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Abstract
We present a method for calculating the inverse of the dielectric matrix in
a solid using a band Lanczos algorithm. The method produces a multi-pole
approximation for the inverse dielectric matrix with an arbitrary number of
poles. We discuss how this approximation can be used to calculate the screened
Coulomb interaction needed for electron self-energy calculations in solids.

1. Introduction

Many of the electron self-energy or quasiparticle calculations done today are based on the GW
approximation (GWA) proposed by Hedin [1, 2]. It was first applied in large-scale modelling
of the quasiparticle band structure of solids using a plasmon-pole model [3] for the dynamic
screening. Later there were works including the full energy dependence of the screened
interaction [4]. By comparing the calculated band structure to experimental results (see for
example table 1 of [5]), the GWA has been found to give a clear improvement over mean-field
theories such as the local-density approximation (LDA) [6]. Also, the relaxation of electrons
in solids (see for example [7] and references therein) and their spectral functions have been
studied, although for these properties the GWA results are sometimes less than satisfactory.
The basis of the GWA and its properties have been given more complete treatment in a number
of recent review articles [5, 8, 9].

For solids, the major part of a GWA calculation is the calculation of the inverse of
the dielectric matrix ε−1 in the screened interaction, W = ε−1v, where v is the Coulomb
interaction. Numerous authors have developed plasmon-pole models for ε−1 that can be used
for self-energy calculations in solids [3, 10–12]. These models are based on a simplified
assumption that important contributions to Im W come from plasmon-like excitations. In
practice, this approximation has been found to give good results for the band energies, but it
has some drawbacks. For example, in the plasmon-pole approximation the quasiparticle only
has a finite lifetime if its energy is higher than the plasmon energy. This means that the lifetime
of a low-energy quasiparticle cannot be calculated. Also, in situations where the electron–hole
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continuum gives considerable contributions to W , it is uncertain how well these simple models
work. The cost of computing W can also be reduced by using space-time methods [13, 14] or
by using localized basis sets [15, 16]. Another possibility is to calculate the energy integral
needed for evaluating the GWA self-energy along the imaginary axis as was done, for example,
in [17].

In this paper, we introduce a scheme for calculating ε−1 based on an iterative band Lanczos
algorithm (BLA). The scheme can be used to make a general multi-pole approximation
to the inverse of the dielectric matrix with the infinite-pole limit being the random-phase
approximation (RPA). The approximation still retains some of the advantages of the simple
plasmon-pole models when it comes to a GWA calculation, while giving one the opportunity to
study the effects of electron–hole pair excitation in W on the self-energy. We start by reviewing
the basic properties of ε−1 and expressing it in a form most useful for our current purpose.
Next we discuss the BLA and how it can be used to obtain the pole structure of ε−1 and how
this pole structure can be used in GWA calculations. Finally we use this scheme to calculate
self-energies and quasiparticle properties of Si and GaAs. Although here we used this form of
ε−1 in a GWA calculation, it can also be used for calculations of the dynamic screening of the
electron–hole interaction in GWA-based Bethe–Salpeter calculations.

2. The inverse of the dielectric matrix

In linear-response theory the inverse of the dielectric matrix ε̃−1 represents the response
of the system to an external field. The diagonal of the inverse of this physical (i.e.,
causal) dielectric matrix (ε̃−1) can be measured using inelastic x-ray scattering or electron
energy-loss spectroscopy. The inverse of the time-ordered dielectric matrix is required (as
mentioned above) to calculate quasiparticle properties in the GWA. Additionally, ε−1 can
be used, for example, in screening the core-hole potential in core spectroscopies [18]. The
relationship between the imaginary parts of these two response functions (on the real ω-axis) is
(ω/|ω|) Im ε−1(ω) = Im ε̃−1(ω), and their real parts are equal. Here we present a BLA-based
method for calculating ε̃−1, and one can obtain ε−1 from ε̃−1 using the relationship given
above.

As the starting point for our discussion, we use the causal RPA independent-particle
polarizability which is given in the Adler–Wiser [19, 21] formulation as

χ0(r, r′, ω) = 2
∑
j, j ′

φ∗
j (r)φ j ′(r)φ∗

j ′(r
′)φ j(r

′)
[

f j (1 − f j ′)

E j − E j ′ + ω + iδ
+

f j ′(1 − f j )

E j ′ − E j − ω − iδ

]
,

(1)

where φ j(r), E j , and f j are single-particle orbitals, energies, and occupation numbers
respectively, of a one-particle Hamiltonian as described below. The factor of two in front
accounts for the spin degeneracy, and we have used the notation δ = 0+. Instead of using the
real-space representation of χ0 as given in equation (1), for solids it is often more convenient
to use a reciprocal-space representation. Additionally, we represent the system in a particle–
hole-excitation basis [20], obtaining

χ0
GG′ (q, ω) = 2〈0|PG(q)

1

z2 − H 2
1e

P†
G′(q)|0〉, (2)

where |0〉 is a mean-field ground state. Additionally, we have used z as shorthand for ω + iδ.
The electron–hole pair creation operator PG(q) is defined as

PG(q) =
occ∑
jk

unocc∑
j ′k+q

〈φ jk|e−i(q+G)·r|φ j ′k+q〉�q
j j ′ka†

jka j ′k+q, (3)
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where we have �
q
j j ′k = √

2(E j ′k+q − E jk). The operator H1e is most easily defined by the way
in which it acts on a particle–hole pair (| j j ′k〉q): H1e| j j ′k〉q = (E j ′k+q − E jk)| j j ′k〉q [20].
Time-reversal symmetry, i.e., the fact that for each state φ jk there is state φ∗

j−k with the same
eigenvalue, was used to go from equation (1) to (2). Within the RPA the response function χ

fulfils a Dyson-type equation,

χGG′ (q, ω) = χ0
GG′(q, ω) +

∑
K

χ0
GK(q, ω)VK(q)χKG′(q, ω), (4)

where VK(q) = 4π/|q+K|2 is the Coulomb potential in reciprocal space. Using equations (4)
and (2) it is easy to show that χ can be cast into a form similar to that of χ0:

χGG′ (q, ω) = 2〈0|PG(q)
1

z2 − HR P A
P†

G′(q)|0〉, (5)

where the operator HR P A is defined as HR P A = H 2
1e + V with V including the local-field

effects:

V = 2
∑
K

P†
K(q)|0〉VK(q)〈0|PK(q). (6)

It is important to notice that the operator PK(q) given in equation (3) has the units of the square
root of energy. This gives HR P A the units of energy squared and χ the correct units of one
over energy. The inverse of the dielectric function can be expressed in terms of the χ as

ε̃−1
GG′(q, ω) = δGG′ + VG(q)χGG′(q, ω).

Calculating the resolvent in equation (5) is equivalent to inverting the dielectric matrix, and
so we calculate the q → 0 and K → 0 matrix elements with an approach similar to that
of [22]. In many applications, the matrix ε−1

GG′ is needed for some set of reciprocal-lattice
vectors {Gi}i=1,N . In this case equation (5) can be written in an electron–hole basis in matrix
notation:

χ(q, ω) = Ψ† 1

z2 − HR P A
Ψ, (7)

where each column of the matrix Ψ corresponds to the total electron–hole pair wavefunction
created using P†

G(q), and each row is associated with a single-particle excitation, specified by
j , j ′, and k.

Because we use a pseudopotential approximation for the single-particle states in our
calculations, plane waves provide a natural basis for expanding the Coulomb potential and
χ . However, equation (7) can also be derived using the mixed-basis approach [23] sometimes
used in GWA all-electron work. This simply amounts to replacing VK(q) with the expansion
of the Coulomb potential in mixed-basis and plane-wave matrix elements in equation (3) with
the appropriate matrix elements. Otherwise, one only has to change the indices from being
reciprocal-lattice vectors {Gi} to mixed-basis indices in what follows.

2.1. The band Lanczos algorithm

Because the size of HR P A is typically of order 105 ×105, its direct diagonalization would be a
formidable task. However, with iterative techniques one can obtain approximate eigenvalues
and eigenstates of HR P A. The band Lanczos [24, 25] algorithm is well suited for matrix
problems such as the one given in equation (7). First, an orthonormal set of vectors {vi}i=1,n

is created by orthogonalizing Ψ so that one has Ψ = V R, where the i th column of V is the
vector vi . We use canonical orthogonalizations [26] that can be used to optimize the basis set
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(i.e., n � N). As in the simple Lanczos algorithm, a set of orthogonal vectors is generated by
iteration:

Ti+n,ivi+n = Hvi −
i+n−1∑
j=i−n

Tj,iv j , (8)

where we have Tj,i = v†
jHvi . This choice of coefficients Tj,i guarantees (in exact arithmetic)

that the new vector vi+n is orthogonal to all previous vectors. Additionally, vi+n is normalized.
The matrix T is Hermitian, banded with a bandwidth of 2n + 1, and we have Ti, j = 0 for
j � 0. In our implementation we do not store all the generated vectors vi , but only the vectors
that are needed for the next iteration step. The storage requirements of the method as we have
implemented it are ((2n + 1) + Nlocal

G )Np−h , where Nlocal
G is the number of reciprocal-lattice

vectors included in local-field effects and Np−h is the number of electron–hole pairs. If the
number of reciprocal-lattice vectors N in χ is equal to Nlocal

G , the orthogonality of the new
Lanczos vector to all previous vectors can be used to reduce the computational cost of the
iteration. This is related to the fact that, in this case, Ψ spans the same space in the particle–
hole basis as the one within which V operates. Detailed analysis of this property of the BLA
is given in the appendix. In this work, we choose Nlocal

G to be almost twice as large as N , and
so we do not use this property in the current approach.

After some finite number (I ) of iterations, the matrix T and the generated set of vectors
give an approximation for the full matrix:

H (I ) = V (I )TV (I )†.

Using decomposition of T in terms of eigenvalues {�i} and eigenvectors {Xi } we can
approximate equation (7) as

χ(q, ω) = S† 1

z2 − �(q)
S.

We have used S = X†R, where only the first n components of the eigenvectors {Xi} are
included in the product. Besides the fact that the band Lanczos method makes it possible to
approximate the eigenvalues and eigenvectors of HR P A with a smaller band matrix T , it also
has other important properties. Assuming exact arithmetic and completeness of the particle–
hole space, the first 2I/n − 2 [25] frequency moments of different components of χ(q, ω)

are correctly reproduced. Additionally, the eigenvalues �i only depend on q. This simplifies
the use of χ(q, ω) in an electron self-energy calculation, as we will demonstrate in the next
section.

In principle, the band Lanczos method used here can be used to reproduce all the
eigenvalues and eigenvectors of HR P A. In practice, however, as the iteration proceeds
the vectors {vi} start to lose their orthogonality and multiple copies of already converged
eigenvalues might be produced. The remedy for this is, for example, re-orthonormalization of
the Lanczos vectors, which would be, at least in our case, extremely expensive computationally.
Also, for our application the global features of the eigenspectrum (such as the moments of
χ(q, ω)) are more important than individual eigenstates. This is why we use the simple
algorithm of equation (8), which is well suited for such problems [25].

3. Self-energy calculation

In the GWA [1, 2], the self-energy is given by

	(r, r′, ω) = i
∫

dω′

2π
eiδω′

G(r, r′, ω + ω′)W (r, r′, ω′), (9)
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where again we have used the notation δ = 0+. We assume that the Green function can be
represented in terms of the quasiparticle band states φnk(r) and energies Enk,

G(r, r′, ω) =
∑
n,k

φnk(r)φ∗
nk(r

′)
ω − Enk ± iδ

, (10)

where the sign of the imaginary part is negative (positive) for occupied (unoccupied) states.
In crystalline solids, the Fourier components of the screened interaction are given by

WGG′ (q, ω) = ε−1
GG′(q, ω)VG′(q).

Using the general multi-pole approximation for the polarizability presented in the previous
section, we can write the energy-dependent part of W as

W̃GG′ (q, ω) =
∑

p

wp,q(G)w∗
p,q(G

′)
[

1

ω − ωp(q) + iδ
− 1

ω + ωp(q) − iδ

]
, (11)

where we have ωp(q) = √
�p,p(q) and

wp,q(G) = 1√
2ωp(q)

VG(q)S∗
p,G(q).

The coefficients wp,q(G) are the Fourier components of the fluctuation potentials [8, 9]
calculated within the RPA. The matrix elements for the bare-exchange part of the self-energy
	X , i.e. the Fock part, are given by [9]

〈φmk|	X |φlk〉 = − 1

Nq�

occ∑
n

∑
G

B Z∑
q

Mnm
G (k, q)[Mnl

G (k, q)]∗VG(q), (12)

where the plane-wave matrix elements

Mnm
G (k, q) = 〈φmk|ei(q+G)·r|φnk−q〉

were used. The integration over energy in the remaining energy-dependent correlation part
	C(ω) can be done analytically using equations (10) and (11). The result is [9]

〈φmk|	C(ω)|φlk〉 = − 1

Nq�

∑
n

B Z∑
q

∑
p

βnm
p (k, q)[βnl

p (k, q)]∗

ω − Enk−q ± (ωp(q) − iδ)
, (13)

where the plus sign is for Enk−q � µ, and the minus sign is for Enk−q > µ. The coefficients
are

βnm
p (k, q) =

∑
G

Mnm
G (k, q)wp,q(G). (14)

The form of expressions (13) and (14) is the same as what one would get in variants of
the plasmon-pole models [10, 12]. However, the poles are not limited to the plasmon pole
but also include contributions from the electron–hole continuum excitations. This form of
equation (13) is a direct result of the fact that the positions of the poles of W are independent
of the reciprocal-lattice vectors (i.e., they are only functions of q), and that the dependence
of W on the reciprocal-lattice vectors is of separable form. The practical advantages of this
are that the summation in equation (14) is over one reciprocal-lattice vector, and that it can be
calculated independently of the energy argument of 	C .

The quasiparticles in solids satisfy the equation [5, 8, 9]

[− 1
2∇2 + VH + Vext ]ψnk(r) +

∫
dr′ 	(r, r′, Enk)ψnk(r

′) = Enkψnk(r). (15)
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Here VH is the Hartree potential of the electrons, Vext is the external potential of the ions,
and ψnk(r) and Enk are the quasiparticle wavefunction and energy, respectively. Instead of
solving equation (15) for both the wavefunction and energy, we approximate the quasiparticle
wavefunctions with single-particle LDA wavefunctions. Then the quasiparticle energies are
obtained from

Enk ≈ E L D A
nk + 〈φnk|	(Enk) − V xc |φnk〉, (16)

where E L D A
nk is the LDA band energy, and V xc is the LDA exchange–correlation potential.

Instead of solving equation (16) self-consistently for Enk, we form an approximate band
energy by linearly modifying the LDA energy according to Eα

nk = β E L D A
nk + δ, with β and δ

having different values for valence and conduction bands. Next, we write Enk = Eα
nk + �nk

and approximate the correction �nk to linear order by

�nk = 1

1 − ∂	(Eα
nk)/∂ Eα

nk

(E L D A
nk + 〈φnk|	(Eα

nk) − V xc|φnk〉 − Eα
nk). (17)

It is important to note that we do not use a self-consistent approach: the band energies used in
the calculation of W and 	C are LDA energies. We use Eα

nk to keep the correction �nk small.
It is quite easy to use Eα

nk in equation (13), but often the quasiparticle correction Enk − E L D A
nk

exhibits behaviour that, especially for the conduction band energies, is not easily expressed as
an affine function of LDA energy. We have simply chosen to have β �= 1.0 only for valence
bands and δ �= 0 for both conduction and valence bands.

4. Results and discussion

We calculate the band states needed for the Green function (equation (10)) and polarizability
(equation (7)) using the LDA [6]. This was done in a plane-wave pseudopotential framework,
using codes capable of calculations discussed in [27]. For Si we used 28 points in the irreducible
part of the Brillouin zone (IBZ) for calculating ε−1. W was calculated for 16 points in
the IBZ. For GaAs, we used 56 points in the IBZ to calculate W for 22 points in the IBZ.
In both cases we included reciprocal-lattice vectors in the evaluation of equation (6) with
|q + K|2 < 9.3 Ryd. For evaluating the self-energies, we used |q + G|2 < 7 Ryd for the
correlation part (equation (13)) and |q + G|2 < 16.0 Ryd for the exchange (equation (12)).
Additionally, we used a total of 100 bands when calculating both the dielectric matrix and the
self-energy. We estimate that, with respect to these numerical parameters, the self-energies
are converged to 0.1 eV. To facilitate comparison with other works, we do not include core-
polarization effects, and treat the core–valence interaction at an LDA level [28].

Typically, the plasmon-pole models used in the GWA are obtained by taking the functional
form of the dielectric function in the electron gas, and modifying it so that the f -sum rule and
the static dielectric screening are correctly given by the model. In table 1 we give examples for
silicon of the values of ε−1

G,G′(q → 0, ω = 0) as calculated using the approach introduced in
this work. The cut-off specified translates to 137 reciprocal-lattice vectors in the calculation of
local-field effects. In table 1 the value of ε−1

G,G′(q → 0, ω = 0) is also studied as a function of
the effective number of poles J = I/n for a few selected pairs (G,G′). Already J = 20 has a
discrepancy less than 10−2 when compared to the direct inversion of the dielectric matrix done
as explained in [22]. This is important because, unlike in the case of positive energy moments,
for the negative moments there is no general rule for the accuracy as a function of J . Increasing
J decreases the discrepancy of the values ε−1

G,G′(q → 0, ω = 0), so J = 40 has a maximum
discrepancy of less than 10−3, and J = 160, less than 10−4. It appears that increasing the
number of iterations results in increasingly more accurate values of ε−1

G,G′(q → 0, ω = 0) even
with rather small values of J (keeping I/J constant).
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Figure 1. The energy dependence of the dielectric matrix as a function of J . The results for J = 20,
40, and 160 are shown. The upper panel shows the results for Im ε−1

00′ (q → 0, ω) and the lower

panel gives Re ε−1
00′ (q → 0, ω). A Gaussian broadening of 1.0 eV half-width at half-maximum

(HWHM) was used in all cases.

Table 1. Values of Re ε−1
GG′ (q → 0, ω → 0) for Si. The results are given for different values of

J = I/n, where I is the total number of band Lanczos iterations and n is the number of initial
vectors as explained in the text. The direction of q was along a cartesian axis.

G G′ J = 20 J = 40 J = 160 Direct

(0, 0, 0) (0, 0, 0) 0.0859 0.0805 0.0796 0.0796
(1, 1, 1) (0, 0, 0) 0.0002 0.0002 0.0002 0.0002
(1, 1, 1) (1, 1, 1) 0.600 0.5941 0.5935 0.5935
(−1, 1, 1) (1, 1, 1) 0.0067 0.0069 0.0069 0.0069
(1, −1, 1) (1, 1, 1) −0.0023 −0.0021 −0.0020 −0.0020
(1, −1, 1) (−1, 1, 1) −0.0026 −0.0025 −0.0024 −0.0024
(1, 1, −1) (1, −1, 1) 0.0065 0.0066 0.0065 0.0065
(1, −1, −1) (−1, 1, 1) 0.0460 0.0481 0.0483 0.0483

Because the aim of the method introduced here is to provide an alternative way to include
the full energy dependence of the dielectric matrix into a GWA calculation, we now look at
its dependence on the details of the calculation. In figure 1 the results for ε−1

0,0(q → 0, ω) are
compared for three values of J , namely J = 20, 40, and 160, the last of which is taken to be
the converged result. From the figure it is clear that, although there are clear differences in the
details of the function, the overall behaviour of ε−1

0,0(q → 0, ω) is reproduced for all values J

shown. Also, even for J = 20 there are considerable contributions in ε−1
0,0(q → 0, ω) both

above and below the plasmon energy. We also checked the result for failure of the orthogonality
by using a smaller N , and it was found that this produced only small changes. It should be
noted that in the case of silicon, ε−1

0,0(q → 0, ω) has a rather simple energy dependence, and
it could be quite accurately approximated in terms of a few poles at complex frequencies.
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Figure 2. The energy-dependent part of the self-energy (	C ) of the highest occupied band Si at the
� point for two different effective numbers of poles (J ). There is a Gaussian broadening of 1.0 eV
HWHM for the larger energy scale. In the inset, 0.5 eV HWHM Gaussian broadening was used to
assess the convergence. Results for J = 20 are given by the dashed curve, and for J = 40, by the
solid curve. The upper panel shows the real part of the self-energy, and the lower panel shows the
imaginary part of the self-energy. In the inset the imaginary part of the self-energy is compared for
a smaller energy window. The energy scale was shifted so that the valence band maximum energy
was at 0 eV.

These poles and associated weights could be found by fitting the function ε−1
0,0(q → 0, ω) in

some selected energy range. In the current approach the poles are real and they are obtained
by solving an eigenvalue problem for T . The same set of poles will give an approximation
for the energy dependence of ε−1 for all (G,G′) pairs and also give the correct frequency
moments. In practice this means that one would expect the same automatic scheme to work
also for systems where the energy dependence of ε−1 is more complicated.

In figure 2, we show the energy dependence of the self-energy for the highest valence
band in silicon. Both the real and imaginary parts of the self-energy are shown. In the figure
the self-energy was calculated with two different effective numbers of poles in the screened
interaction, namely J = 20 and 40. The zero of the energy is set to the value of the valence
band maximum. The overall shapes of the self-energy are similar, except that the J = 20
case shows a large amount of oscillatory structure. Close to the LDA band energy (0 eV), the
differences for the real part of the self-energy are very small. In the imaginary part there is a
greater difference in this energy range. The J = 20 case has no contribution for small energies
(|ω| < 5 eV) as shown in the inset. This is directly related to the fact that W has the smallest
eigenvalue of ≈6 eV. In figure 3, results for the self-energy for GaAs calculated using the
scheme presented here are compared with the results of [29]. The results of [29] shown are
for the GWA based on the exact-exchange approximation (solid thick curve) and LDA (dashed
thick curve) approaches to density-functional theory. The result of the present work (given by
the solid curve) follows quite closely the result of [29] based on the similar approximations,
i.e., use of the LDA.
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Figure 3. The self-energy (	) of the highest occupied band (upper panel) and lowest unoccupied
(lower panel) of GaAs at the � point. The electronic reproduction of the results of [29] is shown
by the thick solid curve and the thick dashed curve, as noted in the text. The thin solid curve shows
the results from this work. A Gaussian broadening of 1.0 eV HWHM was used. Following [29]
the energy scale was shifted so that the valence band maximum energy was at 0 eV.

Table 2. Calculated quasiparticle energies at points of high symmetry for Si. The energies are
given in electron volts, and the valence band maximum was set to zero. The meaning of J is as
explained in the text and in table 1.

Band state LDA J = 20 J = 40 [17]

�1v −12.01 −11.86 −11.60 −11.57
�15c 2.56 3.25 3.21 3.24
�2c 3.04 3.70 3.66 3.94
X1v −7.83 −7.40 −7.61 −7.57
X4v −2.86 −2.89 −2.86 −2.83
X1c 0.66 1.34 1.32 1.35
L′

2v −9.64 −9.45 −9.35 −9.35
L1v −6.99 −6.69 −6.82 −6.78
L′

3v −1.21 −1.23 −1.22 −1.20
L1c 1.42 2.07 2.05 2.14
L3c 3.36 4.09 4.05 4.05

In table 2, the results for quasiparticle band energies of silicon are given for some high-
symmetry points. The table shows the results for two different values of J (J = 20 and 40),
as well as results from [17]. Although the J = 20 results usually show improvement over the
LDA, the convergence is not monotonic in all cases. However, it is interesting to note that
the conduction bands already appear to converge within a few hundredths of an electron volt
for J = 20. The valence bands appear to converge more slowly. Comparing the results of
this work with the results of Fleszar et al, there are small deviations. However, usually the
differences can be traced back to differences in the LDA band structure. In figure 4, we show
the quasiparticle correction Enk − E L D A

nk for 16 k-points in the Brillouin zone. For the real part
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Figure 4. Quasiparticle corrections for Si as a function of the LDA band energy. The upper panel
shows the real part of the quasiparticle correction, and the lower panel, the imaginary part of the
quasiparticle energy. The result was calculated using a 1.0 eV HWHM Gaussian broadening.
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Figure 5. The spectral function for Si at the � point. This result was calculated using a 1.0 eV
HWHM Gaussian broadening. A small imaginary part (0.005 eV) was added to the self-energy
to give a finite width to the quasiparticle peak for the highest valence band states, for purposes of
presentation. The energy scale was shifted so that the valence band maximum energy was at 0 eV.

the results are very similar to the ones reported in [17], although we use a linear approximation
given in equation (17) and Fleszar et al [17] used the position of the quasiparticle peak. The
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Table 3. Calculated quasiparticle energies at points of high symmetry for GaAs. The energies
are given in eV, and the valence band maximum was set to zero. We have spin–orbit averaged the
results of [29] (see the text).

�

LDA −12.71 0.37 3.75
GWA (this work) −12.33 1.00 4.36
GWA [29] −12.36 1.34 4.48

X

LDA −10.31 −6.85 −2.64 1.42 1.65 10.12
GWA (this work) −10.14 −6.80 −2.65 1.96 2.22 10.51
GWA [29] −10.08 −6.65 −2.61 2.08 2.31 10.69

L

LDA −11.06 −6.62 −1.08 0.92 4.68 7.73
GWA (this work) −10.89 −6.55 −1.11 1.51 5.27 8.17
GWA [29] −10.80 −6.46 −1.11 1.73 5.35 8.31

highest valence states are moved down by approximately 0.5 eV, and the lowest unoccupied
state has hardly moved from its LDA value. The imaginary part of Enk, which is related to
the lifetime of the quasiparticle, is also shown. It is finite even for band energies close to the
valence band maximum (0 eV). Figure 5 shows of the spectral function of Si at � calculated
using the matrix definition of the spectral function,

A(k, ω) = 1

π

∑
n

|Im 〈nk| 1

ω − H0 − 	X − 	C(ω) + V xc
|nk〉|,

where H0 is the LDA Hamiltonian. Again we obtain good agreement with [17] as regards
the positions and shapes of the spectral features. For example, the wide satellite peak at
approximately −20 eV and the relatively sharp plasmon satellite peak of the lowest valence
state at approximately −35 eV are correctly reproduced.

As an additional test of the current approach, we apply it to the quasiparticle band structure
of GaAs. In table 3 we compare results for the quasiparticle energies of GaAs with the results
of [29], which included spin–orbit coupling. Because we do not include this effect, we have
spin–orbit averaged their result. Again the agreement of the quasiparticle energies is similar to
the agreement of LDA band energies. The largest difference (0.24 eV) in LDA energy between
the two works was for the conduction band minimum. This is also reflected in GWA energies,
which differ by 0.34 eV.

Because of several case- and implementation-specific details, an accurate comparison
of the numerical cost of the method discussed in this paper with other methods is difficult.
However, we will try here to give an overall picture of some of the scaling issues associated
with the current approach compared to (as an example) the approach discussed in [17]. The
method for obtaining the energy dependence of W in [17] is based on obtaining the dielectric
matrix ε for a relatively high number of energy values (Nω) in a predetermined energy range.
ε−1 is then obtained by inverting the dielectric matrix for each energy. The computational cost
of this process is dominated by evaluating the vector inner products required for calculating
ε. The computational cost of this process behaves approximately as Nω(Nlocal

G )2 Nprod where
Nprod is the cost of evaluating a vector inner product using complex vectors. The cost of
inverting the matrix is smaller (Nω(Nlocal

G )3). The crystal symmetry can be used to reduce the
computational cost in this approach.



2584 J A Soininen et al

In the current approach and for the systems studied here, the computational cost is
dominated by operating with V on a vector and subsequent re-orthogonalization at each
iteration step. As explained in the appendix, the cost of using V can be reduced. However, the
overall cost for the cases studied here and using the algorithm used here behaves approximately
as 2J (Nlocal

G )2 Nprod . There are two ways to decrease this computational cost. One can use a
smaller number of poles (J ) and larger Gaussian broadening and introduce only a small error
into the calculation. This possibility is demonstrated by the similarity of the overall shapes of
the self-energies in figure 2 for J = 20 and 40. Also, using a smaller number of optimized
basis functions n but the same J could reduce the computational cost. This possibility was
not studied in this paper but one would not expect much optimization to be achieved in this
way without compromising the accuracy. The computational costs of calculating the plane-
wave matrix elements and the Fock part of the self-energy in the current method and the
method in [17] are identical. The cost of evaluating the correlation part of the self-energy
(equation (13)) for one value of energy (like the one needed in equation (16)) using the method
in [17] behaves as (Niω +1)N2

G. Here Niω is the number of imaginary energy points used in the
energy integral (the second term equation (4) in [17]) and NG is the number of reciprocal-lattice
vectors used in ε−1. For any extra energy points the cost would behave as N2

G. In the current
approach the cost for evaluating each energy value is approximately (J + 2)NG. Overall, we
estimate that for a given accuracy, the current method is comparable with other ones used in
the GWA in terms of computational cost.

5. Conclusions

We have presented an iterative method for calculating the eigenvalue representation of the
dielectric matrix and the screened interaction. We showed that the method is capable of giving
a good approximation for the energy dependence of the dielectric matrix and the fluctuation
potentials. We studied the convergence of the inverse of the dielectric matrix with respect
to the effective number of poles for the static case, and the effect that increasing the number
of poles has on the energy dependence of ε−1. It was found that in the static case results
converged rather uniformly as the number of poles was increased. The overall shape of the
energy dependence of ε−1 was well reproduced even with a relatively small number of poles.
We applied this form to GWA calculations of Si and GaAs, obtaining good agreement with
previous work both for the quasiparticle energies and the energy-dependent self-energy. For
Si it was found that the quasiparticle energies of the conduction band states converged with a
smaller number of poles than those of the valence states. Additionally, we studied the behaviour
of the energy-dependent self-energy in Si as a function of the number of iterations.

Acknowledgments

J A Soininen is supported in part by the US Department of Energy through Grant number
DE-FG03-97ER45623 and by the National Institute of Standards and Technology, through the
DOE Computational Materials Science Network (CMSN).

Appendix

We derive here some properties of the band Lanczos method in connection of the RPA that
were not used in this work but might be useful in future work. We start by writing the local-
field effects in terms of the initial vectors of the Lanczos iteration as (assuming that we have
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Nlocal
G = N)

V = V UV †,

where we have

Ui j =
∑

iK

RiiK VK(q)R∗
j iK

.

If we consider the Lanczos vectors generated by an iteration where local-field effects are
excluded, we have

T̃i+n,i ṽi+n = H1eṽi −
i+n−1∑
j=i−n

T̃ j,i ṽ j ,

and where V is included, we have

Ti+n,ivi+n = Hvi −
i+n−1∑
j=i−n

Tj,iv j . (A.1)

For i � n the initial vectors fulfil vi = ṽi , and it follows that we have Tj,i − T̃ j,i = U j,i .
This follows from the choice of the coefficients Tj,i = v†

jHvi and the definition of U j,i . If we
insert this into equation (A.1) we find

Hvi −
i+n−1∑
j=i−n

Tj,iv j = H1evi +
n∑

j=1

U j,iv j −
n∑

j=1

(T̃ j,i + U j,i)v j +
i+n−1∑
j=n+1

T̃ j,iv j

= H1eṽi −
i+n−1∑
j=i−n

T̃ j,i ṽ j ,

i.e., we have vi+n = ṽi+n . Additionally, for i > n we have V vi = 0, because of the definition
of V and the fact that each new vector vi+n is orthogonal to each of the previous vectors. We
have found this to be true to a large degree of accuracy. In a mixed-basis approach this could
be used to reduce the computational time considerably. This is because, with a mixed basis,
unlike with a plane-wave basis, the Coulomb potential is not diagonal, and operating on a
vector with V is computationally the most expensive part of each iteration step.

In other words, both Lanczos iterations, using the full operator HR P A and the diagonal one
H1e, generated the same set of vectors vi . Additionally, the difference between Tj,i and T̃ j,i can
be calculated without calculating the vector multiplications required in the Lanczos process
using the matrix HR P A. This property of the band Lanczos iteration with RPA can be used to
reduce the effect of finite accuracy of the floating-point operations and the computational time
required especially in the case when a mixed basis is used. When plane waves are used, this
reduction is only by a half, because it does not remove the need to do orthogonalization with
respect to the previous 2n + 1 vectors.

References

[1] Hedin L 1965 Phys. Rev. 139 796
The name of the GW approximation arises from the fact that the electron self-energy involves the product of

the electron Green function, G , and the dynamically screened Coulomb interaction, W .
[2] Hedin L and Lundqvist S 1969 Solid State Physics vol 23, ed F Seitz, D D Turnbull and H Ehrenreich (New

York: Academic) p 1
[3] Hybertsen M S and Louie S G 1985 Phys. Rev. Lett. 55 1418

Hybertsen M S and Louie S G 1986 Phys. Rev. B 34 5390



2586 J A Soininen et al
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