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Formation of a surface quantum dot near laterally and vertically neighboring dots
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The elastic-energy-release rdEEERR of a surface quantum d@@QD) near laterally and vertically neigh-
boring QDs in a linear anisotropic elastic substrate is calculated. The EERR is used to describe quantitatively
the driving force for growth of a newly formede., smal) QD in the presence of a growne., large QD and
hence quantitatively the driving force for their ordering by assuming that the variation of the total change of
free energyincluding elastic energy, surface energy and edge enerily their relative location depends only
upon the elastic-energy part. An efficient boundary-element method is employed to solve the three-dimensional
boundary-value problem of anisotropic elasticity, which requires discretization only along the surface of the
QDs and their interface with the substrate. Numerical results for InAs QDs of cuboidal shape on a GaAs
substrate with a free surface along 10€1) plane are reported. It is found that the presence of a large surface
QD inhibits the growth of a small surface QD. The small QD “prefers” to align with the large one iflLO®
and(010 directions. However, this effect is relatively small, of about a 1.5% change of the EERR. In contrast,
the effect of a buried large QD on the growth of a small surface QD can be significant, of up to a 25% change
of the EERR. The favorable location of a small surface QD may be either vertically above or at an angle to the
buried large QD, depending upon the depth of the latter. The driving force for the growth of a small surface QD
at the favorable locations is enhanced by the presence of the buried large QD. In addition, the theory predicts
an optimum depth of the buried large QD for the driving force for the growth of a small QD at the surface.

DOI: 10.1103/PhysRevB.68.035301 PACS nunt$er68.35—p

[. INTRODUCTION substrate. They found that there exists a bifurcation of cor-
relation and anticorrelation of QW sheets, depending upon
Currently there is a strong interest in semiconductor quanthe distance between the two sheets, in order to minimize the
tum dots (QDs) because of their potential applications in energy of the system. This bifurcation has, however, not been
interesting devices, such as ultralow threshold laser, resonafdund in the isotropic elastic system with QWs of a different
tunneling devices, and huge-capacity memory médim  shape based on the same concept of energy minimization.
efficient method of fabricating semiconductor QDs is basedPonchetet al!! developed a similar model to investigate the
on the spontaneous formation of small dots on the surface déteral interaction of identical QDs. However, since these
a heteroepitaxial thin film. In this process, a QD may nucle-studies®!'did not set up a reference level of energy change,
ate and grow in the elastic field of neighboring QDs. Theit is not clear how strongly these QIs interact, for instance,
long-range elastic effect may lead to lateral and vertical orcompared to the environmental noises in the practical sense.
dering of QD arrays that is essential to many QD applicadn parallel, some research groups have used the spatial varia-
tions, such as those mentioned above. Recently, ¥mtp-  tion of strain(or strain energy densityf a single seed Qlor
duced the elastic-energy-release rd@&RR) to quantify the a group of seed QJsto predict the favorable location of a
driving force in the formation of quantum islan@®ls) in-  new QI®*2~1*Zhanget al!® further developed the local-field
cluding QDs and quantum wirg®QWs). The EERR is de- approach
fined as the reduction of elastic strain energy per unit volumef QI formation by coupling to it a kinetic law. Such
of QI growth. It was used to examine the vertical ordering ofapproaches in terms of strain or strain energy density, which
QWs in an isotropic elastic system under the assumption thatre conceptually different from the aforementioned
the variation of the total change of free ener@ycluding  approachés®!*based on the change of system energy in the
elastic energy, surface energy and edge enength their  course of QD formation, may be applicable to a kinetics-
relative location depends only upon the elastic energy part. itontrolled process. In the self-assembly of equilibrated QI
is the objective of the present work to apply the EERR undearrays, an approach based on the minimization of system
the same assumption to explore quantitatively the effects oénergy is applicabl&?1
laterally and vertically neighboring growfi.e., large QDs In Sec. I, the three-dimensional boundary-value problem
on the driving force for a newly forme@.e., small surface  of QDs in a substrate is formulated. The QDs and substrate
QD in a three-dimensiondBD) anisotropic elastic system. have generally different materials properties. An efficient
Experimentally, a new QD is often found to grow on a boundary-elementBE) method®!’is used to solve the an-
free surface vertically above an existing GD.In other isotropic elastic inhomogeneity problem. Because it uses the
cases, a vertically oblique array of QDs is foltftf In their ~ half-space Green's function for the substrate, coupled with
discussion of the formation of arrays of QWs, Shchukinthe infinite-space Green’s function for the QDs, the BE
et al1° have calculated the interaction energy between twanethod requires only numerical discretization along the sur-
sheets of identical QWs in a cubic anisotropic elastic solidface of the QDs and their interface with the substrate. This
They assumed that the QWs have the same properties as themerical procedure is more efficient than the conventional
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FIG. 1. (a) A half-space heterostructure with
embedded and uncapped QDs and a thin wetting
film. (b) Formation of a new QD by mass trans-
Buried QD port from the wetting film.

(@ ()

BE method using only the infinite-space Green’s functionwetting layer, Wqeeq newdot IS the elastic strain energy of the
and than both the domain-based numerical techniques @fystem of the seed QD, new QD, and substrate \&aghotis
finite-element methdd and finite-difference methad. In the volume of the new QD.

Sec. Ill, the EERR of a small InAs QD of cuboidal shape By fixing the shape and volume of the seed QD, the
near a large InAs QD on a GaAs substrate is calculated. ThEERR for formation of the new QD is derived by differenti-
variation of the EERR with their relative location is used to ating the second equation in EQ):

explore the driving force and favorable location of a newly

formed QD in the presence of a laterally or a vertically dWiarget dWaeed newdot
neighboring grown QD. The present formulation describes I ewdo= — qv =74V Wyet-
quantitatively the driving force for formation of a QD and newdot newdot
hence quantitatively the driving force for interaction and or-| |ater calculations, this quantity is evaluated approximately
dering of QDs. This is of practical significance in the strainj, 5 finite-difference scheme as

engineering of QD nanostructurésConclusions are drawn
in Sec. IV.

@

- Wseed newdoi™ Wseed
I newdo= — V newdot + Wet- ()
newdof

Il. FORMULATION
The finite-difference formula is accurate for a new QD of
all volume compared to the seed QD. It is valid also be-
auSEW,eeqis the limiting value 0Wgeed newdot WNeNV newdot
approaches zero. Therefore, the evaluation of the EERR,
newdo 1S reduced to calculating the termsiNgqqq
seed newdo @NAW,et. Assuming that the higher the EERR,

The elastic-energy-release rate is defined as the reducti
of elastic strain energy per unit volume of mass transpor
from a wetting layer to a QD of certain shap¥/e analyze
the critical EERR for nucleation of a self-similar QD of
cuboidal shape near an existing grown QD. This physic

process Is sch.ematlcally shown in F'g.‘ 1. Figute) Bhows the more favorable is the condition for the growth of a new
fche initial staje_. a groyvr(lseed QD that is uncapped or bur.- QD, the relation of a new QD to a seed QD can be deter-
ied, and a finite wetting layer on a substrate. The wettmgmin’ed
layer is assumed to be very thin and to cover a very large ) .
area compared to the dimensions of the QD. The product of To evaluate the termMiVseed. newsor, WE CONSider a hetero-

X e I S structure consisting of a semi-infinite substrate, a seed QD
the thickness and the area is finite, yielding a finite volume

. : . ncapped or burigdand a small new surface QD, as shown
Thus, the elastic strain energy of the system can be obtalne(t'jl Fig. 1(b) (excluding the wetting layer The materials

as a sum of those of the wettlng Iaye_r and of the seed Q roperties of the QDs are the same, and are different from

c_alculated separately, i.., t'he Interaction energy of the we hose of the substrate. The QDs and substrate are coherently

:I:rg é‘?;?;tingftgi;ze”dQ%Db':igegr:'l?é?elz;[e':(;ggj (eriw]zrs]gvt\;zr?s otr)tonded, and their lattice constants are different. This intro-
9 9 y POuces a uniform eigenstrain field in each QD. The eigenstrain

from the thin wetting layer. Similarly, because the Wett'ngfield induces a residual elastic field upon relaxation of the

Iayer.|s very thin and covers a very Ie}rge area compared tgystem, and hence causes the QDs to interact. A Cartesian
the dimensions of the QDs, the elastic strain energy of th? : ; .
rame of reference systemnx{,X,,X3) is established with the

system can be obtained as a sum of that of the wetting layer—_ : -
and of the seed QD plus the new QD calculated separately® axis normal to the free surface and with the origin at the

From statega) to (b), the mass is conserved. Therefore, theerl":1 est?curf?ggl.eénn\l/]vri?r? rﬁﬁ:tiBisgggiS: ;Sngpgii;’g;ﬁh;ieeltge
elastic strain energy of the two system,j, and Wiaget, P P 9 ’

: . leading to an efficient evaluation of the elastic strain energy
can be written, respectively, as
of the system.
The boundary integral equation of displacement along

Winitial = Wseedt WwetVwet  @Nd Wiarger Wseed- newdot boundaries of the substrate in equilibrium is given by
+ Wwel( Vwet_ Vnewd09 ) (1) 1
ZyM) - * (M) (M)
whereW,,qqis the elastic strain energy of the system of only SU(X) JS(M)[UII (X)p; (%)
the seed QD and substrate, ang.; and V,, are, respec-

tively, the elastic strain energy density and volume of the —p M (X uM™(x)]1dS(x), (4)
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where the superscrigh) indicates the association of a quan-
tity to the substrate,S stands for surfaceu; and p;
(=oijn;) are respectively the displacement and traction
components, and® ™ andp}; ) are respectively the half-
space fundamental solutions of displacement and traction in
the jth direction at a field poink due to a unit point force
acting in theith direction at a source poin. Repeated
subscript implies summation over its range from 1 to 3.
These fundamental solutions satisfy the traction-free bound-
ary condition along the surface of the half spatén the FIG. 2. Formation of a new QD in the presence of a laterally
above definition of tractiop;, oj; is the stress component, neighboring grown QD.
andn, is thekth component of the unit outward normal at a
smooth boundary point. self-balanced traction along interfaces. The second term rep-
Similarly, the boundary integral equation of displacementresents the work done by the intrinsic traction due to the
along boundary of the™ QD, D,, (n=1,2) with a uniform  uniform eigenstrain field in the QDs during the deformation

eigenstrain field in equilibrium is given by of the body. The third term, which is a constant, corresponds
to the ground state before relaxation of the eigenstrain field
in the QDs.
(D) vy — (Dp) (Dp) (Dp) . .
U T(X)= L(Dn){ui*j (X)[p; ™ (X)—F; "™ (X)] The termW,.eqcan be evaluated as a special case in the
same way as above. The wetting layer, which is assumed to
—pi’}(Dn)(X,x)ugDn)(x)}ds(x), (5)  consist of the same material as the QDs, has an eigenstrain

field due to its lattice mismatch with the substrate. Its strain
(Bn) ,0(Dp)

Where the intrinsic tractiorFfD”)EC,mmslm ne,%2 where  energy densityw,, corresponds to the state with its stress

component, ands*®” and p_vf(Dn) are, respectively, the 1/20'”(8”.—8”), can bg obtained provided that the stregs
. 4 &md straing;; are available. The stress and strain can be

infinite-space fundamental solutions of displacement an . . . :
traction due to a point forc&, which are different from the obtained by solving the twelvéndependent equations of
’ aij=Cijk|(sk|—sE|) (i.e., constitutive law under six condi-

above half-space ones; ™ andp} ™ for the substrate. K o PR
Along all the external boundaries, including the open surliOnS 0f 0is=0 ande,=&2,=21,=0.

face of an uncapped QD and the top surface of substrate

excluding the part covered by an uncapped QD, the traction-lll. FORMATION OF A QD NEAR NEIGHBORING DOTS

free condition, i.e.p;=0, is imposed. Across all the inter-

faces between the substrate and QDs, the continuity cond}- In this section, the previous formulation of the EERR for

. . . S (M)_ (D) ormation of a small QD in the presence of a seed QD is
tions of displacement and traction, i.e;™'=u;"" and 5o lied to examine InAs QDs on a GaAs substrate. Both

M= Di(D”) , are imposed. Under these conditions, amaterials are modeled as cubic anisotropic and linearly elas-
unique solution to the elastic field in the system exists. Thigdic. Their crystallographic directions are, respectively, paral-
solution can be obtained by using a BE method based ofel to each of the Cartesian axes. The free surface of the
Egs. (4) and (5).1%17 Because Eq(4) uses the half-space substrate is taken to be ti@01) plane. The elastic constants
fundamental solution that satisfies the traction-free conditiorior GaAs areC,,=118, C,,=54, C,,=59 (GPa), and, for
along the top surface, only the part of the top surface, wherénAs, C,,=83, C,,=45, and C,,=40 (GPa). The eigen-
the traction-free condition is not satisfied due to the attachstrain in the QDs is hydrostatic, i.@f} :805” . The shapes
ment of a surface QD, requires discretization. The iterativesf the QDs are taken to be cuboidal with side dimensions:
scheme of successive over-relaxation is used to solve thgxax0.5a for seed dot(either uncapped or burigdand
problem of multiple bodies® 0.2ax0.2ax0.1a for new surface dot. Since the elastic

Once the solution on the boundaries is obtained, the elasields and total strain energy are, respectively, linearly and

tic strain energy of the system with uniform eigenstrain fieldquadratically dependent uper?, these quantities are scaled
in each QD can be evaluatedBy correspondingly by the latter. All lengths are scaledaby

1 1
Wsee&newdonfSpiuidS_ EJS(D)

F;u,dS A. Effect of a laterally neighboring dot
The case when the seed QD as well as the new QD is on
o 0 the free surface is first considered, as shown in Fig. 2. The
+ 2 fV(D)CiiklsijskldVv (6) location of the QDs is defined by the coordinates of the cen-
ter of their bottoms. Let us locate the seed QD0at0, O and
whereS(P) and V(®) are, respectively, the surface and vol- the new QD at X;,x,,0). Using the previous formulation,
ume of the seed and new QDs. The first term represents ththe EERR for self-similar formation of the new QD is calcu-
work done by the external traction, which is zero in thelated for various values of and 6, wherex;=r cosé and

present case of zero traction along external boundaries and=r sin6. The results along three radial lines=0°, 30°
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i FIG. 5. Formation of a new QD in the presence of a vertically
0Bl =T T 7 neighboring grown QD.
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QD is defined by the coordinates at the center of its top
surface, set a0, 0, h). The location of the new surface QD
FIG. 3. Radial variation of the EERR for formation of a new QD s defined in the same way as above by the coordinates of the
at three angle®)=0°, 30° and 45° from the center of the large enter of its bottom surface, set a¢; (d,0). The EERR for
surface QD. formation of the small surface QD is calculated as a function

and 45°, and along a circular arc fro=0° to 90° atr of the new-dot coordinatg, for d=0, 0.3a and 0.@&, and

=a, are plotted in Figs. 3 and 4. The angular variation of theh=0.12, 0.3, and 0.@&. The results are plotted in Figs.
EERR is symmetric relative to the, andx, axes. 6(a), 6(b), and &c).
Figure 3 shows that the EERR for formation of the new The plots in Fig. 6(except one curve with=0.1a and
QD decreases when the new QD gets closer to the seed QD=0 in Fig. 6a), which will be discussed nexshow that
This shows that the presence of the surface seed QD inhibitte EERR for the formation of the small surface QD is the
the growth of a new QD nearby. This figure also shows thahighest when the new QD is vertically above the buried seed
the EERR is the highest when the new QD is aligned in theQD. When the new QD is moved aside and farther from the
(100 direction. This behavior is confirmed by Fig. 4, which center of the buried seed QD, the EERR decreases, and then
shows that the angular variation of the EERR ata has a  increases. It eventually approaches a constant value at a large
minimum atf=45° and maxima a#=0° and 90°. Thus, an distance. When this happens, the buried seed QD has no
alignment of the new QD along th&00) or the(010) direc-  sjgnificant effect on the formation of the new QD.
tion is favorable. However, the difference between the maxi- \when the depth of the buried QD is small, as in the case
mum and minimum values of the EERR is only approxi- of h—0.1a shown in Fig. €a), the behavior of the EERR as
mately 1.5% of the average magnitude. Figure 3 also ShoWgescriped above is different. In this case, the maximum value
that the EERR decreases rapidly wittwhen the new QD ¢ he EERR does not occur when the new QD is right above
gets very close to the seed QD. In this situation, the CONz e buried seed QD. Instead, the maximum value appears
tinuum model as such may not be valid, and a Iattice-leve\}Nhen the new QD is .between,the center and the edge of the
model should be used. buried seed QD. At the peak point, the EERR decreases rap-
B. Effect of a vertically neighboring dot idly with increasing distance between the two QDs. This
) implies that for small values di, the favorable location for
. Now the case of a buried seed QD and a new surface Qi mation of the new QD is not vertically above the seed
is considered, as shown in Fig. 5. The location of the seeg?D_ Therefore, the calculation suggests that an oblique
stacking of QD arrays can be energetically favorable if the
separation depth, i.e., spacer thickness, is small. For large
] separation depths, the vertical stacking of QD arrays is
0.625 favorable.
In addition, the variation of the EERR as a function of
] depthh for x;,=d=0 is examined. In this case, the new QD
062 is vertically above the seed QD and the depth of the seed QD
1 is varied. The result is shown in Fig. 7. It can be seen that the
0.615 1 EERR has the maximum value at abdut 0.3a. This im-
] plies that there is an optimum depth of the buried seed QD
for the formation of a new QD at the free surface. Also, the
magnitude of the EERR is always larger than that when the

ra

0.63 1

TAE)? (GPa)

0.61 ] Trrrrrrrrrrrrrrrere e e e Ty
0 15 30 45 60 75 90 seed QD is remote to the new QBquivalently, that in the
6 (degree) absence of the seed QDThus, together with the results
shown in Fig. 6, it is concluded that the presence of the

FIG. 4. Angular variation of the EERR for formation of a new buried seed QD enhances the growth of a new QD at the

QD betweers=0° and 90° and at=a from the center of the large favorable locations on the free surface. The enhancement of

surface QD. the EERR can be up to 25% above the mean value.
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FIG. 6. Variation of the EERR for formation of a new QD along

lines (x;,d,0) for a fixed depth of the buried seed Q&) h
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FIG. 7. Variation of the EERR for formation of a new QD right
above the center of the buried seed QD with the depth of the buried
seed QD.

IV. CONCLUSIONS

The EERR for the formation of a surface QD in the pres-
ence of laterally and vertically neighboring QDs in semicon-
ductors has been examined. This problem of multiple bodies
in anisotropic elasticity has been solved by applying an effi-
cient BE method. Because it uses the half-space fundamental
solution for the substrate, coupled with the infinite-space
fundamental solution for the QDs, the BE method requires
only numerical discretization along the surface of the QDs
and their interface with the substrate. The formula for calcu-
lating the elastic strain energy of the QDs with uniform
eigenstrain field requires only the displacement and traction
along these boundary and interface, which are the direct out-
come of the BE solution. Thus, the present BE method is
computationally more efficient than the conventional BE
method using only the infinite-space fundamental solution as
well as the domain-based numerical techniques such as the
finite-difference and the finite-element methods. Numerical
results for the EERR of an InAs QD of cuboidal shape on a
GaAgq001) substrate are reported.

It has been shown that the presence of a grown surface
QD reduces the EERR for the growth of a small surface QD
nearby. The small surface QD prefers to align along(11%)
and (010 axes with the large one. However, this lateral ef-
fect is relatively small, of only about 1.5% change of the
EERR. In contrast, the effect of a buried seed QD on the
formation of a surface QD can be significant, of up to 25%
change of the EERR. Depending on the depth of the buried
seed QD the EERR or the formation of a small surface QD
reaches the highest magnitude when the small QD is either

=0.1a, (b) h=0.3a, and(c) h=0.6a. The insets are the surface vertically above or at an angle to the large grown QD. It

plots of the EERR over the area above the buried seed QD.

implies that in the case of thick spacer, which covers the seed
QD, a vertical array of QDs would exhibit an ordering of
correlation. In the other case of thin spacer, an oblique stack-
ing of QDs is energetically favorable. When the new QD is

Finally, we remark that the presence of edges of the QDwertically above the seed QD, the EERR, plotted as a func-
contributes significantly to the spatial variation of the EERRtion of the depth of the seed QD, has the maximum value at
for formation of a new QD. Therefore, the results presentedibouth=0.3a. Thus, there is an optimum depth of the bur-
above depend upon the shapes of the QDs which are ai&d seed QD for the driving force of a new QD at the surface.
sumed to be cuboidal. The characteristics of the EERR varia- The above results have been derived for QDs of cuboidal

tion may be different for QDs of other shapes.

shape. The EERR is sensitive to the shape of the QDs be-
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cause of the effect of the edges. Therefore, the characteristics ACKNOWLEDGMENT
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