K.
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Figure 20. Comparisons of enthalpies of vaporization hvap calculated with the equation of state to experimental data as a function of temperature T.

Figure 21. Comparisons of speeds of sound w in the liquid phase calculated with the equation of state to experimental data as a function of temperature
T.
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Figure 22. Comparisons of speeds of sound w in the vapor phase calculated with the equation of state to experimental data as a function of temperature T.

Figure 23. Comparisons of saturation heat capacities cσ calculated with the equation of state to experimental data as a function of temperature T.
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Figure 24. Comparisons of isobaric heat capacities cp calculated with the equation of state to experimental data as a function of temperature T.

Figure 25. Comparisons of isochoric heat capacities cV calculated with the equation of state to experimental data as a function of temperature T.
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of the equation. Figure 29 shows that the extrapolation is
smooth to extremely high temperatures, pressures, and
densities. This smooth behavior comes from the term with t
) 1 and d ) 4, as explained by Lemmon and Jacobsen.189

Plots of certain characteristic curves are useful in assessing
the behavior of an equation of state in regions away from the
available data (Deiters and de Reuck,213 Span and Wagner,197

Span214). The characteristic curves are the Boyle curve, given
by the equation

(∂Z
∂V )T

) 0 (26)

the Joule-Thomson inversion curve

(∂Z
∂T)p

) 0 (27)

the Joule inversion curve

(∂Z
∂T)V ) 0 (28)

and the ideal curve

p
FRT

) 1 (29)

The temperature at which the Boyle and ideal curves begin (at
zero pressure) is also known as the Boyle temperature, or the
temperature at which the second virial coefficient is zero. The point
at which the Joule inversion curve begins (at zero pressure)
corresponds to the temperature at which the second virial coefficient
is at a maximum. (Thus, for the Joule inversion curve to extend to
zero pressure, the second virial coefficient must pass through a
maximum value, a criterion that is not followed by all equations
of state.) Although the curves do not provide numerical information,
reasonable shapes of the curves, as shown for propane in Figure
30, indicate qualitatively correct extrapolation behavior of the
equation of state extending to high pressures and temperatures far
in excess of the likely thermal stability of the fluid. The behavior
of properties on the ideal curves should always be analyzed during
the development of an equation.

Figure 26. Speed of sound w versus temperature T diagram. Isobars are
shown at pressures of (0, 1, 2, 3, 4, 5, 6, 8, 10, 20, 50, 100, 200, 500, 1000,
and 2000) MPa. The melting line is shown intersecting the liquid phase
isotherms. State points below the melting line are extrapolations of the liquid
phase to very low temperatures.

Figure 27. Isochoric heat capacity cV versus temperature T diagram. Isobars
are shown at pressures of (0, 1, 2, 3, 4, 5, 6, 8, 10, 20, 50, 100, 200, 500,
1000, and 2000) MPa. The melting line is shown intersecting the liquid
phase isotherms. State points below the melting line are extrapolations of
the liquid phase to very low temperatures.

Figure 28. Isobaric heat capacity cp versus temperature T diagram. Isobars
are shown at pressures of (0, 1, 2, 3, 4, 5, 6, 8, 10, 20, 50, 100, 200, 500,
1000, and 2000) MPa. State points below the melting line are extrapolations
of the liquid phase to very low temperatures.

Figure 29. Isothermal behavior of the propane equation of state at extreme
conditions of temperature T and pressure p. Isotherms are shown at
temperatures of (100, 150, 200, 250, 300, 350, 400, 500, 1000, 5000, 10 000,
..., 1 000 000) K.
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Equation of state terms with values of t < 0 have a detrimental
effect on the shapes of the ideal curves. The effects of all terms
should be dampened at high temperatures, but with t < 0, the
contribution to the equation increases as the temperature rises.
Negative temperature exponents should never be allowed in an
equation of state of the form presented in this work.

Estimated Uncertainties of Calculated Properties

Below 350 K, the uncertainties (k ) 2) in the new reference
equation of state for propane for density are 0.01 % in the liquid
phase and 0.03 % in the vapor phase (including saturated states
for both phases). The liquid phase value also applies at
temperatures greater than 350 K (to about 500 K) at pressures
greater than 10 MPa. In the extended critical region, the
uncertainties increase to 0.1 % in density, except very near the
critical point, where the uncertainties in density increase rapidly
as the critical point is approached. However, in this same region,
the uncertainty in pressure calculated from density and tem-
perature is 0.04 %, even at the critical point.

The uncertainties in the speed of sound are 0.01 % in the
vapor phase at pressures up to 1 MPa, 0.03 % in the liquid
phase between (260 and 420) K, and 0.1 % in the liquid phase
at temperatures below 260 K. The uncertainties in vapor pressure
are 0.02 % above 180 K and 0.1 % between (120 and 180) K
and increase steadily below 120 K. Below 115 K, vapor
pressures are less than 1 Pa, and uncertainty values increase to
3 % at the triple point. Uncertainties in heat capacities are
0.5 % in the liquid phase, 0.2 % in the vapor phase, and higher
in the supercritical region.

As an aid for computer implementation, calculated values of
properties from the equation of state for propane are given in Table
5. The number of digits displayed does not indicate the accuracy
in the values but are given for validation of computer code.
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Appendix A: Thermodynamic Equations

The functional form of the Helmholtz energy equation of state
is explicit in the dimensionless Helmholtz energy, R, with
independent variables of dimensionless density and temperature

R(δ, τ) ) R0(δ, τ) + Rr(δ, τ) (30)

where δ ) F/Fc and τ ) Tc/T. The critical parameters are
369.89 K and 5 mol · dm-3. The ideal gas Helmholtz energy
is

R0 ) ln δ + 3 ln τ + a1 + a2τ + ∑
i)3

6

ai ln[1 - exp(-biτ)]

(31)

where a1 ) -4.970583, a2 ) 4.29352, a3 ) 3.043, b3 )
1.062478, a4 ) 5.874, b4 ) 3.344237, a5 ) 9.337, b5 )
5.363757, a6 ) 7.922, and b6 ) 11.762957.

The residual fluid Helmholtz energy is

Rr(δ, τ) ) ∑
k)1

5

Nkδ
dkτtk + ∑

k)6

11

Nkδ
dkτtk exp(-δlk) +

∑
k)12

18

Nkδ
dkτtk exp(-ηk(δ - εk)

2 - �k(τ - γk)
2)

(32)

The coefficients and parameters of this equation are given in
Table 4. The functions used for calculating pressure (p),
compressibility factor (Z), internal energy (u), enthalpy (h),
entropy (s), Gibbs energy (g), isochoric heat capacity (cv),
isobaric heat capacity (cp), and the speed of sound (w) from eq
30 are given below.

p ) F2(∂a
∂F)T

) FRT[1 + δ(∂Rr

∂δ )
τ] (33)

Z ) p
FRT

) 1 + δ(∂Rr

∂δ )
τ

(34)

u
RT

) a + Ts
RT

) τ[(∂R0

∂τ )
δ
+ (∂Rr

∂τ )
δ] (35)

h
RT

) u + pV
RT

) τ[(∂R0

∂τ )
δ
+ (∂Rr

∂τ )
δ] + δ(∂Rr

∂δ )
τ
+ 1

(36)

s
R

) - 1
R(∂a

∂T)F ) τ[(∂R0

∂τ )
δ
+ (∂Rr

∂τ )
δ] - R0 - Rr (37)

g
RT

) h - Ts
RT

) 1 + R0 + Rr + δ(∂Rr

∂δ )
τ

(38)

cV
R

) 1
R(∂u

∂T)F ) -τ2[(∂
2R0

∂τ2 )
δ
+ (∂

2Rr

∂τ2 )
δ
] (39)

cp

R
) 1

R(∂h
∂T)p

)
cV
R

+
[1 + δ(∂Rr

∂δ )
τ
- δτ( ∂

2Rr

∂δ∂τ)]2

[1 + 2δ(∂Rr

∂δ )
τ
+ δ2(∂

2Rr

∂δ2 )
τ
]

(40)

Figure 30. Characteristic (ideal) curves of the equation of state for propane
as a function of temperature T and pressure p.

Table 5. Calculated Values of Properties for Algorithm Verification

T F p cV cp w

K mol ·dm-3 MPa J ·mol-1 ·K-1 J ·mol-1 ·K-1 m · s-1

200.0 14.0 2.3795138 61.078424 93.475362 1381.9552
300.0 12.0 19.053797 73.972542 108.61529 958.40520
300.0 0.4 0.84694991 69.021875 85.753997 221.88959
400.0 5.0 6.6462840 97.017439 271.07044 194.65847
369.9 5.0 4.2519399 117.71621 753625.00 130.89800
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Table A1. Table of Thermodynamic Properties of Propane at Saturationa

T p F h s cV cp w

°C MPa kg ·m-3 kJ ·kg-1 kJ ·kg-1 ·K- kJ ·kg-1 ·K-1 kJ ·kg-1 ·K-1 m · s-1

-187.625b 0.17203 ·10-9 733.13 -196.64 -1.396 1.355 1.916 2136.4
0.107 ·10-7 366.26 5.186 0.6907 0.8792 143.3

-185. 0.48526 ·10-9 730.39 -191.61 -1.338 1.352 1.918 2118.6
0.292 ·10-7 368.58 5.017 0.7010 0.8896 145.2

-180. 0.29386 ·10-8 725.20 -182.01 -1.232 1.346 1.923 2084.6
0.167 ·10-6 373.08 4.727 0.7208 0.9093 148.9

-175. 0.14596 ·10-7 720.05 -172.38 -1.131 1.343 1.928 2050.4
0.789 ·10-6 377.67 4.473 0.7404 0.9289 152.4

-170. 0.61256 ·10-7 714.92 -162.73 -1.035 1.340 1.934 2016.2
0.315 ·10-5 382.36 4.249 0.7596 0.9481 155.8

-165. 0.22252 ·10-6 709.82 -153.04 -0.9437 1.338 1.941 1982.0
0.0000109 387.15 4.051 0.7784 0.9669 159.2

-160. 0.71368 ·10-6 704.73 -143.32 -0.8558 1.336 1.947 1947.9
0.0000335 392.03 3.876 0.7967 0.9852 162.4

-155. 0.20542 ·10-5 699.67 -133.57 -0.7715 1.335 1.954 1913.9
0.0000922 397.00 3.719 0.8145 1.003 165.6

-150. 0.53795 ·10-5 694.61 -123.78 -0.6903 1.334 1.962 1880.0
0.000232 402.06 3.580 0.8319 1.020 168.8

-145. 0.12965 ·10-4 689.56 -113.95 -0.6121 1.334 1.969 1846.2
0.000537 407.21 3.455 0.8489 1.037 171.8

-140. 0.29040 ·10-4 684.51 -104.09 -0.5366 1.334 1.977 1812.5
0.00116 412.43 3.343 0.8655 1.054 174.9

-135. 0.60950 ·10-4 679.46 -94.181 -0.4636 1.335 1.985 1779.0
0.00234 417.74 3.242 0.8818 1.070 177.8

-130. 0.00012073 674.40 -84.234 -0.3929 1.336 1.994 1745.5
0.00447 423.12 3.151 0.8979 1.087 180.7

-125. 0.00022708 669.33 -74.243 -0.3243 1.337 2.003 1712.0
0.00813 428.58 3.070 0.9138 1.103 183.5

-120. 0.00040774 664.26 -64.207 -0.2576 1.339 2.012 1678.6
0.01413 434.11 2.996 0.9297 1.119 186.3

-115. 0.00070215 659.16 -54.122 -0.1928 1.341 2.022 1645.2
0.02357 439.71 2.930 0.9455 1.135 189.0

-110. 0.0011644 654.05 -43.988 -0.1298 1.343 2.032 1611.8
0.03790 445.38 2.870 0.9614 1.151 191.7

-105. 0.0018661 648.91 -33.802 -0.06827 1.346 2.043 1578.4
0.05897 451.10 2.815 0.9775 1.168 194.2

-100. 0.0028994 643.74 -23.560 -0.00826 1.350 2.054 1544.9
0.08904 456.88 2.766 0.9937 1.184 196.8

-95. 0.0043795 638.55 -13.260 0.05038 1.355 2.066 1511.5
0.13085 462.71 2.722 1.010 1.202 199.2

-90. 0.0064475 633.32 -2.8974 0.1077 1.360 2.078 1478.0
0.18762 468.58 2.682 1.027 1.220 201.5

-85. 0.0092716 628.06 7.5304 0.1639 1.366 2.092 1444.6
0.26304 474.49 2.646 1.045 1.239 203.8

-80. 0.013049 622.76 18.028 0.2189 1.372 2.106 1411.2
0.36132 480.44 2.613 1.063 1.258 205.9

-75. 0.018008 617.41 28.600 0.2729 1.380 2.121 1377.8
0.48715 486.41 2.583 1.081 1.279 208.0

-70. 0.024404 612.02 39.251 0.3259 1.388 2.137 1344.6
0.64570 492.41 2.557 1.100 1.300 209.9

-65. 0.032527 606.57 49.986 0.3781 1.397 2.154 1311.4
0.84261 498.42 2.532 1.120 1.323 211.8

-60. 0.042693 601.08 60.811 0.4294 1.406 2.172 1278.4
1.0840 504.44 2.511 1.140 1.346 213.5

-55. 0.055249 595.52 71.731 0.4799 1.417 2.191 1245.4
1.3764 510.46 2.491 1.161 1.371 215.0

-50. 0.070569 589.90 82.753 0.5298 1.428 2.212 1212.5
1.7270 516.48 2.473 1.182 1.397 216.5

-45. 0.089051 584.20 93.881 0.5789 1.439 2.233 1179.7
2.1430 522.49 2.458 1.204 1.424 217.7

-42.114c 0.101325 580.88 100.36 0.6070 1.446 2.246 1160.8
2.4161 525.95 2.449 1.217 1.440 218.4

-40. 0.11112 578.43 105.12 0.6275 1.452 2.256 1147.0
2.6326 528.48 2.443 1.227 1.453 218.9
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Table A1. Continued

T p F h s cV cp w

°C MPa kg ·m-3 kJ ·kg-1 kJ ·kg-1 ·K- kJ ·kg-1 ·K-1 kJ ·kg-1 ·K-1 m · s-1

-35. 0.13723 572.58 116.49 0.6755 1.464 2.280 1114.4

3.2042 534.45 2.431 1.250 1.482 219.8

-30. 0.16783 566.64 127.97 0.7231 1.478 2.305 1081.7

3.8669 540.38 2.419 1.274 1.513 220.6

-25. 0.20343 560.60 139.60 0.7701 1.492 2.332 1049.1

4.6302 546.28 2.409 1.298 1.546 221.2

-20. 0.24452 554.45 151.36 0.8168 1.507 2.361 1016.5

5.5046 552.13 2.400 1.323 1.580 221.6

-15. 0.29162 548.19 163.28 0.8630 1.522 2.391 983.8

6.5012 557.93 2.392 1.348 1.616 221.9

-10. 0.34528 541.80 175.35 0.9090 1.538 2.423 951.1

7.6321 563.65 2.385 1.374 1.655 221.9

-5. 0.40604 535.27 187.59 0.9546 1.555 2.457 918.3

8.9103 569.30 2.378 1.400 1.695 221.7

0. 0.47446 528.59 200.00 1.000 1.572 2.493 885.5

10.351 574.87 2.372 1.427 1.739 221.3

5. 0.55112 521.75 212.60 1.045 1.590 2.532 852.5

11.969 580.33 2.367 1.455 1.785 220.7

10. 0.63660 514.73 225.40 1.090 1.608 2.573 819.4

13.783 585.67 2.363 1.484 1.835 219.8

15. 0.73151 507.50 238.40 1.135 1.627 2.618 786.2

15.813 590.89 2.358 1.514 1.890 218.6

20. 0.83646 500.06 251.64 1.180 1.647 2.666 752.9

18.082 595.95 2.354 1.544 1.949 217.2

25. 0.95207 492.36 265.11 1.225 1.667 2.719 719.3

20.618 600.84 2.351 1.576 2.015 215.5

30. 1.0790 484.39 278.83 1.269 1.688 2.777 685.5

23.451 605.54 2.347 1.609 2.088 213.5

35. 1.2179 476.10 292.84 1.314 1.710 2.841 651.4

26.618 610.01 2.344 1.643 2.170 211.2

40. 1.3694 467.46 307.15 1.359 1.732 2.913 617.0

30.165 614.21 2.340 1.678 2.263 208.6

45. 1.5343 458.40 321.79 1.405 1.756 2.995 582.1

34.146 618.12 2.336 1.715 2.371 205.6

50. 1.7133 448.87 336.80 1.450 1.780 3.089 546.8

38.630 621.66 2.332 1.753 2.499 202.2

55. 1.9072 438.76 352.23 1.496 1.805 3.201 510.9

43.706 624.77 2.327 1.794 2.652 198.3

60. 2.1168 427.97 368.14 1.543 1.832 3.337 474.2

49.493 627.36 2.321 1.836 2.841 194.1

65. 2.3430 416.34 384.60 1.590 1.861 3.509 436.6

56.152 629.29 2.314 1.880 3.086 189.3

70. 2.5868 403.62 401.75 1.639 1.892 3.735 397.9

63.916 630.37 2.305 1.930 3.421 184.0

75. 2.8493 389.47 419.76 1.689 1.927 4.053 357.5

73.140 630.33 2.294 1.987 3.914 178.2

80. 3.1319 373.29 438.93 1.742 1.969 4.545 314.9

84.406 628.73 2.279 2.057 4.707 171.6

85. 3.4361 353.96 459.81 1.798 2.023 5.433 269.1

98.818 624.75 2.259 2.144 6.182 164.1

90. 3.7641 328.83 483.71 1.862 2.107 7.623 218.3

119.00 616.47 2.227 2.260 9.888 155.5

95. 4.1195 286.51 516.33 1.948 2.302 23.59 158.1

156.31 595.81 2.164 2.467 36.07 144.1

96.740d 4.2512 220.48 555.24 2.052

a The first line at each temperature gives saturated liquid properties, and the second line gives saturated vapor properties. b Triple point. c Normal
boiling point. d Critical point.
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δ
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∂τ2 )
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]
(41)

The fugacity coefficient and second and third virial coefficients
are given in the following equations.

φ ) exp[Z - 1 - ln(Z) + Rr] (42)

B(T) ) lim
δf0[ 1

Fc
(∂Rr

∂δ )
τ] (43)

C(T) ) lim
δf0[ 1

Fc
2(∂

2Rr

∂δ2 )
τ] (44)

Other derived properties, given below, include the first derivative
of pressure with respect to density at constant temperature
(∂p/∂F)T, the second derivative of pressure with respect to density
at constant temperature (∂2p/∂F2)T, and the first derivative of
pressure with respect to temperature at constant density (∂p/∂T)F.

(∂p
∂F)T

) RT[1 + 2δ(∂Rr

∂δ )
τ
+ δ2(∂2Rr

∂δ2 )
τ
] (45)

(∂
2p

∂F2)
T
) RT

F [2δ(∂Rr

∂δ )
τ
+ 4δ2(∂2Rr

∂δ2 )
τ
+ δ3(∂3Rr

∂δ3 )
τ
]
(46)

(∂p
∂T)F ) RF[1 + δ(∂Rr

∂δ )
τ
- δτ( ∂

2Rr

∂δ∂τ)] (47)

Equations for additional thermodynamic properties such as the
isothermal compressibility and the Joule-Thomson coefficient
are given in Lemmon et al.215

The derivatives of the ideal gas Helmholtz energy required
by the equations for the thermodynamic properties are

τ∂R0

∂τ
) 3 + a2τ + τ∑

k)3

6

akbk[ 1
exp(bkτ) - 1] (48)

and

τ2∂
2R0

∂τ2
) -3 - τ2 ∑

k)3

6

akbk
2

exp(bkτ)

[exp(bkτ) - 1]2
(49)

The derivatives of the residual Helmholtz energy are given in
the following equations.

δ∂Rr

∂δ
) ∑

k)1

5

Nkδ
dkτtkdk + ∑

k)6

11

Nkδ
dkτtk exp(-δlk) ×

[dk - lkδ
lk] + ∑

k)12

18

Nkδ
dkτtk exp(-ηk(δ - εk)

2 -

�k(τ - γk)
2) · [dk - 2ηkδ(δ - εk)] (50)

δ2∂
2Rr

∂δ2
) ∑

k)1

5

Nkδ
dkτtk[dk(dk - 1)] + ∑

k)6

11

Nkδ
dkτtk ×

exp(-δlk)[(dk - lkδ
lk)(dk - 1 - lkδ

lk) - lk
2δlk] +

∑
k)12

18

Nkδ
dkτtk exp(-ηk(δ - εk)

2 - �k(τ - γk)
2) ·

{[dk - 2ηkδ(δ - εk)]
2 - dk - 2ηkδ

2} (51)

δ3∂
3Rr

∂δ3
) ∑

k)1

5

Nkδ
dkτtk[dk(dk - 1)(dk - 2)] +

∑
k)6

11

Nkδ
dkτtk exp(-δlk){dk(dk - 1)(dk - 2) +

lkδ
lk[-2 + 6dk - 3dk

2 - 3dklk + 3lk - lk
2] +

3lk
2δ2lk[dk - 1 + lk] - lk

3δ3lk} +

∑
k)12

18

Nkδ
dkτtk exp(-ηk(δ - εk)

2 - �k(τ - γk)
2) ·

{[dk - 2ηkδ(δ - εk)]
3 - 3dk

2 + 2dk -

6dkηkδ
2 + 6ηkδ(δ - εk)(dk + 2ηkδ

2)} (52)

τ∂Rr

∂τ
) ∑

k)1

5

Nkδ
dkτtktk + ∑

k)6

11

Nkδ
dkτtk exp(-δlk)tk +

∑
k)12

18

Nkδ
dkτtk exp(-ηk(δ - εk)

2 - �k(τ - γk)
2) ×

[tk - 2�kτ(τ - γk)] (53)

τ2∂
2Rr

∂τ2
) ∑

k)1

5

Nkδ
dkτtk[tk(tk - 1)] + ∑

k)6

11

Nkδ
dkτtk exp(-δlk)

[tk(tk - 1)] + ∑
k)12

18

Nkδ
dkτtk exp(-ηk(δ - εk)

2 - �k(τ -

γk)
2) · {[tk - 2�kτ(τ - γk)]

2 - tk - 2�kτ
2} (54)

τδ ∂
2Rr

∂τ∂δ
) ∑

k)1

5

Nkδ
dkτtk[dktk] + ∑

k)6

11

Nkδ
dkτtk exp(-δlk) ×

[tk(dk - lkδ
lk)] + ∑

k)12

18

Nkδ
dkτtk exp(-ηk (δ - εk)

2 -

�k(τ - γk)
2) · [dk - 2ηkδ(δ - εk)] [tk - 2�kτ(τ - γk)]

(55)

δτ2 ∂
3Rr

∂δ∂τ2
) ∑

k)1

5

Nkδ
dkτtk[dktk(tk - 1)] + ∑

k)6

11

Nkδ
dkτtk ×

exp(-δlk)[tk(tk - 1)(dk - lkδ
lk)] +

∑
k)12

18

Nkδ
dkτtk exp(-ηk(δ - εk)

2 -

�k(τ - γk)
2) · [dk - 2ηkδ(δ - εk)]{[tk -

2�kτ(τ - γk)]
2 - tk - 2�kτ

2} (56)
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(109) Lichtenthaler, R. N.; Schäfer, K. Ber. Bunsenges. Phys. Chem. 1969,

73, 42–48.
(110) Lim, J. S.; Ho, Q. N.; Park, J.-Y.; Lee, B. G. J. Chem. Eng. Data

2004, 49, 192–198.

AL Journal of Chemical & Engineering Data, Vol. xxx, No. xx, XXXX



(111) Lim, J. S.; Park, J. Y.; Lee, K.-S.; Kim, J.-D.; Lee, B. G. J. Chem.
Eng. Data 2004, 49, 750–755.

(112) Lim, J. S.; Park, J.-Y.; Kang, J. W.; Lee, B.-G. Fluid Phase Equilib.
2006, 243, 57–63.

(113) Luo, C. C.; Miller, R. C. Cryogenics 1981, 21, 85–93.
(114) Maass, O.; Wright, C. H. J. Am. Chem. Soc. 1921, 43, 1098–1111.
(115) Manley, D. B.; Swift, G. W. J. Chem. Eng. Data 1971, 16, 301–307.
(116) Matschke, D. E.; Thodos, G. J. Chem. Eng. Data 1962, 7, 232–234.
(117) Matteson, R. Physical constants of hydrocarbons boiling below 350

°F. ASTM, Special Tech. Publication No. 109, 1950.
(118) McClune, C. R. Cryogenics 1976, 16, 289–295.
(119) McGlashan, M. L.; Potter, D. J. B. Proc. R. Soc. London, Ser. A

1962, 267, 478–500.
(120) McLinden, M. O. J. Chem. Eng. Data 2009, in press.
(121) Meier, K. J. Chem. Eng. Data, to be submitted.
(122) Miksovsky, J.; Wichterle, I. Collect. Czech. Chem. Commun. 1975,

40, 365–370.
(123) Miranda, R. D.; Robinson, D. B.; Kalra, H. J. Chem. Eng. Data 1976,

21, 62–65.
(124) Miyamoto, H.; Shigetoyo, K.; Uematsu, M. J. Chem. Thermodyn.

2007, 39, 1423–1431.
(125) Miyamoto, H.; Uematsu, M. Int. J. Thermophys. 2006, 27, 1052–1060.
(126) Miyamoto, H.; Uematsu, M. J. Chem. Thermodyn. 2007, 39, 225–229.
(127) Mousa, A. H. N. J. Chem. Thermodyn. 1977, 9, 1063–1065.
(128) Mousa, A. H. N.; Kay, W. B.; Kreglewski, A. J. Chem. Thermodyn.

1972, 4, 301–311.
(129) Niepmann, R. J. Chem. Thermodyn. 1984, 16, 851–860.
(130) Niesen, V. G.; Rainwater, J. C. J. Chem. Thermodyn. 1990, 22, 777–795.
(131) Noda, K.; Inoue, K.; Asai, K.; Ishida, K. J. Chem. Eng. Data 1993,

38, 9–11.
(132) Olszewski, K. Philos. Mag. 1895, 39, 188–213.
(133) Opfell, J. B.; Sage, B. H.; Pitzer, K. S. Ind. Eng. Chem. 1956, 48,

2069–2076.
(134) Orrit, J. E.; Laupretre, J. M. AdV. Cryog. Eng. 1978, 23, 573–579.
(135) Outcalt, S. L.; Lee, B.-C. J. Res. Natl. Inst. Stand. Technol. 2004,

109, 525–531.
(136) Park, Y. M.; Jung, M. Y. J. Chem. Eng. Data 2002, 47, 818–822.
(137) Park, Y.; Kang, J.; Choi, J.; Yoo, J.; Kim, H. J. Chem. Eng. Data

2007, 52, 1203–1208.
(138) Patel, M. R.; Joffrion, L. L.; Eubank, P. T. AIChE J. 1988, 34, 1229–

1232.
(139) Perkins, R. A.; Sanchez Ochoa, J. C.; Magee, J. W. J. Chem. Eng.

Data 2009, in press.
(140) Pompe, A.; Spurling, T. H. Virial coefficients for gaseous hydro-

carbons. DiV. Appl. Org. Chem. (Aust, C.S.I.R.O.), Tech. Pap. 1, 1974.
(141) Prasad, D.; H., L. AIChE J. 1982, 28, 695–696.
(142) Ramjugernath, D.; Valtz, A.; Coquelet, C.; Richon, D. J. Chem. Eng.

Data 2009, 54, 1292–1296.
(143) Rao, M. G. S. Indian J. Pure Appl. Phys. 1971, 9, 169–170.
(144) Reamer, H. H.; Sage, B. H.; Lacey, W. N. Ind. Eng. Chem. 1949,

41, 482–484.
(145) Reamer, H. H.; Sage, B. H.; Lacey, W. N. Ind. Eng. Chem. 1951,

43, 2515–2520.
(146) Richter, M.; Kleinrahm, R.; Glos, S. ; Span, R.; Schley, P.; Uhrig,

M. Int. J. Thermophys. 2009, submitted.
(147) Rodosevich, J. B.; Miller, R. C. AIChE J. 1973, 19, 729–735.
(148) Roof, J. G. J. Chem. Eng. Data 1970, 15, 301–303.
(149) Sage, B. H.; Evans, H. D.; Lacey, W. N. Ind. Eng. Chem. 1939, 31,

763–767.
(150) Sage, B. H.; Lacey, W. N. Ind. Eng. Chem. 1940, 32, 992–996.
(151) Sage, B. H.; Schaafsma, J. G.; Lacey, W. N. Ind. Eng. Chem. 1934,

26, 1218–1224.
(152) Sage, B. H.; Webster, D. C.; Lacey, W. N. Ind. Eng. Chem. 1937,

29, 1309–1314.
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Temperatur- und Druckbereichen. Ph.D. Dissertation, University of
Rostock. Also published as: Fortschr.-Ber. VDI, Reihe 6: Energi-
etechnik, Nr. 571, VDI-Verlag: Düsseldorf, 2008.

(159) Seong, G.; Yoo, K.-P.; Lim, J. S. J. Chem. Eng. Data 2008, 53,
2783–2786.

(160) Skripka, V. G.; Nikitina, I. E.; Zhdanovich, L. A.; Sirotin, A. G.;
Benyaminovich, O. A. GazoV. Promst. 1970, 15, 35–36.

(161) Sliwinski, P. Z. Phys. Chem. (Wiesbaden) 1969, 68, 91–98.
(162) Sliwinski, P. Z. Phys. Chem. Neue Folge 1969, 63, 263–279.

(163) Starling, K. E.; Kumar, K. H.; Reintsema, S. R.; Savidge, J. L.;
Eckhardt, B.; Gopalkrishnan, R.; McFall, R. M. University of
Oklahoma, 1984.

(164) Straty, G. C.; Palavra, A. M. F. J. Res. Natl. Bur. Stand. 1984, 89,
375–383.

(165) Strein, V. K.; Lichtenthaler, R. N.; Schramm, B.; Schäfer, K. Ber.
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