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Abstract

A continuum Dyson�s equation and a defect Green�s function (GF) in a heterogeneous, anisotropic and linearly

elastic solid under homogeneous boundary conditions have been introduced. The continuum Dyson�s equation relates

the point-force Green�s responses of two systems of identical geometry and boundary conditions but of different media.

Given the GF of either system (i.e., a reference), the GF of the other (i.e., a defect system with ‘‘defect’’ change of

materials property relative to the reference) can be obtained by solving the Dyson�s equation. The defect GF is applied

to solve the eigenstrain problem of a heterogeneous solid. In particular, the problem of slightly inhomogeneous

inclusions is examined in detail. Based on the Dyson�s equation, approximate schemes are proposed to efficiently

evaluate the elastic field. Numerical results are reported for inhomogeneous inclusions in a semi-infinite substrate with a

traction-free surface to demonstrate the validity of the present formulation.
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1. Introduction

Point-source Green�s functions (GFs), referred as fundamental solutions, under homogeneous boundary

conditions can be used to develop various analytical, semi-analytical and numerical computational schemes

to solve boundary-value problems associated with the same physical law. The best-known schemes are the

GF method (Mura, 1987) and the boundary element (BE) method (Brebbia et al., 1984). The GF method

directly applies a point-source GF to solve the related problems under the same homogeneous boundary

conditions, such as a classical inclusion problem. It results in an analytical or a semi-analytical method,
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* Corresponding author. Present address: Department of Mechanical and Aerospace Engineering, Florida Institute of Technology,

Melbourne, FL 32901, USA. Tel.: +1-321-674-7713; fax: +1-321-674-8813.

E-mail address: boyang@fit.edu (B. Yang).

0093-6413/$ - see front matter Published by Elsevier Ltd.

doi:10.1016/j.mechrescom.2003.11.013

mail to: boyang@fit.edu


406 B. Yang, V.K. Tewary / Mechanics Research Communications 31 (2004) 405–414
depending upon whether or not a numerical integration of the GF is involved. The BE method indirectly

applies a point-source GF. It is developed based on a boundary-integral-equation formulation employing a

point-source GF as its weighting function on the boundary quantities. A numerical treatment of the

boundary-integral equation is required to solve the problems. The BE method can cope with arbitrary
geometries and boundary conditions.

In the theory of linear elasticity, point-force GFs have been derived for infinite space, half-space,

bimaterials, trimaterials, and multilayers (e.g., Love, 1944; Mura, 1987; Ting, 1996; Pan and Yuan, 2000;

Yang and Pan, 2002a,b, among others). These structures can be considered as a reference system and their

point-force GFs be used to further develop the GFs of a point force or a force dipole in more complicated

systems. Our objective is to derive the point-force GF of a heterogeneous solid based on a (given) reference

GF. The target GF is called a defect GF since the target system is a system with ‘‘defect’’ changes of elastic

stiffness upon the reference system. The defect GF can be used to develop the various computational
schemes for the defect system. It is utilized in this work to derive the elastic field of eigenstrain in a generally

heterogeneous anisotropic solid. The idea of deriving a defect GF based on a reference GF has been

implemented within the Debye scalar model (Tewary, 2002) and within the lattice-statics theory (Tewary,

1973). In the previous lattice-statics case, an infinite perfect lattice structure was considered as the reference,

and the corresponding reference lattice GF was called a perfect lattice GF. We develop here its continuum

counterpart considering a rather general reference, which can be imperfect as well as the target system.

This paper is organized as follows. In Section 2, the continuum Dyson�s equation and defect GF are

derived within the theory of anisotropic elasticity. In Section 3, the defect GF is applied to derive the elastic
field of an eigenstrain field in a heterogeneous solid. In Section 4, the theory is reduced to a composite of

inhomogeneous inclusions. Based on the Dyson�s equation, approximate schemes are proposed to effi-

ciently solve the special case of slightly inhomogeneous inclusions. In Section 5, numerical results are re-

ported for inhomogeneous inclusions in a half-space substrate to demonstrate the validity of the present

formulation. Finally, conclusions are drawn in Section 6.
2. Continuum Dyson’s equation and defect Green’s function

We consider a heterogeneous, anisotropic, and linearly elastic body X, as shown in Fig. 1(a). A Cartesian

frame, (x1; x2; x3) is attached. The constitutive law is given by
Fig. 1

geome
rijðxÞ ¼ C�
ijklðxÞeklðxÞ; ð1Þ
(a) (b)

x1

x2

x3

(x)*
ijklC

(x) ijklC

. (a) A heterogeneous solid C�
ijklðxÞ under a homogeneous boundary condition and (b) a reference solid CijklðxÞ of the same

try and under the same boundary condition as in (a).
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where rij is the stress component, eklð� 1
2
ðuk;l þ ul;kÞÞ is the infinitesimal strain component, C�

ijkl is the elastic

stiffness component, and the repeated subscript implies the conventional summation over its range. In the

definition of infinitesimal strain e, u is the displacement vector, and the comma in the subscript indicates the

partial derivative with respect to the coordinate that follows. The body is subjected to a unit point force at
X along the pth direction. When the body is in equilibrium, the following equations are required:
R�
pij;jðX ; xÞ þ dpidðx� XÞ ¼ 0; ð2Þ
where R�
pijðX ; xÞ is the ijth stress component at x when the unit point force is applied along the pth direction

at X, dpi is the Kronecker delta function, and dðx� XÞ is the Dirac delta function. Along oX, the homo-

geneous boundary condition is prescribed, i.e., either displacement or traction in each component is pre-

scribed to be equal to zero
G�
piðX ; xÞ ¼ 0 or R�

pijðX ; xÞnjðxÞ ¼ 0; x 2 oX; ð3Þ
where G�
piðX ; xÞ is the ith displacement component at x when the unit point force is applied along the pth

direction at source point X , and njðxÞ is the outward normal component at a (boundary) point X . G�
piðx; xÞ

is related to R�
pijðX ;xÞ through Hooke�s law, Eq. (1). Therefore, G�

piðX; xÞ and R�
pijðX ; xÞ are respectively the

point-force Green�s displacement and stress of the system in Fig. 1(a) under the homogeneous boundary

condition. Substituting Eq. (1) in Eq. (2) and applying the symmetry of C�
ijkl result in
½C�
ijklðxÞG�

pk;lðX ; xÞ�;j þ dpidðx� XÞ ¼ 0: ð4Þ
For clarity, indices p, q, s, and t are used to indicate a component of the source point (i.e., the first variable

of the GFs), and indices i, j, k, and l to indicate a component of the field point (i.e., the second variable of

the GFs), through the text.

To solve the above Green�s problem, we now consider a reference body of elastic stiffness Cijkl, generally
heterogeneous as well, as shown in Fig. 1(b). The reference body has the same geometry (i.e., the same oX)
as the (target) body in Fig. 1(a). The difference of elastic stiffness between the reference and target bodies is

given by
DCijklðxÞ ¼ CijklðxÞ � C�
ijklðxÞ: ð5Þ
The reference body is subjected to a point force fi at x0, and under the same homogeneous boundary

condition as given in Eq. (2) for the target body
uiðxÞ ¼ 0 or rijðxÞnjðxÞ ¼ 0; x 2 oX: ð6Þ
The equilibrium of the reference body requires
½CijklðxÞuk;lðxÞ�;j þ fidðx� x0Þ ¼ 0: ð7Þ
We multiply Eq. (7) on its free index i with an arbitrary function gpiðX ; xÞ and integrate the product with

respect to x over the domain X

Z
X
gpiðX ; x0Þf½Cijklðx0Þuk;lðx0Þ�;j þ fidðx0 � x0ÞgdV ðx0Þ ¼ 0: ð8Þ
Applying the divergence theorem and realizing the property of the Dirac delta function yield

Z
oX

gpiðX ; x0ÞCijklðx0Þuk;lðx0Þnjðx0ÞdSðx0Þ �
Z
X
gpi;jðX; x0ÞCijklðx0Þuk;lðx0ÞdV ðx0Þ þ gpiðX ; x0Þfi ¼ 0: ð9Þ
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Once again applying the divergence theorem yields
Z
oX

gpiðX ; x0ÞCijklðx0Þuk;lðx0Þnjðx0ÞdSðx0Þ �
Z
oX

gpi;jðX ; x0ÞCijklðx0Þukðx0Þnlðx0ÞdSðx0Þ

þ
Z
X
½gpi;jðX ; x0ÞCijklðx0Þ�;lukðx0ÞdV ðx0Þ þ gpiðX; x0Þfi ¼ 0: ð10Þ
Now, we let the weighting function gpiðX ; xÞ in Eqs. (8)–(10) be GpiðX ; xÞ that satisfies

½Gpi;jðX ; xÞCijklðxÞ�;l þ dpkdðx� XÞ ¼ 0; ð11Þ

GpiðX ; xÞ ¼ 0 or RpijðX ; xÞnjðxÞ ¼ 0; x 2 oX; ð12Þ

where RpijðX ; xÞ � CijklðxÞGpk;lðX ; xÞ. Eq. (12) gives the same homogeneous boundary conditions as given in

Eqs. (2) and (6). Therefore, GpiðX ; xÞ and RpijðX ; xÞ are, respectively, the point-force Green�s displacement

and stress of the reference body under the homogeneous boundary condition. Substituting Eqs. (6), (11)

and (12) in Eq. (10) yields
upðXÞ ¼ GpiðX; x0Þfi: ð13Þ

Alternatively, we let the weighting function gpiðX ; xÞ in Eqs. (8)–(10) be G�

piðX ; xÞ that satisfies Eqs. (3)
and (4). Applying Eqs. (3) and (6) to Eq. (10) gives
Z

X
½G�

pi;jðX ; x0ÞCijklðx0Þ�;lukðx0ÞdV ðx0Þ þ G�
piðX ; x0Þfi ¼ 0: ð14Þ
Applying Eq. (5) and then Eq. (3), and rearranging result in
upðXÞ ¼
Z
X
½G�

pi;jðX ; x0ÞDCijklðx0Þ�;lukðx0ÞdV ðx0Þ þ G�
piðX ; x0Þfi: ð15Þ
Although different weighting functions are applied, uðXÞ in Eqs. (13) and (15) must be the same (unique)

solution to Eqs. (6) and (7). Thus, Eq. (13) is applied to Eq. (15), leading to
GpiðX ; x0Þfi ¼
Z
X
½G�

pk;jðX ;x0ÞDCjkstðx0Þ�;tGsiðx0; x0Þfi dV ðx0Þ þ G�
piðX ; x0Þfi: ð16Þ
Because the vector fi and its location 0x are arbitrary, we finally have
G�
piðX ; xÞ ¼ GpiðX ; xÞ �

Z
X
½G�

pk;jðX ; x0ÞDCjkstðx0Þ�;tGsiðx0; xÞdV ðx0Þ: ð17Þ
Equation (17) provides an integral-equation linkage between the GF G� of the target body in Fig. 1(a)

and the GF G of the reference body in Fig. 1(b). It is the continuum counterpart of the lattice-statics

Dyson�s equation in the lattice theory of defect GF provided that the elastic constants can be related to the

force constants in the lattice theory (Maradudin et al., 1971; Tewary, 1973). DC corresponds to the dif-
ference of force constants in the defect lattice space. G� and G correspond respectively to the defect and

perfect lattice GFs. Thus, we call Eq. (17) the continuum Dyson�s equation, G� the defect GF, and G the

reference GF. In the lattice theory, the original Dyson�s equation takes the perfect lattice as the reference

lattice. It can obviously be generalized by taking an arbitrary lattice in place of the perfect lattice as the

reference. Consequently, a complete correspondence between the continuum and lattice Dyson�s equations
can be established. These equations link, respectively, on the continuum and lattice levels, the point-force

responses of two systems of identical geometry and (homogeneous) boundary conditions but of different

media. Based on the formulation on either level, given the GF of either system (called here a reference), the
GF of the other (called here a target or defect system with ‘‘defect’’ change of materials property relative to

the reference) can be obtained by solving the corresponding Dyson�s equation within the defect space.
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3. Defect Green’s function formulation of eigenstrain (eigenstress)

Now, we consider the body in Fig. 1(a) that contains an eigenstrain field under the same homogeneous

boundary condition as given in Eq. (3). The constitutive law is given by
rij ¼ C�
ijklðekl � e0klÞ or rij ¼ C�

ijklekl � r0
ij; ð18Þ
where e0kl is the eigenstrain, and r0
ijð� C�

ijkle
0
klÞ is the corresponding eigenstress. The equilibrium equations

are given by
½C�
ijklðxÞuk;lðxÞ � r0

ij�;j ¼ 0: ð19Þ
The boundary conditions are given by
uiðxÞ ¼ 0 or rijðxÞnjðxÞ ¼ 0; x 2 oX: ð20Þ
We multiply Eq. (19) on its free index i with the defect GF G�
piðX ; xÞ and integrate the product over the

domain X. Following the same procedure from Eqs. (8)–(10) and applying the homogeneous boundary

conditions in Eqs. (3) and (20), we obtain
upðXÞ ¼ �
Z
X
G�

piðX ; xÞr0
ij;jðxÞdV ðxÞ: ð21Þ
Taking derivatives of Eq. (21) and applying the definition of strain e result in
epqðXÞ ¼ �
Z
X

1

2
½G�

pi;qðX ; xÞ þ G�
qi;pðX ; xÞ�r0

ij;jðxÞdV ðxÞ: ð22Þ
Consequently, by applying the Hooke�s law, Eq. (18), the stress r is given by
rpqðXÞ ¼ �C�
pqstðXÞ

Z
X
G�

si;tðX ; xÞr0
ij;jðxÞdV ðxÞ � r0

pqðXÞ: ð23Þ
Therefore, once the defect GF G� and its derivatives that satisfy Eqs. (2) and (3) are available, the problem

of eigenstrain in a heterogeneous solid under the homogeneous boundary conditions can be solved.
4. Application to composite of inhomogeneous inclusions

The derivation in previous sections has been general, treating an arbitrary heterogeneous target body

and an arbitrary heterogeneous reference matrix. The resulting continuum Dyson�s equation (17) is given in

a general volume-integral form relating the defect and reference GFs. The integral involves the stiffness

difference, DC . Generally speaking, one can manage on this equation to develop an implicit algorithm for

evaluating the defect GF by numerically discretizing the domain where the stiffness difference DC is

nontrivial. However, the resulting system of algebraic equations has in general a full stiffness matrix. If the
nontrivial DC spans a large space, this way of solving the problem of a heterogeneous solid is computa-

tionally inefficient, for instance, compared to a finite-element method involving a sparse stiffness matrix.

Nonetheless, the continuum Dyson�s equation (10) may find useful application in certain cases, for instance,

in the case that the stiffness difference DC is localized in small regions (i.e., small defect space). In this case,

only those small regions of nontrivial DC need to be numerically discretized. Further, if the stiffness dif-

ference DC is small, an explicit expression of the defect GF can be obtained by approximating the Dyson�s
equation.

Let us consider a particular heterogeneous solid of multiple particles embedded in a reference matrix, as
shown in Fig. 2. The particles and matrix are perfectly bonded. Because these particles are inhomogeneous



Fig. 2. A composite of inhomogeneous inclusions (shadowed spots).
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relative to the matrix and contain eigenstrains, they are called inhomogeneous inclusions, following Mura�s
terminology (Mura, 1987). This composite may represent a particle-reinforced polymer-matrix composite

(Lee and Mykkanen, 1987) and a semiconductor matrix with buried quantum dots (Bimberg et al., 1998).

The reference matrix may itself be heterogeneous, for example, a multilayered structure, such as composite

laminates and semiconductor superlattice across a wide range of length scales. In this case, the regions of

nontrivial stiffness difference and the regions of nontrivial eigenstrain are matched. However, this match is

not required in the earlier general formulation.
Applying the divergence theorem, we rewrite Eq. (21) as
upðXÞ ¼
Z
X
G�

pi;jðX ; xÞr0
ijðxÞdV ðxÞ �

Z
oX

G�
piðX ; xÞr0

ijðxÞnjðxÞdSðxÞ: ð24Þ
By realizing that the eigenstress is localized inside the particles, the second term of surface integral is

eliminated. Also, the first term of volume integral is reduced to the subdomains XðnÞ of the particles. That is
upðXÞ ¼
XN
n¼1

Z
XðnÞ

G�
pi;jðX ; xÞr0

ijðxÞdV ðxÞ; ð25Þ
where N is the total number of particles. The strain e and stress r are thus given by
epqðXÞ ¼
XN
n¼1

Z
XðnÞ

1

2
½G�

pi;jqðX ; xÞ þ G�
qi;jpðX ; xÞ�r0

ijðxÞdV ðxÞ; ð26Þ

rpqðXÞ ¼ C�
pqstðxÞ

XN
n¼1

Z
XðnÞ

G�
si;jtðX ; xÞr0

ijðxÞdV ðxÞ � r0
pqðxÞ: ð27Þ
Further, we can reduce Eqs. (25)–(27) to a surface integral for those particles whose eigenstress is

uniform. Without loss of generality, we assume that all the particles hold a uniform eigenstress. Once again

applying the divergence theorem yields
upðXÞ ¼
XN
n¼1

r0ðnÞ
ij

Z
oXðnÞ

G�
piðX ; xÞnjðxÞdSðxÞ; ð28Þ
where r0ðnÞ
ij is the (uniform) eigenstress in the nth particle, and oXðnÞ is its boundary (i.e., interface with the

matrix). Eqs. (26) and (27) are reduced to
epqðXÞ ¼
XN
n¼1

r0ðnÞ
ij

Z
oXðnÞ

1

2
½G�

pi;qðX ; xÞ þ G�
qi;pðX ; xÞ�njðxÞdSðxÞ; ð29Þ
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rpqðXÞ ¼ C�
pqstðxÞ

XN
n¼1

r0ðnÞ
ij

Z
oXðnÞ

G�
si;tðX ; xÞnjðxÞdSðxÞ � r0

pqðXÞ: ð30Þ
Now, applying the divergence theorem and realizing that DC is localized inside the particles, we reduce

the expression of the defect GF, Eq. (17), to
G�
piðX ; xÞ ¼ GpiðX ; xÞ þ

XN
n¼1

Z
XðnÞ

G�
pk;jðX ; x0ÞDCjkstðx0ÞGsi;tðx0; xÞdV ðx0Þ: ð31Þ
Let us insert the above Dyson�s expression of the defect GF into its integrant repeatedly. Consequently, we

obtain a series expression of the defect GF. Assuming that DC is small compared to both C and C�, we can

approximate the defect GF by
G�
piðX ; xÞ ¼ GpiðX ; xÞ þ oðDCÞ; ð32Þ
on the zeroth-order, and approximate it by
G�
piðX ; xÞ ¼ GpiðX ; xÞ þ

XN
n¼1

Z
XðnÞ

Gpk;jðX ; x0ÞDCjkstðx0ÞGsi;tðx0; xÞdV ðx0Þ þ oðDC2Þ; ð33Þ
on the first-order. Eq. (32) is accurate on the order of oðDCÞ while Eq. (33) is accurate on the order of

oðDC2Þ. In a similar way, Flinn and Maradudin (1962) expanded the lattice Dyson�s equation and trun-
cated the series expression to approximately evaluate the defect lattice GF. These approximate but explicit

expressions are used next to evaluate the elastic field of slightly inhomogeneous inclusions in a reference

half-space matrix.
5. Numerical results

We now apply the theory developed in previous sections to examine the elastic field in a semi-infinite

GaAs substrate due to inhomogeneous inclusions. The homogeneous half-space substrate is considered as

the reference system. The three independent elastic constants of the (cubic) GaAs substrate are given by

C11 ¼ 118 GPa, C12 ¼ 54 GPa, and C44 ¼ 59 GPa in its crystallographic base axes. One may refer to Ting
(1996) for how to construct the full stiffness matrix Cijkl. The elastic constants of the inhomogeneous

inclusions are taken to be proportional to those of the substrate: C�
ijkl ¼ ð1� kÞCijkl. The x3-axis of the

coordinate system is set to be perpendicular to the free surface and pointing to the interior of the substrate.

The crystallographic base axes ½100�, ½010� and ½001� are parallel respectively to each of the global

coordinates (x1; x2; x3). The shape of the inhomogeneous inclusions is taken to be cuboidal with dimensions

a� a� a=2. The sides of the inhomogeneous inclusions are parallel to the global coordinates. The eigen-

strain in the inhomogeneous inclusions is hydrostatic, i.e., e0ij ¼ e0dij, and is uniform in each inclusion. The

scheme developed by Pan and Yuan (2000) is adopted to evaluate the reference GF of the semi-infinite
anisotropic elastic solid.

We consider an array of three inhomogeneous inclusions aligned in the (1 0 0) direction inside the GaAs

substrate, as shown in Fig. 3. The depth from the center of the inhomogeneous inclusions to the substrate

surface is indicated by h. The spacing of the inhomogeneous inclusions is set to be 2a. The induced elastic

field is solved by applying Eqs. (25)–(27). However, the defect GF, G� is evaluated approximately on the

zeroth-order by using Eq. (32) and on the first-order by using Eq. (33). The complete solution is also

obtained for comparison by using a numerical BE method (Yang and Pan, 2002c). The BE solution

adopted for the comparison has acclaimed a convergence of 1% by doubling the mesh density in either
dimension. Results of these simulations are plotted in Figs. 4 and 5.



Fig. 3. A semi-infinite substrate with three inhomogeneous inclusions at depth h.

Fig. 4. Variations of normalized hydrostatic strain ekk=e0 along a line (x1; 0; 0) over three inhomogeneous inclusions buried at different

depths in a half-space substrate: (a) h ¼ a; (b) h ¼ 2a; (c) h ¼ 3a, solved by the BE method (solid), by the GF method in the first-order

approximation (dashed), and by the GF method in the zeroth-order approximation (dotted).

412 B. Yang, V.K. Tewary / Mechanics Research Communications 31 (2004) 405–414



Fig. 5. Variations of normalized hydrostatic strain ekk=e0 with mismatch factor k at ð0; 0; 0Þ over three inhomogeneous inclusions buried

at depth h ¼ 2a in a half-space substrate, solved by the BE method (solid), by the GF method in the first-order approximation (da-

shed), and by the GF method in the zeroth-order approximation (dotted).
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Fig. 4 shows the variation of normalized hydrostatic strain ekk=e0 along a line (x1; 0; 0) on the surface at a

fixed stiffness mismatch factor k ¼ 0:1 in three cases with h ¼ a; 2a, and 3a, respectively. In all these cases,

the first-order approximate solution is closer to the BE complete solution than the zeroth-order approxi-

mate solution. The relative error in the zeroth-order approximate solution (at location ð0; 0; 0Þ of the

maximum error) is about 9% compared to the mismatch factor k of 0.1. The relative error in the first-order

approximate solution at the same location is about 4%, appreciably smaller than the former. The profiles of
the elastic response to the three inhomogeneous inclusions viewed on the top surface show an interesting

transition with depth h. At h ¼ a, there appear to be three hills in the induced hydrostatic strain field. Their

peaks are nearly right above the centers of the three inhomogeneous inclusions. At h ¼ 2a, the number of

hills is reduced to two. Their peaks are between the central and the side inclusions. At h ¼ 3a, the number of

hills is further reduced to one. Its peak is right above the center of the central inclusion. Therefore, one

would observe on the top surface one, two, and three ‘‘images’’ of the three finite-size inhomogeneous

inclusions, depending upon their depth under the surface. The magnitude of the normalized hydrostatic

strain on the surface is reduced by about one order when the depth of the inclusions varies from h ¼ a to 3a.
Fig. 5 shows the variation of normalized hydrostatic strain ekk=e0 at a fixed point ð0; 0; 0Þ with stiffness-

mismatch factor k. The depth of the inhomogeneous inclusions, h, is fixed at 2a. The variations of ekk=e0

with k at h ¼ a and 3a are similar. At k ¼ 0, all the solutions by the BE method and the zeroth- and first-

order approximate schemes are identical (within the computation accuracy), as expected. They depart from

each other as k increases. The deviation of the zero-order approximate solution from the BE solution is

nearly linear. Meanwhile, the deviation of the first-order approximate solution from the BE solution stays

on the order of k2 but does not follow closely the quadratic rate.
6. Conclusions

We have introduced the continuum Dyson�s equation and defect Green�s function for heterogeneous,

anisotropic, and linearly elastic solids under homogeneous boundary conditions. The continuum Dyson�s
equation is the counterpart of the lattice Dyson�s equation in the lattice theory, relating the Green�s re-

sponses of two systems of identical geometry and boundary condition but of different media. Given the

reference GF, the defect GF can be obtained by solving the Dyson�s equation. The defect GF is applied to
solve the problem of eigenstrain in a generally heterogeneous anisotropic solid. In particular, a composite
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consisting of inhomogeneous inclusions is examined in detail. Approximate computational schemes have

been proposed to efficiently evaluate the elastic field of slightly inhomogeneous inclusions. Numerical re-

sults of three inhomogeneous inclusions in a semi-infinite GaAs substrate with a traction-free surface were

reported to demonstrate the validity of the present formulation. It was observed that the number of
‘‘images’’ of the three inclusions seen on the top surface undergoes a transition from one to three with the

depth of inclusions as the parameter.
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