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ABSTRACT 
 

A Green’s function method is described for multiscale modeling of point defects 
such as vacancies and interstitials at the atomistic level and extended defects such as free 
surfaces and interfaces at the macroscopic continuum level in a solid. The point defects 
are represented in terms of Kanzaki forces using the lattice-statics Green’s function, 
which can model a large crystallite containing a million atoms without excessive CPU 
effort. The lattice-statics Green’s function reduces to the continuum Green’s function in 
the asymptotic limit which is used to model the extended defects by imposing 
continuum- model boundary conditions. Numerical results are presented for the 
displacement field on the free surface due to a vacancy in semi-infinite fcc copper. 
 
INTRODUCTION 
 

We describe a Green’s function method for multiscale modeling of point defects 
such as vacancies and interstitials and extended defects such as free surfaces and 
interfaces in thin films and semi-infinite solids . Our model treats the point defects at the 
atomistic level and extended defects at a macroscopic level in the same formalism. We 
use the lattice-statics Green’s function for atomistic modeling of a point defect and the 
elastic continuum Green’s function for modeling an extended defect. In contrast to direct 
computer simulation methods for lattice statics which are CPU intensive, the advantage 
of the Green’s function method is that it is semi-analytic. Our method can model a large 
crystallite containing a million atoms without excessive CPU effort. The lattice-statics 
Green’s function reduces asymptotically to the continuum Green’s function that we use 
to model the extended defects. We use our method to calculate strain fields in the solid 
that contains both point and extended defects.  

Many physical properties of thin films and semi-infinite solids depend upon the 
strains caused by the point defects near the free surfaces and the interfaces. Strain is a 
macroscopic quantity that can be measured near a free surface. In order to interpret the 
experimental results, one needs a model to calculate the strains caused by the point 
defects in the presence of the free surface. Whereas the continuum model is adequate to 
represent macroscopic extended defects in solids, it is not fully reliable for modeling 
point defects where the discrete atomistic structure of the crystal lattice is very important 
(see, for example, [1,2]). It is therefore necessary to use a multiscale model that accounts 
for the discrete lattice structure of the solid near a point defect and the macroscopic 
effects near an extended defect. This explains the upsurge of current interest in 
multiscale modeling of solids. 

Recent papers on multiscale modeling are based upon purely numerical 
techniques using the finite element method and/or computer simulation of the lattice 
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structure ([3,4]; for an excellent review and other references, see [5]). The purely 
numerical techniques can be very accurate but they are CPU intensive and are not 
convenient for parametric design studies. The Green’s function method gives accurate 
results, is computationally convenient, and can provide quick ‘what if’ answers which is 
useful for design of experiments.  

In this paper we describe the salient features of the Green’s function method. For 
the purpose of illustration, we apply the method to calculate the displacement field at the 
free surface of a semi-infinite copper crystal containing a vacancy. This paper is a 
preliminary report of our ongoing work on multiscale modeling of point defects in thin 
films of metals and semiconductors. Details will be published elsewhere. 
 
THEORY 

 
We consider a monatomic Bravais lattice with a point defect at the origin. We 

assume a Cartesian frame of reference with an atomic site as origin. We denote the lattice 
sites by vector indices l, l’ etc. A vector index l has 3 components denoted by l1, l2, and 
l3. The three-dimensional (3D) force constant matrix between atoms at l and l’ is denoted 
by φ∗( l, l’). The force on atom l  and its displacement from equilibrium position will be 
denoted, respectively, by F(l) and u(l), which are 3d column vectors. The displacement 
vectors u(l) at each lattice site give the relaxation of the lattice or the lattice distortion 
caused by the defect. 

The force constant matrices for each pair of atoms are 3x3. They are obtained 
from the interatomic potential as follows: 
 

[φ∗( l, l’)]ij = ∂2V(x)/ ∂xi ∂xj,    (1) 
 
where V(x) is the interatomic potential (assumed to be central) between the pair of atoms 
l and l’ separated by vector distance x.  Similarly, the force at the atom l due to the atom 
at the origin at a distance x is given by 
 

[F(l)]i = – ∂V(x)/ ∂xi.     (2) 
 

Following the method given in [1,2], we obtain 

u(l)  =  Σl’ G*( l, l’) F(l’),    (3) 
 
where, G* is the defect lattice Green’s function defined by 
 

G*  =  [φ∗]−1.      (4) 
 
The sum in eq. (3) is over all lattice sites and Cartesian coordinates which have not been 
shown explicitly for notational brevity. 

In the representation of lattice sites, G* and φ∗ are 3N x  3Ν  matrices where N is 
the total number of lattice sites in the Born von Karman supercell. For a perfect lattice in 
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equilibrium without defects, F(l) is 0 for all l and the force constant and the Green’s 
function matrices have translation symmetry. We denote these matrices by φ and G, 
respectively. When a defect is introduced in the lattice, F(l) becomes, in general, non-
zero and the force constant matrix changes.  So  
 

φ∗ =  φ − ∆ φ,       (5) 
 
where ∆φ  denotes the local change in the force constant matrix φ. From eqs. (4) and (5), 
we obtain the following Dyson equation 
 

G* = G + G ∆φ G*,     (6) 
 

where   
 

G  =  [φ]−1,        (7) 
 
is the perfect lattice Green’s function. In the same representation, we can write eq. (3) in 
the following matrix notation: 
 

u = G* F.       (8) 
 
Using eq. (6), we rewrite eq. (8) as 
 

u = G F*,       (9) 
where 
 

F* = F + ∆φ u.      (10) 
 

Equation (9) gives the displacement in terms of the perfect lattice Green’s 
function and an effective force denoted by F*, the so called Kanzaki force [1]. From eq. 
(10), we can identify it as the force due to the defect on relaxed lattice sites in contrast to 
F which denotes the force at the unrelaxed original lattice site. Equation (9) is applicable 
to any point defect such as a vacancy, an interstitial, or a substitutional impurity. 

For the perfect lattice, G(l,l’) has translation symmetry and therefore can be 
labeled by a single index l-l’.  It is calculated by using the Fourier representation 
 

G(l) = (1/N) Σq G(q) exp[ ιq.l],    (11) 
 
where ι = √-1, N is the total number of atoms, 
 

G(q)  =  [φ(q)]−1,         (12) 
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φ(q) is the Fourier transform of the force constant matrix, and q is a vector in the 
reciprocal space of the lattice. For brevity of notation, we shall use the same symbol for a 
function and its Fourier transform, the distinguishing feature being the argument of the 
function. Since G(q) and φ(q)  are 3 x 3 matrices, eqs. (11) and (12) can be used to 
calculate the perfect lattice-statics Green’s function G(l,l’). 

We define the defect space as the vector space generated by l,l’ for which  ∆φ is 
non-vanishing. We solve the Dyson equation for the defect Green’s function by using the 
matrix partitioning technique [1]. The reduced Dyson equation in defect space is given 
by 
 

g* = g + g ∆φ g*,       (13) 
 
where g, g* are components of G and G* in defect space. The matrices in eq. (13) are 3n 
x 3n matrices, where n is the number of atoms in the defect space. For point defects, n is 
small so eq. (13) can be solved by direct matrix inversion as given below: 
 

g* = (I - g ∆φ)−1g,       (14) 
 
where I is the unit matrix.  

For an fcc lattice in which the defect interacts up to its second neighbor atoms, 
the matrices in eq. (14) are 57x57. Since a point defect such as a vacancy retains the 
local point-group symmetry of the lattice, we can use group theory to simplify eq. (14) 
considerably. In the above case of a vacancy in an fcc lattice, eq. (14) can be reduced to 
a 2x2 matrix equation. 
 By definition, the force matrix defined by eq. (2) is nonvanishing only in the 
defect space. Using eqs. (8) and (13), we obtain for all atoms in the defect space 
 

u  = g* F.        (15)  
 
After calculating u  for all atoms in the defect space, we calculate the Kanzaki force in 
the defect space by using eq. (10). Then the displacement of all atoms in the solid is 
given in terms of the perfect lattice Green’s function by using eq. (9). The Kanzaki force 
contains the full contribution of the discrete lattice structure in the defect space. 
 It can be shown [1] that the perfect lattice Green’s function reduces 
asymptotically to the continuum Green’s function. For this purpose, we make l and q 
continuous variables and replace the summation in eq. (11) by integration over the 
reciprocal space. In conformity with the continuum model notation, we replace l by x for 
large l, which will denote the position vector corresponding to the lattice site l. Thus, in 
the limit x → ∞,  
 

G(x)  = (1/2π)3 ∫ Gc(q) exp (ιq.x) dq,    (16) 
 
where, keeping terms up to q2 in φ(q), 
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Gc(q) = Limq→0 G(q) = Limq→0 [φ(q)]−1 =  [Λ(q)]−1.  (17) 
 
In eq. (17), Λ is the Christoffel matrix, which is defined in terms of c, the elastic constant 
tensor, as follows: 

Λ ij (q) = cikjl qk ql,           (18) 
 
where i,j,k,l, etc. are Cartesian indices that assume the values 1-3. Summation over 
repeated indices is implied. 

Equation (9) is our master equation for multscale modeling. At large distances 
from the point defect, we replace G by the continuum Green’s function defined by eq. 
(17) but use the lattice value of F* as defined in terms of the lattice Green’s function by 
eqs. (8) and (9). Thus the displacement field in our multiscale model at the position 
vector x is given by the following sum over the defect space: 
 

u(x)  =  Σl’ Gc
 (x-l’) F*(l’).     (19) 

 
Since the distance between the lattice sites in the defect space over which F* is 
distributed, is much less than x, Gc(x-l’) can be calculated in terms of the derivatives of 
the continuum Green’s function. 

We can now incorporate the effect of extended defects in Gc by imposing 
appropriate boundary conditions using the standard techniques of the continuum model. 
As an example, we will consider a semi-infinite solid with a free surface. We choose a 
frame of reference in which the origin and the X- and Y- axes are on the free surface and 
the positive Z-axis points into the solid. The zero-traction boundary condition at the free 
surface, which is taken to be the plane at x3=0, is given by 

 

τi3(x) = ci3jk ejk(x) =  0 (x3=0),   (20) 
where 

ejk   = ∂uj(x)/ ∂xk,      (21) 
 
e and τ denote the strain and stress tensors respectively.  

Various computationally efficient representations of the continuum Green’s 
function for anisotropic semi-infinite solids are available in the literature [6,7]. In this 
paper, since our objective is just to illustrate the multi-scale modeling technique, we will 
assume for simplicity that the solid is elastically isotropic. The solution for the isotropic 
continuum case was obtained by Mindlin [8]. The result for the displacement field at the 
free surface at a radial distance r from the origin is quoted below: 
 

4πur/f = -rh/R3 + µr/[(λ+µ)(R-h)R],    (22) 
and 

4πuz/f = (R2 + h2)/R3 +  µ/[(λ+µ)R],    (23) 
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Figure 1 Displacement field at the free surface of fcc copper due to a vacancy as a 
function of h, the distance of the vacancy from the free surface. Solid line- uz, the Z-
component; broken line- ur, the radial component in cylindrical coordinates. 
 
where we have used cylindrical coordinates, ur and uz are, respectively, the radial and the 
Z-components of the displacement field,  f is the magnitude of the force in units of 8πµ 
(λ +2µ)/(λ +µ) acting at at (0,0,h), λ and µ are the Lame constants, and R2 = (r2 + h2).  
 
RESULTS AND CONCLUSIONS 
 

Figure (1) gives the calculated values of ur and uz as a function of h at the free 
surface at r=1 due to a vacancy at (0,0,h) in fcc copper. The free surface is taken to be a 
(1,0,0) plane. We assumed a simple model interatomic potential due to Bullough and 
Hardy (see [1]) extending up to second neighbors. The lattice-statics Green’s function is 
calculated for a million-atom model using the method given in [1], which gives F*.  The 
defect space consists of the vacancy, its 12 nearest neighbors, and 6 second neighbors. 
 The main conclusion of this paper is that the Green’s function method for multiscale 
modeling can be used to model a large crystallite at the atomistic level without excessive 
CPU effort and, in the same formalism, include the macroscopic defects such as free 
surfaces and interfaces using the standard techniques of the continuum model.  
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