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We identify a one-dimensional supersolid phase in a binary mixture of near-hard-core bosons with weak,
local interspecies repulsion. We find realistic conditions under which such a phase, defined here as the coex-
istence of quasisuperfluidity and quasi-charge-density-wave order, can be produced and observed in finite
ultracold atom systems in a harmonic trap. Our analysis is based on Luttinger liquid theory supported by
numerical calculations using the time-evolving block decimation method. Clear experimental signatures of
these two orders can be found, respectively, in time-of-flight interference patterns and the structure factor S�k�
derived from density correlations.
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The supersolid �SS� phase, defined as a many-body state
that simultaneously shows superfluid �SF� and charge density
wave �CDW�—i.e., crystalline—order, has been an intrigu-
ing notion since its first proposal �1� due to its seemingly
paradoxical nature. Numerous studies of SS phases �2,3�
have recently been reported, motivated by fundamental the-
oretical interest in a system that exhibits competing orders
and by recent experimental reports of observations of super-
solidity of 4He in Vycor glass �4,5�. This 4He system exem-
plifies the complexity of studying strongly correlated sys-
tems in a solid-state context: it combines strong disorder due
to the porous medium and strong interactions between atoms
and of atoms with surfaces. Under such circumstances it is
difficult to demonstrate the existence of a SS phase, which
involves a subtle competition of fluctuations.

In this paper we show that supersolidity can be studied
with clarity in another physical system: ultracold atoms in
optical lattices. Since the demonstration of the SF–Mott-
insulator transition in three dimensions �3D� �6�, the tech-
nology of cooling and trapping atoms has supported studies
of numerous quantum many-body phenomena, such
as the BEC-BCS crossover �7�, noise correlations �8�, the
Berezinsky-Kosterlitz-Thouless transition �9�, the Tonks-
Girardeau gas �10,11�, transport and collisional properties of
1D gases �12�, and the Mott transition in 1D �13� and 2D
�14�. Appealing features of this technology, from the per-
spective of many-body theory, are that it creates well-defined
and tunable systems and that the set of measurable quantities
differs from those in solid-state systems. Thus, ultracold
atom systems can give interesting and unusual insights into
many-body states.

The objective of this paper is to propose a realistic setup
of how to create and detect a supersolid with current tech-
nology. Specifically, a binary mixture of near-hard-core
bosons with weakly repulsive interspecies contact interac-
tions in a 1D potential displays both CDW and SF quasi-
long-range order �QLRO�. Such mixtures have an inherent
tendency to undergo phase separation, which can be avoided
if the interspecies interactions are sufficiently weak.

We study the SS phase with analytical and numerical
techniques, and present a concrete proposal for its realization

in current experimental systems. First, we use a Luttinger
liquid �LL� approach to derive the phase diagram of the ho-
mogeneous, infinite system, with a renormalization group
�RG� calculation. We then address the question of realizing
such a phase under realistic conditions for a finite system of
�102 lattice sites in a harmonic trap. Using a number-
conserving time-evolving block decimation �TEBD� method
�15�, we numerically determine, with a well-controlled error,
the ground state of the system from which we extract various
correlation functions. We first identify the SS phase through
signatures in the pair and antipair correlations. Other corre-
lations contain information that is accessible to direct experi-
mental observation, and we discuss possible experimental
signatures of the SS phase—i.e., the coexistence of SF and
CDW order; the SF order is manifest in the single-particle
correlation function, which can be determined from time-of-
flight �TOF� interference patterns; and the CDW order is
seen in density-density correlations, which is reflected in a
measurable structure factor.

We consider a mixture of two species of bosonic atoms
with short-range interparticle interactions, confined in a 1D
optical lattice and an additional harmonic potential. Contem-
porary experimental realizations of such systems are usually
well approximated by a Hubbard model:

H = − t �
�ij�,a

ba,i
† ba,j +

U

2 �
i,a

na,i�na,i − 1�

+ U12�
i

n1,in2,i + �
j

�j2�n1,j + n2,j� . �1�

Here t is the hopping energy; ba,i is a boson field operator,
with a=1,2 a species index and i a lattice site index; U �U12�
is the intra- �inter-� species on-site interaction energy; na,i
=ba,i

† ba,i; and � represents the strength of the harmonic trap,
which is centered on the site j=0.

We now derive the phase diagram of this system from LL
theory. We consider two 1D bosonic SFs, with densities
equal to each other, but incommensurate to the optical lattice.
In particular, we exclude half- and unit-filling, which would
destroy the SF order, by choosing the density and the global
trap in such a way that even at the trap center the density of
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each species stays below 0.5. The essential function of the
optical lattice is to provide a sufficiently large ratio of U / t, as
in �10�. We emphasize that the supersolid phase also exists in
the absence of a lattice �16�; however, since present quasiho-
mogeneous ultracold atomic systems are generically closer to
weak coupling, the presence of a lattice is advantageous to
experimental realization of supersolidity.

The basic concept of LL theory is to express the bosonic
operators ba,i through a bosonization identity, such as
Haldane’s construction �17,18�:

b1,2�x� = �n + �1,2�x��1/2�
m

e2mi�1,2�x�ei�1,2�x�, �2�

where we switched to a continuum model, ba,i→ba�x�. n is
the average density of the two species; �1,2�x� are the low-k
parts �i.e., k�1 /n� of the density fluctuations; and the fields
�1,2�x� are given by �1,2�x�=�nx+�1,2�x�, with �1,2�x�
=�	xdy�1,2�y�. �1,2 are the phase fields, the conjugate fields
of the density fluctuations �1,2�x�.

In terms of these fields, the action of the two coupled
bosonic SFs is given by �18,20�

S =
 d2r� �
j=1,2

1

2�K
����� j�2 + ��x� j�2�

+
U12

�2 � �1 � �2 +
2g	

�2�
�2 cos�2�1 − 2�2�� . �3�

The two SFs are characterized by a LL parameter K and a
velocity v, which is contained in r= �v� ,x�. The LL param-
eter K is a measure of the intraspecies interaction; in the
near-hard-core regime, we use �19�

K 
 1 +
8t

U

sin �n

�
. �4�

Similarly, v can be related to the parameters of the underly-
ing Hubbard model by v
vF�1−8tn cos �n /U�, where vF is
the “Fermi velocity” of an identical system of fermions, vF
=2t sin �n. The density-density interaction between the two
SFs creates both the term containing ��1��2, as well as the
backscattering term �3,20�, containing cos�2�1−2�2�, which
describes short-range interspecies repulsion.

We change variables to the symmetric and antisymmetric
combinations �s/a= 1

�2
��1��2� and �s/a= 1

�2
��1��2�, and di-

agonalize the quadratic part of the action which gives the
following parameters for the two sectors:

Ks/a = �1/K2 � U12/v�K�−1/2, �5�

which to lowest order gives Ks/a
K
U12K
2 /2�v. The ef-

fective velocities are vs/a=�v2�U12Kv /�. Phase separation
�collapse� is reached when va�s� becomes imaginary. The an-
tisymmetric sector contains the nonlinear backscattering
term. To study its effect, we use a RG approach, the flow
equations for which are given by �20�

dg	

dl
= �2 − 2Ka�g	,

dKa

dl
= −

g	
2

2�2Ka
3. �6�

This set of flow equations has two qualitatively different
fixed points: Either g	 diverges, driving a pairing transition,
which in turn renormalizes Ka to zero, or g	 is renormalized
to zero. In the latter case the Gaussian fixed point is restored
with a finite effective value K

a
*. Therefore the correlation

functions are again algebraic, containing this effective pa-
rameter. It is this second scenario that we are interested in,
not the actual phase transition itself.

To determine the phase diagram we consider the correla-
tion functions of these order parameters: single-particle SF,
described by OSF=ba; CDW order, corresponding to the 2kF
component of the density operator OCDW=na; and paired SF,
OPSF=b1b2, which appears on the attractive side. The form
of these correlation functions is �O�x�O�0����x�
−2, except
for the single-particle SF in the paired regime, where it de-
cays exponentially. An order parameter O�x� has QLRO, if
its correlation function is algebraic and 
�0. This implies
that the corresponding susceptibility is divergent, indicating
an instability toward ordering �20�. The scaling exponent of
OSF is 
SF=2−1 /4Ks−1 /4Ka, the one of OCDW is 
CDW=2
−Ks−Ka, and PSF has 
PSF=2−1 /Ks. We also consider the
antipair operator b1

†b2, which has a scaling exponent of 2
−1 /Ka. We use the latter two correlation functions in the
numerical fitting procedure. In Fig. 1 we see the resulting
phase diagram. For attractive interactions we see the forma-
tion of a paired phase, in which two regimes of quasiorder
are found: in the entire paired regime, PSF is the dominant
QLRO, whereas for part of that regime we find CDW as a
subdominant order. The latter can be considered a SS of
pairs, whereas single-particle SF is destroyed. On the repul-
sive side we find the SS phase that we look for in this paper.
Using the flow invariant g	

2 −4�2�Ka−1�2 and Eq. �4�, we
determine the nearly linear SS phase boundary for small re-
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FIG. 1. Phase diagram of a Bose mixture, from LL theory, as a
function of the interspecies interaction U12 �in units of v, see text�
and the LL parameter K of the uncoupled system �Eq. �4��; on the
left the full diagram, on the right �corresponding to the shaded area�
the near-hard-core, repulsive regime with the supersolid �SS� phase.
For attractive interactions, in the paired regime, paired SF �PSF� is
dominant, with CDW QLRO being subdominant in parts of it. Out-
side of that regime, SF is the dominant quasiorder, but for the re-
pulsive, near-hard-core regime we have CDW QLRO as well,
which constitutes a supersolid phase. For large repulsive interac-
tions, the system phase separates �PS�; for large attractive ones, it
collapses �CL�.
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pulsive interactions to be U12 /v�32t sin �n /U.
Having given the phase diagram of the infinite, homoge-

neous system, we now address the question of how superso-
lidity can be found in actual cold atom systems. For this, we
use a TEBD method �15� to obtain the ground state of the
system. We choose a small value for t /U to reach the near-
hard-core regime and a positive U12 of the order of t to avoid
phase separation. We choose the atom number and the global
trap parameter, such that the density is smaller than 0.5
throughout the system. In Fig. 2 we show the densities of the
two species for the case t /U=0.005, U12 /U=0.04, �
=10−5U, and a particle number of 17 of each atom species,
on a lattice of 90 sites, as an illustration of the ground state.
One can clearly see the density modulation of each species,
whose wavelength is determined by the density, not the
lattice.

A central question when studying “phases” in finite-size,
nonhomogeneous systems is whether a given state can be
reasonably related to a phase of the associated system in the
thermodynamic limit. We address this question by numeri-
cally fitting the correlation functions of the pair and antipair
operators in the bulk of the system with power-law functions.
We find a very good fit, and we depict the scaling exponents
extracted from the numerical data in Fig. 3 as a function of
the interaction U12.

Having established that the state of the system is indeed a
supersolid, we now turn to the crucial question of how this
phase can be detected in experiment. We propose two mea-
surements that would address this question: �a� a TOF inter-
ference measurement to determine the single-particle corre-
lation function, which is the defining quantity of SF QLRO,
and �b� a measurement of the structure factor �21� to deter-
mine the density correlation function, which is the defining
quantity of CDW QLRO.

�a� TOF measurement. We assume that when the optical
lattice is turned off, the atoms expand freely—that is,
ba�x , t�=� jw�x−rj�ba,j, where

w�x,t� = �d/�2���t�2 exp�− x2/4��t�2� ,

with ��t�2=d2+ it� /2m, a the lattice constant, d the width of
the initial state, assumed Gaussian, t the expansion time, and
m the atomic mass. We calculate the density n�x�
= �b†�x , t�b�x , t��, which contains the single-particle correla-
tion function of the original system, which we show in Fig.
4. Figure 4�a� shows the full interference pattern, and Fig.
4�b� the central peak with a fit with a power-law function
c�x2+a2�
/2−1, shown on a log-log scale. The good agreement
with power-law scaling indicates the presence of SF QLRO.

�b� Structure factor. We assume, as an example, an in situ
measurement of the same system described before. The real-
space structure factor is related to the density-density corre-
lation function of the lattice system by
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FIG. 5. Structure factor of the atomic mixture, with the same
parameters as in Fig. 4, in 1 /�m, as a function of k in units of
2� /a. �a� corresponds to very weak interactions U12 /U=0.0025
and shows no particular structure beyond a SF signature; �b� corre-
sponds to U12 /U=0.04. We see additional peaks, which indicate
CDW QLRO at a momentum that is consistent with the density at
the center of the trap.
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FIG. 2. �Color online� The single-atom density of species 1 �red�
and 2 �blue� of a system of 90 sites, with 17 atoms of each type,
with t /U=0.005, U12 /U=0.04, and a trap parameter �=10−5U.
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FIG. 3. LL parameters Ks and Ka, as a function of U12, for the
same parameters as in Fig. 2, from numerical fitting.
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FIG. 4. Interference pattern of the atomic mixture, with the pa-
rameters of Fig. 2, when interpreted as 87Rb, released from an op-
tical lattice with lattice constant a=400 nm, localized states with a
length scale d=60 nm, after an expansion time t=30 ms. This could
be realized with an optical lattice potential of 18ER in the longitu-
dinal and 30ER in the transversal directions, ER being the recoil
energy. In �a� we see the 1D density n of the full pattern �in units
mm−1�, as a function of the spatial coordinate x �in mm�. In �b� we
fit the central interference peak with a power law. The good numeri-
cal fit indicates the presence of single-particle quasisuperfluidity.

CREATING A SUPERSOLID IN ONE-DIMENSIONAL BOSE… PHYSICAL REVIEW A 79, 011602�R� �2009�

RAPID COMMUNICATIONS

011602-3



S�k� 
 
 dx1dx2

L
e−ikx12��nx1

nx2
� − �nx1

��nx2
�� , �7�

with x12=x1−x2, and the real-space correlation function
defined as

�nx1
nx2

� = �
i1,i2

�w�x1 − ri1
��2�w�x2 − ri2

��2�ni1
ni2

� .

�nx1
��nx2

� is similarly defined. Figure 5 shows S�k� for
U12 /U=0.04 and a nearly noninteracting example U12 /U
=0.0025. The envelope of the function is given by the in-
verse width of the Wannier state; the periodic shape comes
about because we map a lattice quantity onto real space. We
clearly see the onset of a peaked structure at momenta that
are consistent with the density at the trap center. These peaks
are related to algebraic cusps in the static structure factor,
when the CDW regime is reached, S�2kF+q���q�1−
CDW. A
measurement of the dynamic structure factor would lead to
an even more striking result, since these cusps would trans-

late into algebraic divergencies. We also note that a measure-
ment of the lattice density in situ �22� could depict a profile
as in Fig. 2 and that repeated measurements and a correlation
analysis as in �8�, but without expansion, could give the real-
space density correlation function directly.

In conclusion, we have presented a proposal of how a
supersolid phase of binary bosonic mixtures in 1D can be
created and probed in present ultracold atom experiments: in
particular, with only local interatomic interactions. Using LL
theory, we identified the generic phase diagram of this sys-
tem for incommensurate filling; with TEBD simulations, we
found a concrete example of a finite, realistic system, includ-
ing a global trap, which shows both SF and CDW QLRO.
Two well-established measurement techniques, the TOF sig-
nal and the structure factor, provide clear experimental sig-
natures of the two orders present in this remarkable state of
matter.
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