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Abstract. Recently, extreme ultraviolet interference lithography using a
single grating interferometer and a highly coherent synchrotron insertion
device source has proven to be an extremely useful technique for pro-
ducing patterns with feature sizes in the range of 10 nm. The high de-
mand for these nanoscale patterns and the small number of suitable
highly coherent extreme ultraviolet sources has created new interest in
the cascaded grating interferometer because of its relaxed demands for
spatial and temporal coherence. This work extends that of earlier re-
searchers on such systems by providing a compact algebraic analysis of
the effects on fringe contrast of source divergence, spectral bandpass,
lack of parallelism of the grating rulings, grating period mismatch, defo-
cus, and wavefront curvature. The results are applied to illustrate the
feasibility of implementing the interferometer on a small bending magnet
synchrotron source, but the analysis should be applicable to typical por-
table plasma sources as well. © 2009 Society of Photo-Optical Instrumentation En-
gineers. �DOI: 10.1117/1.3112008�
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Introduction

olographic or interference lithography has been used to
ake large-area periodic structures of use in many impor-

ant applications. Recent examples include the nanoruler,1 a
etrological tool providing nanometer accuracy measure-
ents over distances measured in centimeters, and an in-

rared negative index metamaterial.2 These examples used
aser light at a wavelength of 193 nm, a factor that limits
he size of the smallest feature that can be patterned since
wo interfering beams of wavelength � cannot produce pat-
erns with feature sizes less than � /4, or �50 nm in this
ase. More recently, Solak3 and Solak et al.4 have been
uccessful in developing extreme ultraviolet-interference li-
hography �EUV-IL� using light at 13 nm to produce pat-
erns with half pitches as small as 12.5 nm.

Currently, EUV-IL is performed using a single grating
nterferometer to recombine two parts of a highly spatially
oherent beam.3 The spatial coherence requirement limits
he use of the single grating instrument to synchrotron fa-
ilities with high brightness undulator sources, and only a
ew EUV-IL facilities are available worldwide. As it turns
ut, EUV-IL has proven very useful to the developers of
UV lithography in that the capability of EUV-IL to pro-
uce patterns at the 10-nm scale makes it an indispensible
ool for the testing of EUV photoresists.

An interferometer based on a cascaded grating configu-
ation can greatly reduce the requirements for spatial coher-
nce while at the same time maintain some of the achroma-
icity that is characteristic of the single grating instruments.
hus, there is significant current interest in adapting the

932-5150/2009/$25.00 © 2009 SPIE
. Micro/Nanolith. MEMS MOEMS 021202-
cascaded grating interferometer to portable EUV sources so
as to improve the availability of EUV-IL printing tools for
use in the development of EUV resists and other applica-
tions in nanotechnology.

Anderson and Naulleau5 provide an excellent summary
of the previous analyses of the cascaded grating system and
a thorough treatment of the effects of lack of parallelism of
the two gratings on performance. The present work differs
in several respects by presenting a wave-vector approach
that can readily provide a direct estimate of fringe visibility
as a function of defocus, of deviation of the rulings from
parallelism, of grating periodicity mismatch, and of spectral
bandwidth.

2 Single Grating Interferometer
In the single grating system, such as that shown in Fig. 1, a
collimated beam of high spatial coherence impinges on a
grating with a central beam stop. The −1 diffracted order
from the top section of the grating interferes with the +1
order beam from the bottom section of the grating to give a
pattern with period p=� / �2 sin ��, a relationship deter-
mined only by the half angle � between the two intersecting
coherent beams and the wavelength �. However, because in
the bilaterally symmetric configuration as shown the grat-
ing equation implies �=sin−1�� / pG� where pG is the period
of the grating, the pitch is given by

p = �/�2 sin �� = �/�2�pG
−1� = pG/2, �1�

which is independent of wavelength �, thus making the
system achromatic, or in other words, insensitive to the
temporal coherence of the incident beam. We note another
Apr–Jun 2009/Vol. 8�2�1
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dvantageous feature of single grating system: the pattern
as half the pitch of the rulings on the grating, allowing one
o make devices with feature sizes smaller than can be
chieved by other forms of lithography.

The system has the disadvantage in the stringent require-
ents on the spatial coherence of the incident beam. This
ay be seen by considering a small pencil of rays at a small

ngle ��in from the �normal� incident beam. For this pencil
f rays, the first-order diffracted beams are both rotated by
bout ��in, which creates a box interferogram in the region
f beam overlap rotated by ��in from the box interferogram
reated by the normal incidence beam. Thus, the interfer-
nce pattern created by this pencil of rays at a plane at
istance � is shifted by � ·��in from that created by the
ormal incidence beam, implying that maintaining fringe
ontrast with period p would require ��in� p /�. Noting the
act that p is generally in the order of tens of nanometers
nd � is in millimeters, we get that ��in must be of order
ens of microradians.

Cascaded Grating Interferometer
n interferometer employing a second grating in a cas-

aded configuration can perform interference lithography
ith sources of only limited spatial and temporal coher-

nce. Such a device operating at 193 nm was demonstrated
n Refs. 6 and 7, and the possibility of one operating at
UV wavelengths was discussed by Wei et al.8 and more

ecently by Anderson and Naulleau.5

We have specialized our approach to the application to
UV-IL, where present limits on grating fabrication and
ource brightness are factors that restrict the choice of con-
guration to the geometry in which the first-order diffracted
eams are used. Furthermore, we shall choose to investi-
ate the case in which the grating G1 has pitch pG1 and
rating G2 very close to half that pitch or pG2� pG1 /2. �For
his arrangement, the focal plane is at z3�2z2.� As was
hown by Cheng et al.9 and other authors,3,5,9–12 this results
n the cancellation of the first-order terms that lead to loss
f fringe visibility.

In Fig. 2, we see a wavefront impinging on G1 at small
ngle �in. For convenience, we choose OO� to be the optic
xis and define it such that the point on wavefront at O

ig. 1 Single grating interferometer, such as those used for EUV-IL,
t highly coherent synchrotron sources. Wafer-coated resist is a dis-

ance � from the grating. The pitch of the pattern is represented by
. A zero-order mask is shown on the grating. EUV is at normal

ncidence to the grating.
. Micro/Nanolith. MEMS MOEMS 021202-
recombines at point O� with zero phase difference between
the upper and lower paths when �in=0. This implies a cer-
tain relationship between the position of the rulings of G1
and those of G2 modulo pG2. For the wave-vector calcula-
tions in Section 3, we choose the origin of our coordinate
system at O. The grating equations give the following rela-
tionships between the different angles:

�T1 = sin−1��/pG1 + sin �in�

�B1 = sin−1��/pG1 − sin �in�

�T2 = sin−1��/pG2 − sin �T1�

= sin−1���1/pG2 − 1/pG1� − sin �in�

�B2 = sin−1��/pG2 − sin �B1�

= sin−1���1/pG2 − 1/pG1� + sin �in� . �2�

We note that when �in=0 and 2pG2= pG1, we have that
�T1=�B1=�B2=�T2 and the pitch of the pattern is given by

p = �/�2 sin �T2� = pG2 �3�

�i.e., the pitch of the pattern is the same as that of G2�. A
geometric argument can also be used to show that for this
configuration the pattern is unchanged in the focal plane
z3=2z2 for angles �in�0, but that a phase difference for
different values of �in quickly accumulate as one departs
from the focal plane �defocus�.

3.1 Scalar Diffraction Analysis of the Cascaded
Grating Interferometer

Our method is equivalent to the earlier approaches used to
estimate the optical performance of the cascaded grating
interferometer.5,9–12 The earlier approaches considered the
phases arising from free space propagation by considering
the length traversed by rays passing through the optical
system as well as the phase imparted by the grating. We
consider plane wave solutions to the Helmholtz equation
and treat the effect of the grating �“grating phase”5� by
addition of a wave vector of length ki=2� / pGi in the direc-
tion perpendicular to the grating rulings to the propagation
vector of length k=2� /� We feel that vector addition of
wave-vector components is conceptually simpler than con-
sidering changes in angles of the rays, which involves
trigonometric and inverse trigonometric functions as seen,
for example, in Eq. �2�.

Consider the two-level cascaded grating shown in Fig. 2.
We define coordinate axes such that the x- and y-axis are in

Fig. 2 Diagram showing geometry of cascaded grating
interferometer.
Apr–Jun 2009/Vol. 8�2�2
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he plane of grating G1 with the y-axis parallel to the rul-
ngs and with the z-axis perpendicular to G1 and pointing
n the direction of the light propagation. G1 is at position
=0, G2 is at position z2 and screen S is at position z3. In
he ideal case in which the pitch of G2 is half that of G1,

3 = 2z2. �4�

e consider the two regions of grating of G2 to be per-
ectly matched. We also assume G1 and G2 to have negli-
ible thickness and the plane of G1 parallel to that of G2.
ecently, the problem of a tilt of the plane of G2 out of the
lane parallel to G1 has been investigated;5 the treatment
hows that for a small range of incident angles, say ��in �

10 mrad, the parallelism tolerance can be readily
chieved in practice. In this section, in addition to studying
he effect of source size and spectral bandwidth on depth of
ocus, we will study two complementary problems: the case
f parallel rulings with a small mismatch of the pitch from
2:1 ratio and the rotation of the rulings of G2 relative to
1 in the case in which the pitch has a 2:1 ratio.
We consider then the propagation of a single plane

ave. Before arriving at G1, it is characterized by the field

�0��r�� = U0eik�·r�, �5�

here k� has a substantial component in the ẑ direction. We
odel the gratings and account for the grating phase by

aying their effect is to multiply U�r�� by the factor tje
�ik� j·r�

or j=1,2 on the gratings G1 and G2, respectively; here �
efers to the diffraction order �1, respectively. The super-
cript refers to the domain: 0 being to the left of G1; 1
xtending from G1 to G2; and 2 extending from G2 to S.

We consider the phase exiting G1 first. In two dimen-
ions, the wave is described by

�
�1��x,y,0� = U0eikxxeikyyt1e�ik1xx. �6�

he � symbol refers to the two relevant diffracted beams,
nd t1 is the diffraction efficiency of the first grating �as-
umed to be the same for the � first order�. The value for kx
s given by kx=ksin �in, where �in is the angle between the
ropagation direction and the y-z plane. Similarly, ky
ksin �in where �in is the angle between the propagation
irection and the x-z plane.

The Helmholtz equation constrains the free-space wave
ector to be

2 = kx
2 + ky

2 + kz
2 = �2�

�
�2

. �7�

or this paragraph only, the symbols are generic �i.e., refer
o any region of space�. We assume that the waves propa-
ate toward positive z; thus,

z = �k2 − kx
2 − ky

2�1/2 �8�

i.e., the sign of kz is specified�.
In the region between G1 and G2, the waves are given

y

. Micro/Nanolith. MEMS MOEMS 021202-
U�
�1��x,y,z� = U1ei�kx�k1x�xeikyyei�k2 − �kx � k1x�2 − ky

2�1/2z, �9�

introducing U1=U0t1. Equation �9� is valid in particular at
the entrance face of the second grating �i.e., with z=z2�.
The grating G2 will impart a factor t2e	ik2xx�ik2yy to the
impinging waves. In the case when the rulings of G2 are
parallel to those of G1 �and therefore to the y-axis�, k2y
=0 and k2x=2� / pG2.

At the exit face of G2, the waves are given by

U�
�2��x,y,z2�

= U1ei�kx�k1x�xeikyyei�k2 − �kx � k1x�2 − ky
2�1/2z2t2e	ik2xx�ik2yy .

�10�

Equation �10� is derived by setting z to z2 and multiplying
by the factor associated with the 	 first-order diffraction
grating from G2. The sign � on the ik1x term on G1 is
matched with 	 on the term ik2xx on G2 to describe those
waves that bend inward to interfere on the sample S. Using
the same argument as before, the waves at a general point
of region 2 are given by

U�
�2��x,y,z� = U2ei�kx�k1x	k2x�xei�ky�k2y�yei�k2 − �kx � k1x�2 − ky

2�1/2z2


ei�k2 − �kx � k1x 	 k2x�2 − �ky � k2y�2�1/2�z−z2�, �11�

introducing U2=U1t2=U0t1t2.
The two waves described by Eq. �11� interfere in region

2, including the plane z=z3. The intensity pattern is de-
scribed by

I�x,y,z� =
1

2	
� U�
�2��x,y,z�	2

. �12�

The intensity may be written as a sum of two terms

I�x,y,z� = I�1��x,y,z� + I�2��x,y,z� . �13�

There is a background term

I�1��x,y,z� = �U2�2 �14�

and an interference term

I�2��x,y,z� = �U2�2Re�ei�2k1x−2k2x�xei2k2yyei�� , �15�

where R stands for the real part and

� = 

�

� �k2 − �kx � k1x�2 − ky
2�1/2z2 � �k2

− �kx � k1x 	 k2x�2 − �ky � k2y�2�1/2�z − z2� . �16�

3.2 Calculation of Depth of Field for a Given
Angular Dispersion and Spectral
Bandwidth of the Input Illumination

Equation �15� will be the starting point for a few special
cases. First, we consider the perfectly aligned cascaded
grating characterized by k2x=2k1x �physically, the pitch of
G1 is twice that of G2� and use z3=2z2+�z with the under-
standing that �z will be small. The interference term be-
comes
Apr–Jun 2009/Vol. 8�2�3
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�2��x,y,z� = �U2�2Re�e−2ik1xx�
�

e�i�k2 − �kx 	 k1x�2 − ky
2�1/2�z� .

�17�

ext, we assume that k�2�k2−ky
2�kx

2 ,k1x
2 , introducing k�

0. A Taylor expansion of Eq. �17� leads to

�2��x,y,z� = �U2�2Re�e−2ik1xxe2ikxk1x/k��z� �18�

o the lowest nonvanishing order.
We shall use Eq. �18� to make some general statements

bout the behavior of the interferometer for the cases in
hich the inequality k2−ky

2�k1x
2 holds. There is a sinu-

oidal variation in the interference term with x whose
avelength is independent of the incident beam parameters.
he phase, however, does depend on the beam parameters

except for �z=0� through the dimensionless parameter

�
kx

k�
=

kx

�k2 − ky
2�1/2 , �19�

efining �. Typically, we expect ky �k, so � depends in
rst order on variations in kx but only second order on
mall ky. We also note that variations in � �or therefore k�
o not affect � in general, because since the angular dis-
ersion of most illumination schemes will be determined by
eometrical factors so that both kx
k and ky 
k. Note that
1x�z is another dimensionless parameter; thus, the depth of
eld will scale linearly with the grating pitch pG1=2� /k1x,
property noted by Cheng et al.9 and others.5

According to Eq. �18�, for any given incident beam pa-
ameters, there is a sinusoidal pattern. However, as the in-
ident beam parameter � varies, this sinusoidal pattern
hifts in space for nonzero �z. To determine the fringe vis-
bility V��z�, we must average the interference pattern over

distribution of �. Given a normalized probability distri-
ution f���,

�2��x,y,�z� = I�1�Re�e−2ik1xx� d�f���e2ik1x�z�� �20�

is the appropriate average. Assume that f��� is a normal-
zed Gaussian with standard deviation �� and mean �0, i.e.,

f��� =
1

�2���

exp�−
�� − �0�2

2��
2 � . �21�

A nonzero �0 would arise if the beam has an nonzero
verage kx, i.e., physically, if the beam is not at normal
ncidence on average.� The integral is elementary. The re-
ult is

�2��x,y,z� = I�1�e−2��
2k1x

2 �z
2

cos�2k1x��z�0 + x�� . �22�

ence, the visibility has the functional dependence

��z� =
Imax − Imin

Imax + Imin
= e−2��

2k1x
2 �z

2
, �23�

.e., the maximum and minimum of I= I�1�+ Ī�2� are taken
ver x for fixed � .
z

. Micro/Nanolith. MEMS MOEMS 021202-
If we choose a minimum acceptable value for the fringe
visibility Vmin, typically 0.5–0.8, then

��z� �
1

�2��k1x
�ln

1

Vmin
�1/2

�24�

in the region of visible fringes. Without loss of generality,
we take k1x
0. The dependence on Vmin is quite weak.

For the purpose of illustration, we shall suppose all of
the variation in � is due to Gaussian variation in kx around
the value kx=0 with standard deviation �kx

; thus, k=2� /�

is fixed and ky =0. We choose to have Vmin=0.5. From the
definition of �, given in Eq. �19�, �kx

=���k2−ky
2�1/2, or

simply �kx
=��k for ky =0. In this case,

��z� � 0.5887
k

�kx
k1x

= 0.5887
pG1

��kx

. �25�

We are interested in the EUV case of �=13.5 nm and pG1
=50 nm, which yields a 12.5 nm half pitch on the sample.
In this case,

��z� � 2.2
1

�kx

� 0.35
�

��in

. �26�

In making the final approximate equality, the small-angle
approximation kx�k has been invoked and, in this case,
��in represents the divergence of the beam as measured in
the x-z plane. Thus, there is a trade-off between the accep-
tance angle for incident radiation �in and the depth of field
2�z

�max�. To end with a fully numerical example, if ��in
=10 mrad and the spectral bandwidth is characterized by
��=1.0 nm, which is roughly characteristic of beam line 1
of the bending magnet source at the Synchrotron Ultravio-
let Research Facility �SURF III� of the National Institute of
Standards and Technology �NIST�, then the depth of field is
0.9 �m. �The spectral bandwidth is determined by the fact
that the synchrotron radiation from the bending magnet
source is reflected by two normal incidence multilayer mir-
rors. At the level of our approximation, this relatively small
bandwidth does not affect the depth of field.�

For more detail, we have plotted in Fig. 3 the fringe
visibility as a function of defocus by evaluating the ap-
proximation represented by Eq. �23� and compared that
value to the more precise value obtained by numerical in-
tegration of the phase in Eq. �16� over the distribution
given in Eq. �21�. As can be seen, the approximation works
quite well for pG1=50 nm �or k1x

2 /k2�0.07�.

3.3 Calculation of Fringe Contrast in the Case of
Grating Pitch Mismatch

Next, we return to Eq. �16� and seek the location of the
sample plane that leads to the best interference pattern.
Specifically, introducing �k2x via k2x=2k1x+�k2x, we want
to adjust z3 so that a particular phase vanishes, i.e.,



�

� �k2 − �kx � k1x�2 − ky
2�1/2z2 � �k2 − �kx 	 k1x 	 �k2x�2

− �ky � k2y�2�1/2�z3 − z2� = 0. �27�

The solution is
Apr–Jun 2009/Vol. 8�2�4
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3 = z2�1 − N/D� �28�

ith

= 

�

� �k2 − �kx � k1x�2 − ky
2�1/2 �29�

nd

= 

�

� �k2 − �kx 	 k1x 	 �k2x�2 − �ky � k2y�2�1/2. �30�

or the ideal case, �k2x=0 and k2y =0 �i.e., no pitch mis-
atch and the rulings of G2 parallel to those of G1�, we

ecover the well-known result z3=2z2 �i.e., the distance
rom G1 to the sample plane is twice the distance from G1
o G2�. If the rulings are parallel but not necessarily with a
:1 ratio of the pitch, then we have k2y =0 and �k2x small
for the cases of interest here�. In this case, we may rein-
roduce k�2=k2−ky

2, and it may be seen in Eq. �16� that the
ffect of a y component of the incident beam is no different
rom an increase in the wavelength �. For our application,
he range of wavelength is a few percent of the wavelength
tself, whereas the maximum expected incident angles are,
t most, 5 mrad, which is represented by ky �0.005k. Be-
ause this term enters k� in second order but the wavelength
ariation enters in first order, we may neglect the y compo-
ent of the incident angle as its contribution to the loss of
ringe visibility is dwarfed by that of the bandwidth in
avelength.
To explore the effects of grating mismatch with k2y =0

parallel rulings�, we perform a Taylor expansion to the
owest nonvanishing order in the quantities: kx

2 / �k2−k1x
2 �,

k2x / �k2−k1x
2 �1/2, and k2x / �k2−k1x

2 �1/2 to obtain the expres-
ion

ig. 3 Fringe visibility for the case of ��in=10 mrad with a pG1
50 nm and pG2=25 nm grating pair as a function of defocus. The
olid line is from the function in Eq. �23�, and the dots are from
umerical integration of the phase in Eq. �16� over the distribution
iven in Eq. �21�.
. Micro/Nanolith. MEMS MOEMS 021202-
z3 − z2 = z2�1 −
�k2x

k1x
� k2

k2 − k1x
2 � +

�k2xk1xkx
2

2�k2 − k1x
2 �2� . �31�

The key points of this expansion are: �i� it is possible to
shift the focus to compensate for a grid mismatch and �ii�
the focus is no longer independent of the angle of inci-
dence. In a typical case, the depth of field is 
1 �m and
the spacing z2 is 10 mm. This dependence is expressed by
the third term in the brackets and may be easily evaluated
for various values of the parameters. In practical cases
where �k2x /k1x and kx /k are each on the order of a percent,
this variation is on the order of 0.1 �m, which is a small
part of the depth of focus.

In Fig. 4, we show a plot of lines of equal phase of
� /50, � /10, and � /2 in the focal plane determined by Eq.
�31� for a 1%-pitch mismatch as a function of wavelength
and incident angle. To get an idea of the depth of field, we
have plotted the same quantities for a position 500 nm from
the focal plane in Fig. 5. As can be seen, a small amount of
pitch mismatch decreases the tolerance in input angle and
bandwidth for the interferometer.

3.4 Calculation of Depth of Field for Case of
Matched Gratings in Parallel Planes with
Ruling Directions Not Parallel

As a final nonideal case, we consider the grid bars rotated
with respect to each other by an angle �. The rulings of G1
are taken to be parallel to the y-axis. The phase in the
sample plane is given by Eq. �16�, with k2x
= �2� / p � cos � and k = �2� / p � sin �. The change in

Fig. 4 Phase given by Eq. �16� as a function of the wavelength of
the incident light and the angle of incidence in the x-z plane. The
rulings are assumed to be parallel to the y-axis. The pitch of first
grating is pG1=50 nm, and �k2x is set to 1% of k1x, which corre-
sponds to a pitch of the second grating of pG2=24.88 nm. The
boundary between the white and light gray regions represents a
phase shift of � /50 of either sign compared to a 0 phase in the
center of the plot. The boundary between the light gray and dark
gray regions represents a phase shift of � /10 and, between the dark
gray and black, � /2. The spacing between the first grating and the
second grating is 10 mm, and the spacing between the second grat-
ing and the image plane is taken to be 9.8932 mm, which is the
solution to Eq. �28� for kx=ky=0 and �=13.5 nm.
G2 2y G2
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he focal plane and the maximum phase deviations for typi-
al mismatch angles are given in Tables 1 and 2. As can
een seen, a modest alignment deviation � results in a neg-
igible change in the focal plane distance. The variation in
3 over the expected bandwidth from 98% to 102% of the
entral wavelength of 13.5 nm is �1 nm, also a negligible
mount. When the maximum deviation of the incident
hase exceeds � by a significant amount, the fringe visibil-
ty becomes vanishingly small. Tables 1 and 2 indicate ac-
eptable and unacceptable conditions.

We conclude that the alignment of the gratings is criti-
al. In the case of aligned gratings with a slightly mis-
atched pitch, it is possible to compensate by adjusting the

pacing between the second grating and the sample plane to
chieve a robust implementation. However, errors in align-
ent lead to phase errors even at ideal z and to a smaller

epth of field. If the alignment required by Tables 1 and 2
annot be achieved, one option for the designer would be to

ig. 5 Same plot as Fig. 4, but the spacing between the second
rating and the image plane is increased by 500 nm, to 9.8937 mm.
ringe visibility is reasonably high if the black region is avoided.

able 1 The range of the phase that is introduced by a “clocking
rror” �i.e., by nonparallelism of the gratings G1 and G2 by an angle
�. The second column is the ideal position at the central wave-

ength of 13.5 nm for gratings with pitches of 100 and 50 nm, re-
pectively, with a G1 to G2 spacing of 10 mm. The third column
ives the biggest phase difference introduced at the sample plane
ver the range 13.25���13.75 nm at the ideal sample position
nd the fourth column at 1 �m past the ideal position to provide a
easure of the depth of focus. A maximum half-angle of 5 mrad in x
nd 5 mrad in y was assumed.

��rad� z3−2z2 �nm� � /� �ideal z� � /� �ideal z+1 �m�

0 0 0.404

5 0.025 0.202 0.606

0 0.049 0.404 0.808

00 0.098 0.808 1.212
. Micro/Nanolith. MEMS MOEMS 021202-
reduce the spacing z2 between the two gratings because the
phase error is proportional to this spacing or to reduce the
angular dispersion of the incoming light. The ability to
align the gratings may ultimately determine the maximum
size of the device and the acceptable divergence of the
input radiation.

Certain relevant cases have been given in Tables 1 and
2. For estimations, it may be possible to scale these an-
swers. For example, Eq. �28� shows that z3
z2. Returning
to Eq. �16�, if we set z=z3, for some choice of the set of
parameters k, kx, k1x, k2x, ky, and k2y, it may be seen that the
phase for some other values for the parameters �and hence
the phase error, given that Eq. �16� sets the phase to zero� is
proportional to z2 Thus, reducing z2 will proportionately
reduce the phase error at the expense of limiting the maxi-
mum field size. �The phase equal to the phase error, given
that Eq. �27� sets the phase to zero.� The depth of field,
however, is independent of z2. Although the Taylor expan-
sions are somewhat involved, numerically the phase error is
proportional to both kx and ky, and similar to the case of the
grating mismatches, the dependence on � is quite weak.

4 Effect of Spherical Waves

4.1 Treatment of Spherical Waves
In describing the operation of the interferometer, we have
thus far used an approximation with plane waves. In an
application using a source at a finite distance, we must take
into account that the wavefronts are not planar but are bet-
ter approximated as spherical wavefronts. The use of
spherical waves will change the fringe visibility as one
moves from the optic axis along the focal plane.

For simplicity, we treat the case where �in=0 so that
�T1=�B1=� and z3=2z2. We consider in Fig. 6 a point A in
the focal plane. The spherical wave front with arc ACTS,
approximated by plane wave represented by ACT interferes
with spherical wavefront ACBS approximated by ACB at A.
The phase difference between the upper and lower beams in
the plane wave approximation is 2AO��2� /��sin �,
whereas in the spherical wave case the phase difference is
�2� /���R+−R−�, where R+ is the radius of the spherical
wave associated with ACBS and R− that associated with
ACTS. Thus, to determine the change introduced by the
spherical wavefronts, we must evaluate the difference be-
tween these two phase differences.

Table 2 Same as Table 1 but for gratings with pitches of 50 and
25 nm, respectively, with the fourth column now representing a po-
sition 0.5 �m past the ideal. Note the linear dependence on � and
the offset in z in this table and in Table 1.

� ��rad� z3−2z2 �nm� � /� �ideal z� � /� �ideal z+0.5 �m�

0 0 0 0.416

25 0.031 0.416 0.832

50 0.062 0.832 1.248

100 0.124 1.664 2.080
Apr–Jun 2009/Vol. 8�2�6
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If we make the further simplifying assumption that the
adii of curvature of the wavefronts are just the optical path
engths from the source, then given the geometric relation-
hips between the chords ACT=AO� cos �=ACB and radii
f curvature �which we have called R+ and R−�, and the
pothems �R0+2z2 /cos ��AO� sin ��, we get the follow-
ng relationships:

� =��R0 +
2z2

cos �
� AO� sin ��2

+ �AO� cos ��2. �32�

sing Eq. �32�, one can solve for the difference between R+
nd R− to yield the path difference between the two wave-
ronts. This path difference can then be compared to the
ath difference in the plane-wave case, which is equal to
AO� sin �, and thus, the phase difference at position A is
iven by

A = �2�/����R+ − R−� − 2AO� sin �� . �33�

ig. 6 Diagram showing elements used in estimating the effect of
avefront curvature.

Fig. 7 Estimated intensity profile at the grating G1. SURF III ope
. Micro/Nanolith. MEMS MOEMS 021202-
4.2 Effect of Spherical Wavefront and Estimation of
Exposure Times at SURF III

Finally, we shall specifically consider the case of an exist-
ing synchrotron radiation source. The SURF III is a storage
ring located at NIST’s Gaithersburg campus. SURF III is a
single-magnet circular electron storage ring with an
838-mm radius. The vertical electron beam size can be var-
ied from about 1 to 3.5 mm full width half-maximum. A
design for a dedicated beamline for EUV-IL at SURF III
has been proposed. This design incorporates a near-normal
incidence �0.5 deg� multilayer optic to create a 1:1 image
of the electron beam and planar 45-deg angle of incidence
mirror to relay the image into the interferometer chamber.
Keeping the imaging optic at a near-normal incidence will
reduce the spherical aberration, astigmatism, and coma in
the system. We have modeled the output of the proposed
system using Zemax ray-tracing software.13

In the model, we considered incorporating a 3 m radius
of curvature spherical optic with a diameter of 75 mm. The
optic was placed 3 m away from the source. This configu-
ration is somewhat similar to another beamline at SURF III
that incorporates a single focusing mirror with a 10-deg
angle of incidence. We used data from that beam line to
determine that a multilayer at a 3-m distance from SURF
III will collect and image 6.2 mW of in-band power. The
in-band image power will be reduced to 3.2 mW by the
45-deg folding mirror. The intensity pattern was modeled at
plane 100 mm after the image plane of the optical system.
The result of the model is shown in the intensity pattern in
Fig. 7.

Next, we considered a cascaded grating with a with
single grating efficiency in the �1 orders of �7%. This
yields a throughput of �1% at the wafer plane. This yields
an intensity of approximately 30 �W /mm2 or 3 mW /cm2.
This yields an exposure time for a 100-mJ /cm2 resist of
�35 s.

Furthermore, consider the following parameters for a

with a beam current of 300 mA and a vertical height of 1.5 mm.
rating
Apr–Jun 2009/Vol. 8�2�7
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roposed EUV cascaded grating system: �=13.5 nm, pG1
50 nm, pG2=25 nm, z2=10 mm, R0=100 mm, and AO�
0.5 mm.

From Section 4, we can consider the spherical wavefront
roduced under these conditions. The result is a plane-wave
ropagation difference of 270.000 �m and a spherical
ave path difference of 269.998 �m. Therefore, the path
ifference is 2 nm. This shows that the interference pattern
enerated in the spherical wave case is nearly identical in
hase to the plane-wave case and setting our interferometer
00 mm from the focus is adequate to achieve a uniform
nterference pattern over a 1.0-mm field. An interferometer
est bed has been designed and constructed for demonstra-
ion experiments at SURF III. This interferometer has been
ested in order to determine the thermal and mechanical
tability of the device. These tests have shown that the test-
ed performs adequately for exposure times on the order of
few minutes.14

Conclusions
n the ideal configuration for EUV-IL, namely, the use of
rst-order diffracted beams with pG2= pG1 /2, rulings per-
ectly aligned, and z3=z2, the depth of focus depends most
trongly on beam divergence perpendicular to the rulings
i.e., �in�. We have shown that in this ideal case the depth of
ocus is given by 0.6 pG1 /��in, where ��in characterizes the
aussian width of the beam divergence.
If the gratings are ruled by an electron-beam writer, the

verage pitch mismatch can be made to be 1% or less.15

ith a pitch mismatch of 0.5% in the case of pG1=50 nm,
e see from Figs. 4 and 5 that there is a wavelength de-
endence of the phase and some decrease in the depth of
ocus.

The most critical element in the construction of the in-
erferometer is the alignment of the rulings of G1 with
hose of G2. We have shown that a modest mismatch of the
rientation of the two gratings can lead to a serious degra-
ation in the performance of the cascaded interferometer
nd may limit the size or the acceptable divergence of the
nput.
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