
1
T
c
s
t
s
i
d
C
l
y
h
r
a

t
m
i
a
t
o
t
p
g
f
f
c
t
s
a

p
m

696 J. Opt. Soc. Am. A/Vol. 24, No. 3 /March 2007 Thomas A. Germer
Effect of line and trench profile variation on
specular and diffuse reflectance

from a periodic structure
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I model variations in the profile of a silicon grating consisting of parallel lines or trenches by calculating the
reflectance of a superstructure in which the profiles are randomly modulated about the nominal profile. I vary
the edge positions, the edge profiles, the line heights, and the trench depths and find that the Stokes reflec-
tance can be modified from its nominal value by a relatively large amount, especially in the case of linewidth
variations. I find that the reflected field can be approximated by the mean field reflected by a distribution of
periodic gratings and that the field does not represent the field from the average profile. In fitting results to
more than one modeled parameter, the changes that are observed can be enough to shift the deduced param-
eter in some cases by more than the rms variation of that parameter. The diffuse reflectance (the nonspecular
diffraction efficiency) is found to increase with the variance of the fluctuations. © 2007 Optical Society of
America
OCIS codes: 050.0050, 120.2130, 120.3930, 290.3700.
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. INTRODUCTION
he reflectance of a periodic array of lines on a surface
an be very sensitive to the profile of that structure. The
emiconductor industry has capitalized on this sensitivity
o measure linewidths and profiles of microfabricated
tructures.1–8 Measurements generally consist of record-
ng the reflectance or polarization as a function of inci-
ent angle or wavelength from a periodic test structure.
omparison of the measurement with a library of simu-

ated results for a variety of different possible profiles
ields the one that matches the data best. The technique
as been dubbed scatterometry in the industry, although
arely does it make use of the diffusely scattered light or
nything but the specular reflectance.
While the method is extremely sensitive to details of

he profile, comparisons between scatterometry instru-
ents and other metrology methods have not yielded

deal agreement.9 One of the assumptions that is gener-
lly made in the interpretation of data is that the struc-
ure is indeed periodic, and that any deviation from peri-
dicity gives the same result as some “average” profile. In
his paper, I investigate the validity of this assumption by
erforming Monte Carlo (MC) simulations on extended
ratings with randomized profiles. I find that deviations
rom periodicity do not give the same result as the field
rom the average profile, but rather that the reflected field
an be approximated by the mean field reflected by a dis-
ribution of periodic profiles. Furthermore, the best fit
imple profile to the MC simulated data can be shifted by
large amount from that predicted by the average profile.
In Section 2, I outline the theoretical approach used to

erform the MC simulations and describe a mean-field
odel used to approximate the results. In Section 3, I
1084-7529/07/030696-6/$15.00 © 2
resent the results of those simulations and discuss them.
inally, in Section 4, I draw some conclusions from this
ork.

. THEORY
. Grating Simulations
use the rigorous coupled wave (RCW) analysis for sur-

ace relief gratings developed by Moharam et al.,10,11 with
modification suggested by Lalanne and Morris12 to im-

rove the convergence of the calculations for transverse-
agnetic (TM) polarization. This method solves the elec-

romagnetic problem for a plane wave incident upon a
edium having a dielectric function ��x ,y ,z�=�j�x�, which

s periodic in x, independent of y, and independent of z
ithin each of a finite number of layers, indicated by in-
ex j. The solution requires Fourier series expansions of
j�x� and 1/�j�x� for each layer. In practice, the Fourier se-
ies is truncated at some maximum order N. I generally
hose N so that the shortest period of the Fourier compo-
ent considered is 10 nm.

. Monte Carlo Simulations
begin by considering an unperturbed grating having a
eriod �0. To simulate variations in the profile, I create
andom profiles having a total period �M=M�0 (M is an
nteger) and solve for the scattering amplitude using the
CW method on this larger period. Generally, the unper-

urbed grating gives rise to diffraction at discrete direc-
ions, given by

sin �i = sin � + i�/�0, �1�

here � is the incident angle, �i is the diffracted angle,
nd � is the wavelength of the light. The simulated pro-
007 Optical Society of America
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les having the longer period give rise to diffraction at ad-
itional directions, such that i takes on fractional values
i.e., iM is an integer). I will denote these fractional or-
ers as diffuse orders, since they do not exist for the pri-
ary period, and as M increases, the number of these or-

ers expands into a diffuse continuum as would be
xpected from a nonperiodic structure.

I consider four different perturbations of the profile, il-
ustrated in Fig. 1. In the first case [Fig. 1(a)], I consider
ariations in the line-edge position. I let �xj

L and �xj
R be

eviations of the left and right edges of the jth line and
reate realizations of the random profile, using a pseudo-
andom number generator having a normal distribution
ith standard deviation �. I further consider three differ-
nt subcases of line edge variation. For line position
ariations, let �xj

L=�xj
R; for linewidth variation, let �xj

L

−�xj
R; and, for random edge variation, let �xj

L and �xj
R

e independent. In all calculations for the simulation of
ine-edge variation, since the sidewalls are vertical, only
ne z-level is required in the RCW calculation.

The second profile perturbation corresponds to sidewall
oughness [Fig. 1(b)]. In this case, the profile of the side-
all consists of realizations of a random function having
n rms roughness � and correlation length �. Realizations
f the random function are generated by

�x�z� = Re
1

��2
� dk� dz�g�z��exp�i	�k� + ik�z − z���,

�2�

here 	�k� is a uniform random function with interval
0,2��, and

g�z� = A exp�− �z/��2/2� �3�

s the correlation function. A is adjusted to yield a specific
ms roughness. Equation (2) is derived from a Fourier
ransform of the correlation function, multiplication by a
andom phase, followed by an inverse Fourier transform.
or a finite interval, L, over which a realization of the

unction is calculated, A is given by

ig. 1. Illustration of the four different profile perturbations
onsidered in this study: (a) line edge variation, (b) sidewall
oughness, (c) line height variation, and (d) trench depth varia-
ion. The gray scale represents the refractive index in the xz
lane; the profiles are independent of the y direction. The profiles
hown here are exaggerated, having twice the maximum modu-
ation considered in the simulations. In both (a) and (b), the case
f random edge variation is shown.
A = ��1/4�L/��1/2erf�L/2��. �4�

ike the case of line edge position variation, I consider
hree different subcases, analogous to line position, line-
idth, and random edge variation. Line-edge variation is
special case of sidewall roughness, where ��L. For all

imulations of sidewall roughness, the profile was subdi-
ided into 50 levels. The only correlation length consid-
red was �=10 nm.

The third profile perturbation considered is that of line
eight variation [Fig. 1(c)]. Here I use a pseudorandom
umber generator having a normal distribution with
tandard deviation � to sample the perturbation of the
eight of each line of the grating. To perform the RCW
alculation for M lines, I divide the grating into M dis-
rete z levels. I sample the M heights �zj from the distri-
ution, sort the values in ascending order, and use the dif-
erences between heights to determine the thickness of
ach level. Each level only contains the lines that extend
o that level.

The fourth, and final, profile perturbation is that of
rench depth variation [Fig. 1(d)]. The simulation for
rench depth variation is performed in a manner analo-
ous to that used for line height variation.

For each case, MC simulations were performed for at
east 40 realizations of the surface profile. The mean and
he standard error for each measurable parameter were
ound. I used M=10 lines for each realization, except in
he case of sidewall roughness, where I used M=5 lines,
o compensate for the larger number of layers needed and
he resulting additional computation time. The nominal
itch �0 was 200 nm, the nominal height was 200 nm, and
he nominal width was 100 nm. The optical constants of
he grating material and the substrate were those appro-
riate for silicon. The wavelength was 532 nm, where the
ptical constants are n=4.05 and k=0.05, unless other-
ise noted.
Simulations were performed for two incident orthogo-

al polarizations at normal incidence and 70° incidence
erpendicular to the lines. The Stokes parameters for in-
ident light linearly polarized at an angle of 45°,

R0 = 1
2 �rTE�2 + 1

2 �rTM�2,

R1 = 1
2 �rTE�2 − 1

2 �rTM�2,

R2 = Re rTE
*rTM,

R3 = Im rTE
*rTM, �5�

re presented, where rTE and rTM are the reflectance co-
fficients for light polarized with the electric field and
agnetic fields along the lines, respectively. Simulations

n a conical geometry with 70° incidence along the lines
ere also performed, but the conclusions do not differ

rom the others, and the results are not shown.

. Mean-Field Model
compared the MC simulation results to those of an ap-
roximate model to answer the question of whether or not
he field reflected by a random pattern is the average of
he field reflected by a distribution of periodic patterns. If
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he scattering by the lines is dominated by the structure
f each individual line, rather than by line–line interac-
ions, then we would expect this statement to be true. If
e consider the field scattered by a periodic array of lines
aving parameter a (height, depth, width, or period) to be
�a�, then the field averaged over a normal distribution of

he parameter a is given by

�E	a =
1

�a�2�
� daE�a�exp�− �a − a0�2/2�a

2�, �6�

here a0 and �a are the mean and standard deviation of
, respectively. Since the RCW theory references the field
o the top of the lines, variations in line height and line
epth differ by the introduction of an additional phase
erm

E�h� = E�d�exp�− 2ikzd�, �7�

here kz= �2� /��cos � is the z component of the wave vec-
or. For variations in linewidth or period, since the pa-
ameter � is the rms variation of a single edge, it must be
orne in mind that comparisons between the Monte Carlo
odels must be performed such that �linewidth=��2 for

andom edge variation, �linewidth=2� for linewidth varia-
ion, and �period=� /�2 for line position variation. Equa-
ion (6) is evaluated by numerical integration sampling
he electric field at discrete points. The mean-field model
s attractive, if it proves to be accurate, because simula-
ions required to evaluate Eq. (6) are performed anyways
uring construction of a scatterometry library.

. RESULTS AND DISCUSSION
igures 2 and 3 show results for the specular Stokes re-
ectance obtained from the MC simulations for line edge
ariation and sidewall roughness. Results from both MC
imulations (symbols) and the mean-field model (curves)
re shown. It is apparent that line variation has a rela-
ively large effect on the reflectance of the grating.
hanges in the Stokes parameters correspond, for ex-
mple, to fractional changes in the p-polarized reflec-
ance, Rp=R0−R1, of almost 50%, over the range of varia-
ions studied, even though the average profile is fixed and
he rms variations are less than 2% of the wavelength.

To assess the magnitude of these results and how they
ight translate into errors in the dimensions extracted

rom data, the four MC-simulated Stokes parameters
ere least-squares fitted to those calculated for simple
rofiles (i.e., with period �0), letting linewidth and line
eight be free parameters. It was found, for example, that
or random edge variation measured at normal incidence
i.e., Fig. 2(a), open symbols], the best fit line height de-
reased at a rate of approximately three times the rms
ariation, and the best fit linewidth increased at a rate of
pproximately two times the rms variation. Some of this
nexpectedly large effect is due to the large covariance
etween line height and linewidth and to the small num-
er of data points (4) versus the number of fitting param-
ters (2). While I vary only the line-edge position, I com-
are the MC results to simulations where both linewidth
nd line height are varied. Thus, the line height compen-
ates for the fact that the mean Stokes parameters do not
orrespond to those for a simple profile with the same
eight. Most scatterometry instruments do not perform
easurements at a single wavelength and angle but

ather use a scan over one of these variables. Thus, the
pecific example given may not be representative of a re-
listic scatterometry measurement. However, this simple
omparison does suggest that variations in line profile

ig. 2. Specular reflectance Stokes parameters calculated as
unctions of rms variation � for normal incidence and for (open
ymbols) MC-simulated line edge variation, (solid symbols) MC-
imulated sidewall roughness and (curves) the simplified mean-
eld model. Three cases are shown: (a) random edge variation,

b) linewidth variation, and (c) line position variation. The sym-
ols and curves represent (squares, solid curves) R0, (circles,
ashed curves) R1, (upward triangles, dotted curves) R2, and
downward triangles, dash-dot curves) R3.

Fig. 3. Same as Fig. 2, except for an incident angle of 70°.
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an have an adverse effect in the profile determination, if
ariations in that profile are not considered. Later, I dis-
uss results where I MC simulate a wavelength scan.

The effects of sidewall roughness, shown in Figs. 2 and
as closed symbols, are very similar to those obtained for

ine-edge variation. Since the sidewall roughness consid-
red and line-edge variation represent two extremes in
he correlation length of sidewall roughness, I conclude
hat the correlation length has a relatively weak effect on
he reflectance.

The effects of linewidth variation are much stronger
han that observed for incoherent line-edge variation,
hich in turn is much stronger than that observed for line
osition variation. In fact, a change in the abscissa for the
andom edge variation results by a factor of about �2
aps them onto the results for linewidth variation. These

bservations suggest the reflection properties, at least for
his particular grating, are dominated by the size of the
eatures rather than the space between them and that the
ean-field model would be an appropriate approximation.
The results for the simplified mean-field model are

hown as curves in Figs. 2 and 3, where variations in line-
idth were considered [i.e., a in Eq. (6) was linewidth].
ost of the trends observed in the MC results are repro-

uced, but there is not a perfect match between them.
resumably, differences between the mean-field model
nd the MC results must be a result of differences in the
inewidths between adjacent lines having an effect on the
eflection properties. The case of line-edge variation
atches the model quite well, while the corresponding

ase of sidewall roughness does not match well at all,
howing a much larger dependence upon rms variation.
hile the models do not match perfectly, the fact that the

alculations required to evaluate Eq. (6) are performed
nyway during the construction of a scatterometry library
ay make the mean-field model attractive for approxi-
ating the effect of line-edge variations, linewidth varia-

ions, or sidewall roughness.
Figures 4 and 5 show the results for line height and

rench depth variations. The effects are less pronounced
han for line-edge variation, but nonetheless significant.
he qualitative agreement between the MC simulations
nd the mean-field model is also similar to that observed
or line-edge variation. In this case, variations in trench
epth were considered [i.e., a in Eq. (6) was trench depth],
nd the phase was appropriately adjusted for the case of
ine height variation, as described above.

Figure 6 shows the integrated diffuse reflectance, cal-
ulated by summing all of the nonspecular diffraction ef-
ciencies, for line-edge variation and sidewall roughness
t normal incidence. Because the superperiod �M chosen
as different, there were 6 orders (i= ±1, ±2, and ±3)

ummed in the case of line-edge variation while only 2 or-
ers �i= ±1� were summed in the case of sidewall rough-
ess. The results show a characteristic proportionality be-
ween the integrated diffuse reflectance and the variance
arameter �2. In all cases, the diffuse reflectance is too
mall to account for any changes in the specular reflec-
ance. However, the diffuse scatter for line position varia-
ion is significantly less than that for other cases of line
ariation, which is in agreement with changes that are
ound to occur in the specular reflectance. Table 1 shows
he fraction of the total diffracted light diffracted into
ach of the orders for the three cases of line edge varia-
ion. While only 3 orders appear on each side of the sur-
ace normal in these simulations, the results in Table 1
uggest that the angular distribution of diffusely scat-
ered light would be very different for the different cases
f line-edge variation, at least in the case where there are

ig. 4. Specular reflectance Stokes parameters calculated as
unctions of rms variation � for normal incidence and for (a) line
eight variation and (b) trench depth variation. The data repre-
ent (symbols) the MC simulations and (curves) the simplified
ean-field model. The symbols and curves represent (squares,

olid curves) R0, (circles, dashed curves) R1, (upward triangles,
otted curves) R2, and (downward triangles, dash-dot curves) R3.

Fig. 5. Same as Fig. 4, except for an incident angle of 70°.
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o line-to-line correlations. Line-to-line correlations
ould be expected to further affect the distribution of dif-

usely scattered light.
Figure 7 shows the MC-simulated normal incidence

tokes reflectance of the structure for wavelengths from
50 to 600 nm for the case of random edge variation with
=10 nm. The behavior of the nominal structure, shown
s solid curves, does not approximate well the behavior
or the MC simulation, shown as symbols, showing shifts
n some regions of the spectrum and significantly more
tructure. The predictions of the mean-field approxima-
ion, shown as dashed curves, are much closer to the MC
imulation of the perturbed profile, especially at shorter
avelengths. At longer wavelengths, correlations be-

ween lines should become important, so that the mean-
eld model would fail, but it is still a much better match
o the perturbed structure than that calculated for the
ominal, unperturbed grating.
A least-squares best fit of the MC-simulated results to a

imple profile (i.e., with period �0), letting the linewidth
nd line height be free parameters, yielded a width of
8.9 nm and a height of 198.8 nm. The observed shift,
.1 nm in width and 1.2 nm in height, is much smaller
han that found for the single Stokes fit described above.
he best fit curves were only slightly better than those for

able 1. Average Fraction of Power Diffracted into
Different Orders for Normal Illumination

Calculated for Line Edge Variation

Diffracted efficiency

i= ±1/10
(%)

i= ±2/10
(%)

i= ±3/10
(%)

andom edge variation 26 16 7
inewidth variation 21 16 13
ine position variation 10 21 18

ig. 6. Integrated nonspecular diffraction efficiency found from
C simulation for normal incidence as a function of rms varia-

ion � for (open symbols) line edge variation, (solid symbols) side-
all roughness. Three cases are shown: (squares) random edge
ariation, (circles) linewidth variation, and (triangles) line posi-
ion variation.
he nominal profile, with an improvement in the mean-
quare deviation of only 5%. A fit to a simple profile with
n angled sidewall, letting the top width, bottom width,
nd height be free parameters, yielded a top width of
5 nm, a bottom width of 105 nm, and a height of 200 nm.
hile a slightly better fit (see Fig. 7, dotted curves) to the
C simulation than that for the simpler profile, the im-

rovement in the mean-square deviation compared to
hat of the nominal profile was still small, only 15%. Both
ts only searched for the nearest local minimum in the
ean-square deviation and did not search for a global
inimum. However, it is clear that with multiple fitting

arameters, significant systematic errors can result from
he neglect of the profile variation.

ig. 7. Normal incidence Stokes reflectance as a function of
avelength for (symbols) MC-simulated random line edge varia-

ion with �=10 nm, (solid curve) unperturbed profile, (dashed
urve) the mean-field model, and (dotted curve) the result of a
est fit to a simple profile with a nonvertical sidewall, as de-
cribed in the text.



s
t
f
r
t
c
p
s
L
t
v
n
r
s
c

w
m
e
l
b
v
u
t
t
b
l
�
s
t
t
s

4
T
fl
s
w
e
i
p
n
p
w
s

A
T
R
a

R

1

1

1

Thomas A. Germer Vol. 24, No. 3 /March 2007/J. Opt. Soc. Am. A 701
This study only investigated the effects of line profile
hape and did not consider variations in that profile along
he y direction. The latter variations are commonly re-
erred to as line-edge roughness (LER) and linewidth
oughness (LWR) when the position and width vary along
he line. LER and LWR are considered important to mi-
rofabrication because they may have an effect on device
erformance and limit the precision of critical-dimension
canning electron microscopy (CD-SEM). The effects of
ER and LWR on specular diffraction might be expected
o follow those of line position variation and linewidth
ariation, provided the correlation length of the rough-
ess in the y direction is significantly larger than the pe-
iod. It waits to be seen, until full three-dimensional
imulations are performed, what the effects are of short
orrelation length roughness.

In all of the MC simulations that were performed, there
ere no line-to-line correlations. The matching of the
ean-field model to the MC-simulated results would be

xpected to be better if correlations between neighboring
ines were higher. Higher line-to-line correlations would
e expected in the cases of line height and line depth
ariations, because, in practice, these originate from non-
niform etching, deposition, or coating, or roughness of
he initial material. However, the cases of line-edge varia-
ion, linewidth variation, and sidewall roughness tend to
e uncorrelated from line to line, except at distances
arger than those typically used for scatterometry targets
50–100 
m�, because the mechanisms that lead to the
mall distance correlations are usually related to the pho-
oresist structure, while those that lead to the large dis-
ance variations are usually related to focus and expo-
ure.

. CONCLUSIONS
his paper described some Monte Carlo simulations of re-
ection and scattering by randomized gratings. The re-
ults indicate that the various forms of line variation,
ith the exception of line-edge variation, can have a large
ffect on the results of scatterometry measurements and
nterpretation. A mean-field model is suggested that ap-
roximates the behavior found in the MC simulations in a
umber of different cases. The model is much more com-
utationally efficient, and uses calculation results that
ould otherwise need to be performed anyway during
catterometry library generation.
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