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Propagation dynamics of a temporally, amplitude- and group-velocity-matched two-mode
ultraslow wave in a three-level A system
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We investigate the propagation dynamics of a two-mode probe field traveling with ultraslow group veloci-
ties. We show that a strong cross-beam coupling occurs between the two modes of the probe wave in the
presence of a two-mode control laser field that maintains two-photon resonance excitations in a thrke-level
system. In the adiabatic limit and under appropriate conditions, both modes can travel with matched temporal
profiles, amplitudes, and greatly reduced group velocities, and one mode can grow and take on features of the
other mode. When only one mode of probe field is injected, the generation and growth of the second mode has
the characteristics of four-wave mixing, resulting in a tunable, ultraslow four-wave mixing field with nearly
100% photon flux conversion efficiency. We further show a type of induced transparency resulting from an
efficient one- and three-photon destructive interference. This is to be contrasted with the conventional one-
mode, three-level electromagnetically induced transparency where the interference involves two one-photon
pathways.
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I. INTRODUCTION field is injected into the medium, we show that the two-mode
configuration has the characteristics of a four-wave mixing
Ultraslow propagation of optical waves in highly resonant(FWM) process and can achieve near unity photon flux con-
and ultracold media under electromagnetically induced transyersion efficiency from one mode to the otH&®] without
parency(EIT) [1] conditions has been considered as one othe requirement of having maximum atomic coheref#ie
the promising candidates for quantum information manipulaThus, by adjusting one of the two one-photon detunings, one
tion [2]. This has motivated several recent studies that havean obtain a highly efficient yet tunable coherent source.
demonstrated ultraslow propagati¢8]. In addition, some
very efficient nonlinear processes using EIT techniques have Il. FOUR-WAVE MIXING INA A SYSTEM

also been proposefd—14. Despite this progress, a system-  \yg consider a lifetime-broadened three-lexesystem as
atic treatment and understanding of group—veIOC|ty—matcheq,epicted in Fig. 1. A two-mode, pulsedulse lengthr at the

ultraslow propagatio_n of multiple fie!ds using a single-specieynirance of the mediunprobe field and a two-mode con-
three-level medium is not available in the literature. Here wen 5,5 wavecw) control field complete the respective exact
investigate the propagation dynamics of a two-m¢#lB] o photon resonance excitations between stdfeand|3).
ultraslow wave in a single-specie three-statsystem[16]. | ot ys assume that the probe lasers are weak so that almost

We show that in this two-mode configuration a strong crossz| of the population remains ifL). Using this assumption

beam coupling between the two weak probe beams ocCur§ny neglecting cross-mode-stimulated emission, we obtain

In the adiabatic limit, each probe pulse breaks up into tWQpe equations of motion for the atomic response and probe
pulses that propagate at different group velocities. With apsig|qs:

propriately chosen parameters, however, this pulse breakup
can be eliminated, resulting in a two-mode temporally, am-
plitude, and group velocityTAG) matched ultraslow probe A )
wave in a single-specie three-level medi{ta]. In addition, %
we show that at a suitable propagation distance, where the /\\
components of the fast decaying waves in both modes have

become negligible, an effective multiphoton destructive in-
terference occurg$l18], resulting in an interference which

leads to a new type of highly efficient induced transparency. 2wy, /@ (@)
We further extend our treatment to the case of two tempo- m .
rally delayed input probe pulses of different frequencies and
show that group-velocity-matchable propagation of such a -
delayed pulse pair can also be achieved in the same single- 1> 2 A

specie three-level medium. The realization of such a TAG-

matched ultraslow pulse pair in a single-specie three-level FiG. 1. Energy-level diagram for a three-state system interacting
medium may have important applications in high-fidelity with a two-mode probe field and a two-mode control fiefg, and
quantum information storage, photon pair entanglement, ang,, are the two one-photon detuning®,, and Q., (n=1,2) are
quantum computing. When only a single-frequency probenalf of the Rabi frequencies for the probe and control fields.

|2>
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(9A(1) . . A* = e%? Mn) + eLZ + Vv(_n)e—L n=1,2, 3
( 2 ) =idp A +iQ A +iQy T, (1a) pn= €% ) b @
at/7)/, where we have defined the quantities
&A(ZZ) . (2) . * - * — LO 2 2
=idy, AP + 10, As+ i, (1D) ay =22 2 [|Qenrf? = (dam+ 7)(dpn+ )],
aln/, 20
I A3 ) - ; @ 4 @ | K127
=idy7As + QA +1QLTAY, (1o Lo= ,
<a(tr/f) , oo enE e ° (a7 + W)(dpp7+ 7)(dg7+ 7) = 3
* — 2 2
(a?zﬂ) =ixrAy  (n=1,2. (1d) V2 a7 e (oo et
t/r

(L% ap)A Ly (0,7) 7% agoA (0, 7)7
Here A(Z”) (n=1,2) is the part of staté2) 's amplitude that VV(il) = oL oL 2 ;

carries the polarization at angular frequensy,, dy,=dp,
+iy,/2, 8y is the detuning of the,, mode probe laser from
the|1)—|2) resonance, ang, is the decay rate of stat@).
In addition, A; is the amplitude of staté8), d;=&;+iys/2,

A
L=LoVBa+ Bl am=LoBm,

With 83=wp;—wy =wp—wg, being a two-photon detuning _ Q17 = [Qcp = (dpy 7= o7 (dg7 + 7)
between statgd) and|3) andy; being the decay rate of state m 2 '
[3) [20]. In the following calculation we will assume that the

two-photon resonances are always maintained so&wd. a1,=~LoBry  Pio= QzlmczT,

Finally, Q,, and ., are the half-Rabi frequencies of the
probe and control fields for the relevant frequency mode and * x
ky2= 27Na,r D12/ (fiC), with N and D, being the concen- w2 = (L2 am (0.7 gy (0,7)7
tration and the dipole moment for the transitik — |2), ) 2L

respectively. In deriving Eqs1a-1d) we have takemy  The remaining step is to take the inverse Fourier transform
=1, definedt,=t-z/c, and also made the necessary phasgy gq (3) using the above-defined quantities so that physical
transformation to remove all of the complex phase factors. jhsight can be gained. In general, this is difficult because of
_ The steps for solving Eqgla~(1d) begin with assump-  the complex expressions of these quantities. In the following
tions that [dpnr{>1, |85l >[Qpr| (N=1,2), 204Qenl®/  \ye will first examine regimes that are important to highly
| 6pn71> 1, and| Q| <[€dc,|. These conditions ensure that the efficient wave-mixing processes, vet also allow insightful
ground state is undepleted and the adiabatic processes rgnaiytical solutions of the field equations. Later, we compare
main effective. The latter requirement is the key for possiblgnese analytical solutions with a full numerical inverse trans-
analytical solutions to Eqg1a—(1d). Let oy’ andas be the  form of Eq. (3) to establish the validity of the analytical
time Fourier transforms oA andA;, 7 be the dimension-  solutions in the regimes under study. We will show that the
less time Fourier transform variable, al?@n be the time analytical solutions obtained agree well with numerical solu-
Fourier transforms of),, respectively. We obtain tions under the conditions specified. We note that the major
« * , approximations in obtaining these analytical solutions are the
o) = [0 = (dg7+ 7) (o7 + DAy ™= Qe oA 7 undepleted ground state and the neglecting of far-off-
D resonant terms such as cross-mode-stimulated emission with
(2a) nonvanishing two-photon detuningthese approximations
should always be accurate if the fields @, and wp, are
sufficiently weal. Beyond these no other approximations
have been made in our semi classical theory.

o2 = [1Qci7? = (d37+ 7)(dpy 7+ 7])]/\;27‘ QszclTA:nT
@ =
D

(2b) IIl. APPROXIMATE ANALYTICAL SOLUTIONS
TO THE FIELD EQUATIONS

- Q1Ao7+ W Apy 7+ Depr(p 7+ ”)ADZT, (20) Although in general detailed solutions of the field equa-
D tions require numerical evaluation of E®) using the com-
plex quantities defined thereafter, much physical insight can
be gained if the exponents—i.eay+L—can be approxi-
mated as linear or quadratic functions ¢f The linear de-
pendence om will correctly predict the propagation veloci-
where  D=(dy 7+ 7)(dpam+ 7)(da7+ 7) = [Q7f(d o7+ 7))  ties of the two probe fields, whereas the inclusion of the
—|Qc27|2(dp17+ 7). Equationg2a—2d) can be easily solved, quadratic terms iny provides corrections to both the field
yielding amplitude and group velocity due to pulse spreading and

a3z =

JA
—a‘;ﬁ =ikyra” (n=1,2), (2d)
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additional pulse attenuation. We note that the quadratic ap- S (dplT—dp27)2|chT|2|chr|2
proximation can be quite accurate even whgsm is rela- V“) + e 72 . (63
tively large, as with the lowess— P transitions in alkali

elements. Typically, when the linear or quadratic approxima-

tion to a, =L is accurate, it is sufficiently accurate to simply 1 1 K12 (6b)

evaluate the coefficients in the expressiondf evaluated V( - |Q|2’
at »=0. This is a consequence of the linear and quadratic
terms being small corrections to a much larger constant term
in these coefficients. With these approximations we Hdee

fining |Q72=|Q ¢y 72+ | Qo

Qe Q
Ml): |(;|22 pl(o 77) fl pz(o 7])
c
1) |Qc1|2 * ch *
W = 02 Ap1(0,77)+Q—Ap2(0,77) :
cl
2) |Qc2|2 * ch *
\M = |Q|2 Apz(oaﬂ)_Q_ZApl(Oln) ’
C.
|Qcl? Q
\N(—2>: |(;T2 p2(0 7]) fi pl(o 77)
c

In arriving at Eqs.(4a—4d) we have assumed th#R,,?
> |(dpn7+ 7)(d37+ )| (for n=1,2) and |J[>|(dp; 7+ 7)(dpo7

+7)(d37+7)|.

We first consider the limit where adiabatic behavior of
A(Z“) is expected to be a good first approximation and the
assumption of nondepleted ground-state population is valid.
This is the limit where the validity of Eqs4a—(4d) and the
assumptions leading to these equations are ensured. Under

andr=exd- y3z/(2V )]. We note that it is the eigenvalue
—-L that leads to the very slow decay as a function of

propagatlon distance and also leads naturally to a group ve-

locity that has the conventional EIT functional form—i.e.,

Eq. (6b).

(48 Equations(5) and (6) indicate that each probe mode

breaks up into two groups of pulses, each traveling at a dif-

ferent group velocity. One way to optimize the generated

FWM field (i.e., the w,modg and obtain identical group

velocities for the two components is to chod$k,|=|Q,|

and &,;=0 together with |6,>,/2. With these

choices, J=5,707%/2 and (dy =051 Qe/dQeol?

(40) ~(6p27-)2|QT|4/4 J?. Thus, we have closely matched group

velocities for the various pulse components:

1 1 kyp 1
(4d Vo e TR T v "

If we assume that initially there is no field in tag, mode at
the entrance to the mediufne., ,(0,t)=0], by maximiz-
ing the amplitude of the generated FWM figld,, mode
and by maintaining group velocity matched, we have

(4b)

* 1 * _ f .
Va(@17) = (1 (0,6~ 2IVy)) + & 2razrzrmie

X0y (0,t =21V, (83)

these assumptions the series expansiory tonverges rap-

idly and excited-state amplitudes remain small. In this limit
we use Eqs(4a)—4d) and retain only the constant and linear
terms in# in the exponents of Eq3). This allows analytical
evaluation of the inverse Fourier transform of Eg). We

thus obtain

* tr _ |ch|2 * z ch
Qpl(z,;>—rW Qpl 0,t- V() +Q_ClQ

*

Lt 04| . z\ Q, .
Q (z,—’> QL 0t-— |+ —20.(0,t
p2\ & | Q|2 p2 VE;,_) O pl

7 ) |QC2|Ze—iK12ﬂQﬂZZ/J
- Vg—) Q2

Qcp s ( z )
-—Q,(0t—-—11,
Qo ™ vy

wherer;) are given by

7 |QC2|2e—|K12’T|Q7"2ﬂJ . 7
— W + T Qpl 0t- @

Z
sz(o,t— W

g

- 1 . _ i .
(2,417 = J[r (0.t = 2V) - 720z Gerinzy

X0 (0,t=2V{)]. (8b)

We note that ify;7<1, as is the case when std@) is a
member of the ground-state manifold, then when
exp(—2k15y,z/ 53) is close to unity the amplitudes of the two
terms in Eq.(8a [and also in Eq(8b)] are nearly the same.

In this case, if %122/ S=mm andmis an odd integer, we get

pl(z t)=0 andQ, 2(z t)=Q, p1(0,t= zZIV© ) Therefore, with

an appropriate med|um thlckness ghe field that exits the

resonant medium will only be the FWM field.e., the vy,

(53  mode with an amplitude nearly equal to that of the,
mode probe field at the entrance of the medium. Since the
frequencies of the two fields are nearly equal in the system
discussed here, this represents a 100% conversion of the
probe field(w,; modeg to a FWM field (w,, modg. On the
other hand, iimis an even integer, the FWM field is zero and

) the amplitude of thevwy; mode field is nearly the same as its
initial value. Thus, as the two interacting fields propagate
through the medium, the state of the probe field oscillates

(5b) between the two field modes as a function of propagation

distance. Note that in this problem there can be nearly 100%
conversion efficiency, but there are certainly no conditions or
restrictions on having maximum coherence. Indeed, there is
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almost no(<1) excited-state population in this problem.
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o - . o KlZTQ 2 b =-p (dplT_dp27)2|chT‘2|Qc27'|2
This is very different from other high-efficiency frequency “o=~ Q7% b=~y QA% '
converters based on a Raman dou(lblsystem[4]
We further note that botﬁl andQ [see Eqs(5a) and
p2 4
(5b)] have a velocity componer(te theV component b, = - (d p1 7~ dpo7) (d 1T|Qr;271 27'|ch7" ),
that decays in exactly the same way. In the case where only Q%
1(0 t) is nonzero this feature has very interesting implica-
tions. From Egs(5a) and(5b) and at largez where the fast _ Y3T KioT _. 2
decaying part is negligible, we get a TAG ultraslow matched Co= 2 |Qd? €1=0Co yar'
pulse pairtwhen|Qq|=]Qc))
* |Q |2 N _ _ dplT|Qc17'|2+ dp27'|9027'|2
Oz =r] 6|12 Qp(0t-2V)), (93) C;=Cy i
0. Substituting Eqs(11a and(11b) into Eq.(3) and taking the
QO (2t =t o1 c2 )+ 0.t—zV). 9b inverse transform, one arrives at expressions for both modes
pa(2U7) |Qf? pa a) (9b) of the probe field that properly include attenuation and pulse

This leads to
n’;l(z,t/r) _ 0y

. =—. (10)

The |nterest|ng consequence of this result is t
—(chlﬂcz)/\ Using this result on the right-hand 5|des of
Egs. (2a) and (2b) and assumingdQ¢,m?>|ndya7l (for n
=1,2), we immediately get

spreading under these conditions. To be more specific, we
now consider two probe pulses with the initial shapes

00,(0,t/7) = Q510,06 277, (128

Q,(0,t/7) = Qny(0,ty e 270 (12p)

In this case the two probe fields at the entrance of the me-
dium (z=0) have different widths and amplitudes and may

even peak at different times via a time-delay paramgter

a) + o = 71 7+ Ao ol Vet Ay 7
|Qc17| (d p2T+ n)+ |Qc27‘ (d p 7+ 7])

This implies that at a sufficient depth into the medium where
Egs.(9a) and (9b) are valid the amplitude of, is strongly
suppressed by a destructive interference between a onge-
Q. py) and thregQy,,Q.,, Q. p2) Photon pathways to drive the
|1>—>|2> transition. Consequently, a new type of induced
transparency is established and the medium becomes hlgthQp1+
transparent to the pair of ultraslow probe pulses. This type of
destructive interference has been pointed out earlier in an-
other highly efficient FWM process by Payne and Dghgj.
As a consequence of this three-photon destructive interfer-
ence, if two matched pulses satisfying Efj0) are injected
into the medium, they will propagate with identical temporal
profiles, amplitudes, and group velocities and suffer very
little distortion or attenuation.

The above results are the consequence of the ImeanzatlonQ
of the coefficients and exponents permitted by the assump-
tion of good adiabatic behavior in the atomic response. Cor-
rections to such a strict adiabatic theory of atomic response
can be derived analytically to account for probe pulse
spreading and additional attenuation. Such corrections due to
higher-order nonadiabatic contributions play an important
role when the control laser Rabi frequencies are significantly

Where

Q,5(0,ty/ 7)€"

Q,5(0,ty/ 7)o

The control over the width of the second probe field is
through the parametdr Following the procedure described
above, we obtain the probe pulse in thg frequency mode:

Ozt D) = (2t D) + Q-

zt/9, (133

0 (0,06 Q. ox p(_ 2(trlr—blz)2>
P 10|21 - 8b,z 1—8byz

*

Q(:2901
|Q?\1 - 8ib,z/f?

><exp<— 2t -t/ - b12]2>’ (13b

2 - 8ib,z

-=0,,(0,0€° 90 exp(— A/ Clz)z)
P 10J2\1 - 8ic,z 1-8ic,z

*

QCZch
|Q72\1 - 8ic,z/f?

><exp<— At -t/ - clz]2>. (130

f2 - 8iC22

reduced, as required for achieving steep group velocity reEquationg138—13¢) indicate thanonadiabatic corrections

duction in a conventional three-leval-type EIT operation.
To include these corrections we take

+L=iby+ibym+iby7?, (113

_L=i00+icl7]+iC2772, (11b)

where

063813-4

contribute to both pulse spreading and attenuatidrine
pulse breakup cannot be avoided because of the pulse delay
and the difference in pulse lengths. T
however, can be significantly reduced by properly choosing
parameters that yield a large [Ibg], leaving two pulsesi.e.,

Q ,— components in Eq130)] of different widths, separated
by a delay ofty, traveling at thesamegroup velocity. An

fE,, component,
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expression fonﬂ);2 can be obtained similarly.

o ———.
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o0
1
T

IV. COMPARISON WITH NUMERICAL CALCULATIONS

In this section we demonstrate the validity of the above-
described analytical solutions by numerical calculations of
the inverse transform of Eq3). Examples shown in this
section are appropriate to ultracoffRb atomic vapors
where Doppler broadening is negligible. Typical densities of
such ultracold and Bose-Einstein-condensed atomic vapors
range from a few times #cm to a few times 16 cm™ |
[20,27. With these experimentally achievable parameters, — ~ /
we now demonstrate that it is possible to observe the high ~ 00 =" " = |,
efficiencies discussed in the present study. zlz

Let us choose|1)=5S,,(F=1,Mg=-1), |2)=5P;,(F
=2,M=0), and [3)=5S,,,(F=2,M=1). The splitting be- FIG. 2. Normalized peak intensity of the, mode(solid line)
tween the B, ,,(F=1) and P,,,(F=2) levels is 816 MHz, so &nd w,; mode(dashed lingas a function ofz/z, for a given me-
we chooses,,=1.256x 1¢° st (=200 MH2) and 8,,=0 for dium length. Parameters usgl; 7=[Qc,71=2136, 8, 7=0, &pp7
group velocity matching. Since the lifetime of the5, level ~ ~ +228% 105’_'“"1(0’0)_7':1’ |Qp3(0,0)r|:07, 727=3610, 557=0,
is 27.7x 10 s, we havey,=3.61x 107 s'~. We consider co-  727=0:05 =1, /720, K1pr=228x10" (cm g™, and zy

. . . =0.01 cm. Each curve contains two curves: one obtained from Eq.
propagating beams Wlth the probe_ and Contr_ol lasers ha"'”&) and the other obtained from Eq8a) and(8b). The agreement
o, and o_ polarizations, respectively. Takin®,,=2.20

18 18 between the two equations is excellent and the curves cannot be
X 10 esucm, D,3=3.81X10-°esucm, and

distinguished.
=10 cm 3, we havex;,=2.28x 10'* cm s, If we choose a g

matched group velocity ofy=40 m/s, we obtain|Q«|  five interference, we havel/4)[1+exf~-0.0903]=0.9156.
=2.14x 10" s, Finally, we assume a Gaussian input pulsenote that if the concentration had been taken toNve5
shape4with a full width at 1¢ of 7. In particular, we choose 104 cm3, then the constructive interference would have
7=10""s. We further assume that the decay rate of the Copceyrred atz=0.0018 cm, which is well within the range of
herence between statgy and|3) is ;=500 s*. Thus the  yarameters that have already been demonstrated in laborato-
set of parameters used in the following numerical calculayjes for ultracold atomic vapors.
tions Is In the second example we show how small the attenuation
Qe = 2136, 7,7= 3610, Kyor=2.28% 107 cmiL, of the slowly decaying terms in Eqe3), (8a), and(8b)_ ac-
tually are after the one- and three-photon destructive inter-
ference has become effective. In Fig. 3 we replot Fig. 2 for
Z,=1 cm, even though currently there is no ultracold system
© that can reach this length yet still have a density Nof
Vg 7=0.4 cm. =10 cm 3. This figure shows that after almost 300 times

We first consider the case wher€y(0,007=1 and
Q,(0,07=0. Here we are interested in demonstrating the
possibility of high photon flux conversion efficiency from
the wp; mode of probe laser to the FWM field.e., wy,
mode. To find the propagation distance where the first de-
structive interference occurs we gete Eqs(8a) and (8b)]
2K1,721/ (S5p7)=7 and find 2,=0.008 65 cm. Thus we
choose the maximum medium thickness to hg=z
=0.01 cm. Using the parameters shown above, we plot, in -
Fig. 2, Eqs(8a) and(8b) (solid and dashed lingslong with

the numerical inverse transforms of E&) (dotted and dot-
dashed lines The results from Eqs(8a) and (8b) are so
close to the results from E@3) that they cannot be distin-
guished on the graph. The difference in these results is less
than 2% at all points except near the zeros of the functions.
Note that the largest valug fd)ﬂpZ(z'_tr/T)F/mpl(Q’0)|2 is FIG. 3. Same as Fig. 2 excep,=1.0 cm. As in Fig. 2, the
nearz=0.0865 cm, as predicted. This value is slightly |argeragreement between solutions obtained from E8s.(8a), and(8b)

than 0.91, implying a conversion efficiency of 91%. Most of js excellent and the curves cannot be distinguished. Although the
the difference from 100% is due to the decay of the seconghrge propagation depths are not available experimentally, this fig-

term (e.g., the factor eXp-2y,7x;,72/ (8,;7)2]). Thus, at the  ure demonstrates just how transparent the medium is over such
peak, instead of havin@/4)(2)?=1 at the point of construc- great depths when E@L0) is satisfied.

ViI7))/1,(0,0) for n=1,2
=] =
= o

0

to
L
1

z2/(

m

827=1.256X 10°, y37=0.05, &,7=0,

L 1
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100 ) | L 1 Il 1 1 1 i 060 4 L L 1 1
3 <
080_ ............... _
TR B ] -
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S T (=
/‘\0'60_-__--______ _ 1
3 e 3
ﬁ R 0391 —
g‘ ——— &
>~ 0.40 g _ s
1 .................................................................... -
................................................... &
Nﬁ ~0.154 |
~0.20 _
Ng,
000 ' ’ ‘ : ; . . . . 0.00 :
0.0 0.2 0.4 0.6 0.8 10 ? 4 |
zlz, ty
16, 4. Same a8 Fig, 3 excelfu0.0—1 I this case, & FIG. 5. Normalized intensity of the,; mode probe wave as a

highly efficient multiphoton destructive interference creates an infunction oft,/ r for a given medium length. The calculation is based
duced transparency that renders the medium highly transparenh quadratic approximations Eq4.1) and(13a—13c¢) for the field
when the intensity of the two modes satisfies Ekf)) . There are  profiles, Eq. , and parameters are chosen for less robust adiabatic
four curves in the figure with two for each mogeolid line and  process. Parameters useffdq;7=|Qc,7=50, 8,7=200, &7
dash-dotted lines faby,, dashed line, and dotted line fag,) using =250, [Q,1(0,0074=1, [2,(0,074=1/2, y,7=10, &7=0, 37
Egs.(3), (8a), and(8b). The lower three curves are results of adding =0.01, f=1, ty/7=0, and «;,7z=8000. Solid curve: numerical
0.2, 0.4, and 0.6 offsets, respectively, for better viewing. Withoutevaluation of Eqs(1a—1d). Dashed curve: analytical results based
these offsets, the four curves cannot be distinguished, indicating then the quadratic approximation of E¢L38—13¢). The analytical
excellent agreement between E(®), (8a), and(8b). treatment predicts a large pedR,; ) att,/7=1.6(corresponding to

a group velocity of 1.6 10° m/s for 7= 105 s andz=1 cm) and a
small peak(Q,) att,/7=0.01. We have intentionally chosen the
parameters so that tKép1+ part of the wave is still visible.

the propagation distange comparison with Fig. Pthe am-
plitudes of the slowly decaying part of Eq&), (8a), and
(8b) have only decayed by a factor of éxpsz,/ (2V N
~e00625-0 94 from 0.25 which is the maximum probe intensitymode wy,) as a function ot,/ 7 for a given
(i.e., 100% photon flux conversion efficiency for the initial medium length. The solid curve is obtained by direct numeri-
condition 2,(0,0)=0. Again, as shown in Fig. 3, the ap- cal integration of Eqs(la—(1d), and the dashed curve was
proximate solutions Eqg8a) and (8b) agree well with the obtained using the analytical expression resulting from the
numerical evaluation of Eq3). quadratic approximation, Eq&ll) and(138—130). The lat-

We now demonstrate what one should expect when Eder predicts a large pedKl, ) att,/7=1.6, corresponding to
(10) is satisfied. We start with the case where all parameterg group velocity of 1®m/s, and a small peak,.) at
are the same as in Fig. 3, excdpf,(0,07=Q,(0,07=1.  t,/7=0.01. The excellent agreement between these two meth-
In this case we expect that the medium will be transparent tods indicates the validity of the quadratic approximation un-
both fields for the entiremzl cm propagation distance even der the conditions specified.
at a concentration of cm3. Thus, except for the factor of ~ Finally, we consider the case whef#,,(0,0)7=1 and
exg- y3zm/(2V 1, we expect the amplitudes of both modes ,,(0,0)7=0 in the quadratic approximation. As have been
to remain near unity. Figure 4 again shows the results frongliscussed before, this single-probe two-control configuration
Egs. (3), (8a), and (8b) for both modes. In this figure we converts the photons from tie,, field to the(, field via a
have four curves that cannot be distinguished, demonstratingVM process. With the detuningy, fixed, changing the
the agreement between the analytical soluti@ts.(8a) and ~ detuning 8, results in a tunable FWM fieldQ},) with a
(8b)] and the numerical evaluation of E@). high photon flux conversion efficiency. This is a potentially

We now present numerical calculations using Ed4)  Vvery useful narrow-band tunable coherent source. Taking the
and (133—(13¢). To be specific, we take the field profiles, parameters given in Fig. 6 our analytical treatment predicts a
Eg. (12) and compare analytical solutions based on the qualarge peak({),;_) att,/7=1.6, corresponding to a group ve-
dratic approximation, Eqg11) and(138—130), and the nu- locity of 1.6x 10° m/s (for 7=10°s andz=1 cm), and a
merical solution by directly integrating using Eq$a—(1d). small peak({);,) att,/7=0.01. This can be seen in Fig. 3
The parameters used here are different from those used in tli¢here the normalized intensity of the FWM field as a func-
linear approximations. Here we have purposely chosen théon of t,/ 7 is plotted. We have chosen the parameters such
parameters such that the adiabatic approximations are ntiat the fast wave has nearly zero amplitude. It is seen that
very robust to demonstrate yet still very good agreementhe numerical results agree well with the above theoretical
between the analytical treatment and rigorous numerical cabredication. Further numerical calculations have shown that
culations. We first takeQc;7=|Q7=50, 8,;7=200, &y, under the conditions specified, the results are in very good
=250, [Qp1(0,07=1, [Qpx(0,07=1/2, andyzr— 10, Wlth agreement with the analytical solutions of Efj3a—13¢) .
f=1 andty/ 7=0. In Fig. 5, we have plotted the normalized In fact, typical errors between these methods-ag9%.
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1.00 —_ —_— evolve into a TAG matched pulse pair which travels without
distortion and attenuation in a highly dispersive medium
with an atomic density as high as#@m 3. This is a re-

0.75 - L L markably efficient transparency scheme, and we have dem-

g» onstrated nearly 100% photon flux conversion efficiency
= from one mode to another. In addition, we have shown that
Z 0.50 | the proposed scheme does not require maximum atomic co-
o herence. Indeed, there is very little atomic coherence
R (<0.5) in the system we studied. This is to be contrasted to
= other schemes where maximum atomic coherence is required
~70.25 4 F = [4]
We have also compared out linear and quadratic approxi-
mations with numerical calculations for several example us-
0.00 ——r—t —— — ing experimental achievable parameters. These comparisons
2 -1 0 1 2 3 4 have shown that the analytic solutions agree well with nu-
t /T merical calculations under the conditions specified.

Generation of TAG matched ultraslow waves using a
single-specie three-level medium may have important appli-
cations. The concept applies to multiwavelength schemes
and is readily scalable to single-photon regimes. This may
open possibilities of quantum entanglement of ultraslow pho-
ton pairs and quantum computation using ultraslow optical
fields. The FWM characteristics of the two-mode ultraslow-

" wave scheme also opens the possibility of multiple-wave
mixing in ultraslow propagation regimes. With a single probe
field () as the input, adjusting),, will generate a tunable

We have proposed a two-mode, single-specie three-levéfWM field (), with near 100% photon flux conversion ef-

A system to achieve TAG matched pairs of ultraslow wavediciency.

and have shown a type of induced transparency process that

is established by a multiphoton destructive interference. In

the linear and quadratic approximation, we have shown that This research is supported in part by the Office of Naval

after a characteristic propagation distance both probe moddesearch under Contract No. N0014031P20106.

FIG. 6. Normalized intensity of the FWM fiel(tﬂpz) as a func-
tion of t/7 for a given medium length. Parametet&,(0,0)7]
=1, |Qp2(O,O)T= al, 6p17=0, 6,p7=1250, y,7=25, 837=0, y37
=0.01,|Qu7=]Qe7 =200, f=1, ty/7=0, and k;,72=19 625. The
solid curve is from the numerical integration of E¢sa)—(1d). The
dashed curve is obtained from H333—(13¢). The parameters are

chosen so that thQ:Jl+ part of the wave dampens out completely.

V. SUMMARY
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