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Abstract

The phase-field microelasticity (PFM) is adapted into a homogenization process to predict all the

effective elastic constants of three-dimensional heterogeneous materials with complex microstruc-

tures. Comparison between the PFM approach and the Hashin–Shtrikman variational approach is

also given. Using 3D images of two-phase heterogeneous media with regular and irregular

microstructures, results indicate that the PFM approach can accurately take into account the effects

of both elastic anisotropy and inhomogeneity of materials with arbitrary microstructure geometry,

such as complex porous media with suspended inclusions.
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1. Introduction

Heterogeneous media (multiphase materials) are met everywhere in engineering
applications. Their structure/property relations are complex and are time consuming to
establish experimentally. Consequently, the challenge in using heterogeneous media
extends from material design, through microstructure imaging and property predictions, to
use limit and lifetime predictions (Christensen, 1979; Sanchez-Palencia and Zaoui, 1987;
Nemat-Nasser and Hori, 1993; Torquato, 2002). In this study, we are specifically interested
see front matter Published by Elsevier Ltd.
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in the prediction of mechanical properties (elastic constants) of linear elastic heterogeneous
materials through a homogenization process, where the material can be idealized as being
effectively homogenous in a representative volume element (RVE). The phase-field
microelasticity (PFM) model (Wang et al., 2002) is adapted to a homogenization process to
estimate all the effective elastic constants of three-dimensional (3D) heterogeneous
materials. The PFM, based on the Eshelby effective eigenstrain approach (Eshelby, 1957)
and the phase-field theory for attaining the eigenstrain, has been successfully used to
calculate the local mechanical fields inside elastic heterogeneous materials (e.g.,
polycrystals with elastically anisotropic constituent grains). Here we go a step further,
aiming at obtaining the entire effective elastic constants without prior knowledge of
material symmetry. The heterogeneous media examined in this study are bi-continuous
rather than dispersed phase two-phase materials, i.e., an extreme case, porous media
having interconnected channel-shaped pores rather than isolated cavities. Various
composites with such complex microstructure can be found in practice, for example, the
musculoskeletal tissue and bone (Turner et al., 1990; Martin, 1991; Cowin, 1999), porous
ceramics (Roberts and Garboczi, 2000), and porous scaffolds for tissue engineering
(Hutmacher, 2000; Sun et al., 2005; Hollister, 2005).
The homogenization process is a classic methodology to obtain effective material

properties. It treats the heterogeneous media to be a hierarchical mechanical structure with
two levels: macro and micro. The material properties at the macro-level (effective material
properties) are always assumed as homogeneous and can be obtained through statistical
averaging, which takes into account the properties of all phases of the heterogeneous
media and their interaction inside the RVE at the micro-level. So far, several rigorous
homogenization processes have been developed. Some of them can be categorized as classic
micromechanical models, such as the self-consistent method (Hill, 1965; Budiansky, 1965;
Christensen and Lo, 1979), the Mori–Tanaka model (Mori and Tanaka, 1973), the
differential scheme (McLaughlin, 1977), and the IDD estimate (interaction direct
derivative, Zheng and Du, 2001). These models are mainly based on the Eshelby solution
for an isolated ellipsoidal inclusion embedded in an infinite medium (Eshelby, 1957) and
have adopted different effective-medium approximations to account for the elastic
interaction between the inclusions. Other homogenization processes can be categorized as
the bounds approach. For example, upper and lower bounds of effective moduli and
compliances were firstly obtained based on the rule of mixtures by Voigt and Reuss
approximation (e.g., Nemat-Nasser and Hori, 1993). Later, much stronger bounds were
derived from the variational principle, known as the Hashin–Shtrikman bounds (Hashin
and Shtrikman, 1963; Willis, 1977), and the n-point correlation functions for disordered
materials (Kröner, 1977; Torquato, 1997; Torquato, 1998). These bounds serve as
benchmarks work to assess the consistency of micromechanical prediction of effective
properties, but they are not themselves direct predictions of the effective properties.
Most of homogenization processes in the aforementioned categories have assumed the

effective properties to be isotropic. To predict the effective properties of materials
possessing macroscopic anisotropy, additional theoretical methods for the homogenization
process were proposed with the consideration of spherical inclusions (either rigid or void)
embedded in matrix (Nemat-Nasser and Taya, 1981; Nemat-Nasser et al., 1982; Nunan
and Keller, 1984; Sangani and Lu, 1987; Kushch, 1987; Cohen, 2004). Numerical methods
for the homogenization processes were also proposed with the consideration of inclusions
different from spherical shapes, such as the asymptotic method (Sanchez-Palencia and
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Zaoui, 1987), the multipole expansion method (Kushch, 1998), the finite element method
(Wegner and Gibson, 2000; Kouznetsova et al., 2001), and FFT-based method for
composites with linear (Müller, 1996) and nonlinear constituents (Moulinec and Suquet,
1994; Moulinec and Suquet, 1998; Michel et al., 1999; Bilger et al., 2005; Idiart et al.,
2006). These methods, which provide the effective properties as well as the values of local
stress and strain, were proved to be accurate and effective, but are rarely reported in 3D
cases with anisotropy.

In this study, we propose a homogenization process to predict the elastic constants of
3D heterogeneous media, where the microstructure of constituents in the media is highly
interconnected and correlated rather than regular or random matrix-inclusion type. Our
method is based on the concept of eigenstrain proposed by Eshelby (1957), later developed
by Mura (1987). They demonstrated that the elastic strain field and strain energy of a
heterogeneous system are identical to those of its equivalent homogeneous system, which is
subjected to a proper effective eigenstrain field. Therefore, what is critical is to find the
proper eigenstrain field for the equivalent homogeneous system. In this study, we adapt the
PFM to attain the eigenstrain field and incorporate it into the homogenization process.
The results from the study indicate that the effective eigenstrain can be properly found
with good computational efficiency for predicting the elastic constants of heterogeneous
media, with either isotropic or anisotropic constituents, having arbitrary microstructural
geometry and the stiffness contrast between constituents. In the next section, the
fundamental theory and necessary equations used in our proposed homogenization
process will be illustrated. Comparison between PFM approach and the Hashin–Shtrik-
man (H–S) variational approach is also presented. Results and discussion on several 3D
heterogeneous medium will be given in Section 3.
2. Theory of the method

Let us consider an elastically inhomogeneous solid subjected to an external load. One
can find a length scale over which the elastic response of the solid can be averaged and
idealized as being effectively homogenous (a homogenization process in a representative
volume element, RVE). Accordingly, the macroscopic constitutive equation of the
inhomogeneous solid can be written as

s̄ij ¼ C̄ijkl �̄kl , (1)

where C̄ijkl are the components of the effective stiffness of the solid, and subscripts i, j, k,
and l range from 1 to 3. The usual summation convention is adopted for repeated indices in
the tensor notation. s̄ij and �̄kl are volume-averaged stress and strain tensors, respectively,
and defined as

s̄ij ¼

Z
V

sijd
3 x
�
; �̄kl ¼

Z
V

�kld
3 x
�
, (2)

where sij and �kl are stress and strain fields in the RVE, respectively, and are functions of
the position vector, x

�
. V is the volume of RVE. It should be noted that the heterogeneous

medium and RVE are now interchangeable in the manuscript. If an uniform external
loading, sextij , is applied to the heterogeneous medium, then s̄ij ¼ sextij by assuming the
homogeneous stress boundary conditions. However, the corresponding �̄ij has to be
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obtained through the average of local strain, Eq. (2), such that Eq. (1) can be solved to
obtain C̄ijkl .
It has been proven, through a variational approach, that the local strain and the strain

energy of the heterogeneous system can be evaluated by establishing an equivalent system
having a homogeneous reference phase and a distributed effective eigenstrain, �0ij, which
can be expressed as (Mura, 1987):

C0
ijkl �klðx

�
Þ � �0klðx

�
Þ

h i
¼ Cijklðx

�
Þ�klðx

�
Þ, (3)

where Cijklðx
�
Þ ¼ C0

ijkl þ DCijklðx
�
Þ. C0

ijkl is the stiffness tensor of the reference (homogenous)
phase. DCijklðx

�
Þ, which characterizes the elastic inhomogeneity, is the stiffness variation

from the homogeneity. Once the effective eigenstrain �0ij has been obtained, the average
strain �̄ij , the local strain and stress (�ij and sij) can be obtained from the following three
coupled equations:

�̄ij ¼ S0
ijkls

ext
kl þ �̄

0
ij, (4)

�ijðx
�
Þ ¼ �̄ij þ

1

2

Z
xj j
�

a0

ðxi
~Gjk þ xj

~GikÞ ~s0klðx
�

Þ
nxle

i x
�
: x
�

2pð Þ3
d3 x
�

(5)

and

sijðx
�
Þ ¼ C0

ijkl �klðx
�
Þ � �0klðx

�
Þ

h i
, (6)

where S0
ijkl ¼ C0�1

ijkl and �̄0ij ¼
R

V
�0ijd

3
ðx
�
Þ. Gjk

�

, the components of the Green’s function tensor
in the Fourier space, are functions of the directional vector, x

�

. xi are the components of the
directional vector. ~s0ijðx

�

Þ is defined as

~s0ijðx
�

Þ ¼ C0
ijkl

Z
V

�0klðx
�
Þe
�i x
�
� x
�d3 x

�
. (7)

The * in Eq. (5) denotes the complex conjugate and the integral,
R
j x
�
ja0, is in the Fourier

space excluding the points at j x
�

j ¼ 0.
Clearly, once the effective eigenstrain �0ij is obtained, Eqs. (4–6) should be resolved. This

�0ij can be determined by either setting the following functional variation, dE
equiv
elas =d�

0
ij ¼ 0,

such that

DSijklC
0
klmn�

0
mn ¼ �̄ij þ

1

2

Z
j x
�
ja0

ðxi
~Gjk þ xj

~GikÞ ~s0klðx
�

Þ
nxle

i x
�
:x
�

2pð Þ3
d3 x
�

(8)

or solving the kinetic equations of the phase-field microelasticity defined as (Wang et al.,
2002)

q�0ij x
�
; t

� �
qt

¼ �Kijkl

dE
equiv
elas

d�0kl

, (9)

where E
equiv
elas is the elastic energy of the equivalent system with the distributed effec-

tive eigenstrain �0ij ; the kinetic coefficient Kijkl is a constant and of no importance as long
as it is positive definite; t is the pseudo time. The E

equiv
elas can be expressed as a function
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of �0ij :

E
equiv
elas ¼

1

2

Z
O

C0
ijkl�

0
ij�

0
kld

3 x
�
þ
1

2

Z
O

C0
ijkl �̄ij �̄kld

3 x
�

� �̄ij

Z
O

C0
ijkl�

0
kld

3 x
�
�
1

2

Z
j x
�
ja0

xi ~s
0
ijðx
�

Þ ~Gjkðx
�

Þ ~s0klðx
�

Þ
nxl

ð2pÞ3
d3 x
�

þ
1

2

Z
O
ð�C0

ijmn DSmnpqC0
pqkl � C0

ijklÞ�
0
ij�

0
kld

3 x
�

ð10Þ

with

DSmnpq ¼ ½Cmnpqðx
�
Þ � C0

mnpq�
�1. (11)

Once the effective strain, �0ij, is determined using Eq. (9), one can establish the effective
stiffness tensor of the heterogeneous material (C̄ijkl) through Eqs. (4)–(6) and Eqs. (1) and
(2). Thus, the accuracy of the prediction on C̄ijkl highly depends on the preciseness of �0ij. In
this study, we use the fast Fourier transform (FFT) algorithm for a numerical solution of
Eq. (9) since it can provide a quicker convergent solution.

It has been stated in the literature (Wang et al., 2002) that the PFM approach for
solutions of �0ij is a minimization process of the functional, E

equiv
elas . We found that this

statement is valid only when the reference (homogeneous) phase is stiffer than the
heterogeneous media, namely, DSijklðx

�
Þo0. This can be explained using the second order

variation of the elastic energy of the equivalent system, d2E
equiv
elas , which is

d2Eequiv
elas ¼ �C0

ijmnDSmnpqC0
pqkl . (12)

From Eq. (12), if DSijklðx
�
Þo0, then d2E

equiv
elas 40. Thus a minimum value of E

equiv
elas can

achieve and the argument of minimization process in the literature (Wang et al., 2002) is
valid.

On the other hand, for DSijkl40, E
equiv
elas has a maximum and the solution process cannot

be treated as a minimization process. However, solutions of the effective eigenstrain using
the PFM approach can be still obtained using the variation of E

equiv
elas with respect to the

pseudo time,

qE
equiv
elas

qt
¼ �Kijkl

dE
equiv
elas

d�0ij

 !
dE

equiv
elas

d�0kl

 !
. (13)

From Eq. (13), one can note that E
equiv
elas attains this maximum only if the kinetic

coefficient Kijkl is negative definite. Therefore, Kijkl can be either positive or negative
definite depending on that if the system has a minimum or maximum of E

equiv
elas . The

minimum and maximum are contingent upon the stiffness contrast between the hetero-
geneous media and the reference phase, Cmnpqðx

�
Þ � C0

mnpq. For example, if the reference
phase is stiffer than the heterogeneous media, the iterative process for the solution of C̄ijkl

in Eq. (1) is a process of decreasing C̄ijkl , which corresponds to minimizing the strain
energy (Eequiv

elas ¼ �s
ext
ij sextkl =2C̄ijkl or E

equiv
elas ¼ C̄ijkl�extij �

ext
kl =2). On the other hand, if the

reference phase is softer than the heterogeneous media, the process is a increasing of C̄ijkl ,
which corresponds to maximizing the strain energy.
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It is also worthwhile to note that we can correlate the PFM approach to the
Hashin–Shtrikman (H–S) variational principle, which is well known as a powerful tool to
provide bounds of effective properties. The functional of the H–S variational approach, P,
is (Hashin and Shtrikman, 1963)

Pðpij ; �
d
ijÞ ¼

1

2

Z
V

C0ijkl�
0
ij�
0
kl � DC�1ijklpijpkl þ pij�

d
ij þ 2pij�

0
ij

� �
dV , (14)

where C0ijkl and �
0
ij are the stiffness and strain of a comparison solid (i.e., reference phase),

respectively, �dij ¼ �ij � �0ij, DCijkl ¼ Cijklðx
�
Þ � C0ijkl , pij ¼ DCijkl�kl . The H–S variational

statement includes:
(i) the functional P is stationary (i.e., dP ¼ 0) if the following equation is satisfied:

ðC0ijkl�
d
klÞ;j þ pij;j ¼ 0, (15)

(ii)

d2P40 if DCijklo0; P!Minimum;

d2Po0 if DCijkl40; P!Maximum:
(16)

If substituting the tensor components of C0ijkl , �
0
ij , �

d
ij , and pij in Eq. (14) of the H–S

approach with C0
ijkl , �̄ij, �ij � �̄ij ,and �C0

ijkl�
0
kl in the PFM approach, respectively, one can

notice that P is identical to the expression of E
equiv
elas . However, the PFM approach further

provides a kinetic equation to resolve the elastic equilibrium of the heterogeneous media.
Consequently, the effective properties can be directly predicted using the PFM approach.

3. Results and discussion

3.1. Accuracy and convergence of the PFM Approach

Figs. 1a–c display the comparison of �0ij obtained from the proposed numerical approach
with the analytical solutions, where the numerical solution is a function of the number
of time step, t*. One can see, from the figures, that the values of three effective eigenstrains
converge to analytical results at t*ffi40. Although not reported in the figures, there is
also good agreement for �0ij between the numerical and analytical solutions for a case
of shear loading. It is worthwhile to note that the �0ij of the medium is zero, while in
the void the �0ij is uniform and can be analytically obtained from the following equation
(Mura, 1987):

�0ij ¼
15ð1� v0Þ

7� 5v0
S0

ijkls
ext
kl þ

3ð1� v0Þ 5v0 � 1ð Þ

ð7� 5v0Þð2� 4v0Þ
S0

kkpqs
ext
pq dij (17)

with n0 and S0
ijkl being the Poisson’s ratio and compliance of the medium, respectively, and

dij the identity tensor. Depicted in Fig. 1d is the distribution of normalized stress in the z-
axis, szz, obtained using the proposed numerical approach, for the medium subjected to a
uniform external loading in the z-axis. The color spectrum of szz in the figure indicates a
stress concentration of 2.03 for v0 ¼ 0:3, which is induced by the inclusion of the void. This
value is nearly identical to that of analytical solution: 3ð9� 5v0Þ=2ð7� 5v0Þ ¼ 2:05.
The PFM approach uses an iterative scheme and FFT algorithms for numerical

solutions, which requires iterating on the pseudo-time. Fig. 2 shows the number of iterative
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Fig. 1. The relative error of the effective eigenstrains attained from PFM ð�0ijÞn and analytical solutions ð�0ijÞa as a
function of time step, t* (t� ¼ t=Dt, Dt ¼ 0:1), for a spherical cavity embedded in an infinite isotropic elastic

medium (v0 ¼ 0:3) under different external loadings: a uniaxial stress state along z-axis (a); an equal-biaxial stress

state along y- and z-axes (b); an equal-triaxial stress state (c) A spectrum of scaled stress (szz=sextzz ) distribution of

case (a) is shown in (d). The computational grid of RVE considered in all the numerical examples is

128� 128� 128, unless specified.
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time required to attain the convergent solution, for an infinite isotropic elastic medium
with a spherical inclusion under uniaxial loading, as a function of stiffness contrast
between the inclusion and matrix Fig. 3a gives a stress component in the void phase
obtained from the PFM approach as a function of t* for a 3D porous medium with three
different microstructures (porosity ¼ 0.4) under a uniaxial loading. For all the
microstructures studied, one can see from the figure that the stress component in the
loading direction, s̄zz, converges to zero at similar rates. From the results shown in Figs. 2
and 3, one can conclude that the convergence of the PFM approach is not sensitive to the
microstructural geometry and the stiffness contrast between constituents. This is quite
different from what was reported in some FFT-based approaches (e.g., Moulinec and
Suquet, 1994; Müller, 1996; Moulinec and Suquet, 1998; Michel et al., 1999; Eyre and
Milton, 1999), in which such a sensitivity has been observed. In the PFM approach, the
iterative scheme uses the Ginzburg–Landau kinetic equation where the effective eigenstrain
is taken as a non-conserved phase field variable, and the convergence is driven by
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monotonically decreasing (or increasing) the elastic energy of the equivalent system in
Eq. (9) so that a convergent solution is obtained efficiently.

3.2. Application of PFM approach to heterogeneous media

Moreover, we applied the proposed approach to a two-phase composite for predicting
its effective elastic properties. This composite consisted of identical spherical inclusions
with radius, R, in a periodic cubic arrangement, Fig. 4a. Both the matrix and inclusion
were assumed to be isotropic. This composite with cubic geometric symmetry results in
three independent elastic constants (Ting, 1996). Figs. 4b–d present the comparison of
three elastic constants obtained from the current approach with those reported from
literature (Iwakuma and Nemat-Nasser, 1983; Kushch, 1987; Cohen, 2004) as a function
of the volume fraction of inclusion, f. The results in the figures indicate excellent
agreement between the current approach and other analytical approaches for the volume
fraction considered (0ofo0:5). This further demonstrates the accuracy of the current
approach. In this study f ¼ 4pR3=3l3, with l being the distance between the centers of
adjacent inclusions. By changing R, one can obtain a desired f without causing
overlapping of the inclusions.
Figs. 5a and b display the effective shear modulus, m̄, and bulk modulus, k̄, respectively,

for the composite with cubic geometric symmetry, Fig. 4a, as a function of f. Besides
our current approach, all the results shown in these two figures were obtained from
other classic micromechanics approaches (Nemat-Nasser and Hori, 1993), in which the
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two-phase material (Fig. 4a) was assumed to be macroscopically isotropic. Therefore, only
two material constants (m̄ and k̄) are listed for comparisons, although the composite is a
cubic material and the phase-field approach is valid for general anisotropic materials
(micro/macroscopically). From the results in Fig. 5a, for a lower f, there is good
agreement on the predictions of the effective shear modulus between the phase-field
approach and the micromechanics models considered. However, for a higher f, there is
discrepancy on the predictions. A similar trend can also be seen for the predictions of the
effective bulk modulus. This is because, for a lower f, the two-phase material in Fig. 4a
can be considered as a case of dilute suspension. In other words, the distance between the
spherical particles is much larger than their size such that all the interactions between the
particles are negligible. Consequently, the assumption of ‘‘being macroscopically
isotropic’’ is valid. However, for a higher f, the interaction is more pronounced and the
assumption becomes unreasonable. It is worthwhile to note that, based on the agreement
in the predictions of bulk modulus between the current approach and Mori–Tanaka
method; one can conclude that the interaction of particles has more influence on the shear
modulus than the bulk modulus. This is because that, in the Mori–Tanaka method,
isotropic interaction between particles was assumed (Mori and Tanaka, 1973). Fig. 5c
shows the strength of elastic anisotropy, A, which is obtained from the current method as a
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comparisons of the current method with other methods on the prediction of the effective elastic constants for the

cubic array as a function of inclusion volume fraction, f: the effective shear moduli C̄44 (b) and ðC̄11 � C̄12Þ=2 (c),
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Nemat-Nasser (IN) (1983), and Kushch (Ku) (1987). All the reported moduli are scaled with the corresponding

moduli of the matrix phase (being the reference phase). The Poisson’s ratios of the matrix and inclusion are

assumed to be 0.3.
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function of f for different stiffness ratios (m2/m1, where m1 and m2 are the shear moduli of
the matrix and inclusion, respectively). This strength, defined in the figure caption, gives
the degree of deviation from the material being macroscopically isotropic (A ¼ 1:0). The
results in the figure indicate that the degree of anisotropy increases with the decrease of the
stiffness ratio (e.g., m2 approaches zero, which corresponds to a porous medium), and tends
to be one for lower values of f regardless of the stiffness ratio. However, the Eshelby-
based approaches considered here do not take the anisotropy into account.
Next, the PFM approach is applied to predict the effective elastic properties of a 3D

representation of porous microstructure, Fig. 6a, obtained from X-ray tomography of a
tissue scaffold (Chiang et al., 2006). It consists of highly interconnected irregular pore
phase, and its matrix phase is assumed to be an isotropic material. The estimate of effective
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Fig. 5. Comparisons of the current method with some classic micromechanical models on the prediction of the

effective elastic constants for the cubic array (Fig. 4a) as a function of inclusion volume fraction: the effective

shear modulus C̄44 (a), the effective bulk modulus, K, (c), and the cubic anisotropic strength, A, which is defined

as A ¼ 2C̄44=ðC̄11 � C̄12Þ.
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stiffness, C̄ijkl , from the PFM approach, which is expressed in a contracted notation, C̄
�

(Ting, 1996) as follows:

C̄
�
¼ m1

1:109 0:322 0:379 0:007 �0:003 �0:002

0:322 0:794 0:328 0:025 �0:005 �0:017

0:379 0:328 1:151 0:046 �0:002 �0:010

0:007 0:025 0:046 0:307 �0:007 0:001

�0:003 �0:005 �0:002 �0:007 0:382 0:017

�0:002 �0:017 �0:010 0:001 0:017 0:301

2
666666664

3
777777775

(18)

This estimate of Eq. (18) is based on the coordinate system of 3D image in Fig. 6a, which
may not be aligned with the symmetry axes of the material. Many methods have been
developed in order to derive the material symmetry (principal directions) and the
corresponding elastic constants using the C̄

�
made in an arbitrary coordinate system (e.g.,
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Eq. (18)). Since it is beyond the scope of our study to discuss the detailed procedures for
the derivation, the interested readers can refer to the literature (Nye, 1957; Cowin and
Mehrabadi, 1987; Cowin and Mehrabadi, 1989). We followed the procedure using a fabric-
based scheme (Chiang et al., 2006) and found that the image in Fig. 6a macroscopically
behaves as a transversely isotropic material, which has a rotational symmetry with respect
to the y axes of Fig. 6a. This information reveals that only five independent material
constants need to be determined for the stress–strain relations of the material. This
transverse isotropy also can be directly observed from the values of components in the
matrix C̄

�
as (1): the values marked boldly in Eq. (18) are much larger than that of others,

such that those non-bold values can be set to zero (2): C̄11 ffi C̄33, C̄12 ffi C̄23, C̄44 ffi C̄66.
It is worthwhile to note that our method developed here can predict all the effective elastic
constants of the heterogeneous media without knowledge of macroscopic material
symmetry.
The calculation of the components in C̄

�
was achieved by applying a load to the

heterogeneous medium six times. Each time, the load is introduced in such a way
corresponding to a certain component of stress in the contracted notation of stress–strain
relationship, i.e.,

�̄
�
¼ C̄
�

�1
s̄
�
, (19)

where �̄
�
and s̄

�
are the volume-averaged stress and strain. By doing so, one can obtain six

equations, and a total of 36 equations will be given for fully effective elastic constants of C̄
�

without prior knowledge of material symmetry. One should note that actually only 21
elastic constants are needed at most due to the symmetry of C̄

�
.

In addition, using the image in Fig. 6a as a general two-phase material case, the effect of
the stiffness ratio (m2/m1) on the type and degree of elastic anisotropy of the material was
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(b), the scaled stress (syy=sextyy ) distribution (c).
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examined by the current approach. For all the stiffness ratios considered (0:0om2=m1o1:0
while f remains constant), the aforementioned transverse isotropy with the principal
directions aligned to the reference coordinates is sustained. This indicates that the principal
directions of the material remain unchanged. However, the strength of anisotropy, Ey=Ez,
changes as a function of the stiffness ratio (Fig. 6b). Ey and Ez are effective elastic moduli
in y and z directions, respectively. These results imply that the elastic symmetries, if they
exist, are only functions of microstructural geometry of the material, while the strength of
anisotropy of the material is dependent not only on the microstructural geometry but also
on the stiffness ratio of the constituents, which are consistent with our recent predictions
using a fabric-based scheme (Chiang et al., 2006).
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Often, in complex porous media, suspended solid inclusions can be found in interconnected
pore channels. For example, incompletely sintered grain is a common morphology in porous
ceramics (Roberts and Garboczi, 2000); residual particles are met in porous scaffolds in tissue
engineering (Hutmacher, 2000). These suspended inclusions cause computational singularities
during numerical solutions to the governing equations, which predict the responses of
physical systems subjected to external influences. However, the current approach in this
study, adapting the concept of the equivalent inclusion, can avoid the numerical singularity
and also give accurate predictions for the stress–strain relations. This can be explained using a
2D configuration in Fig. 7, which indicates that the elastic equilibrium state of the
inhomogeneous porous media with a suspended inclusion (Fig. 7a) is identical to that of the
equivalent homogeneous media with the effective eigenstrain (Fig. 7b). Since the equivalent
system is in an elastic equilibrium state, the stress and strain in the region covered by pore
phase is zero, and the values of the effective eigenstrains in the suspended particle are zero. As
a result, the stress-free state of suspended inclusion is automatically satisfied. Fig. 7c
illustrates the spectrum of local stress field in the loading direction (syy). The result in the
figure indicates that a stress-free state does exist in the suspended particle and a stress
concentration of 2.895 incurred due to the existence of a circular void, which is very close to
3.0 of the analytical solution. This confirms that our approach, based on phase-field theory,
provides not only the accurate effective mechanical properties but also the local stress field. In
many application cases, both the overall mechanical properties of the heterogeneous media
and the local stress (or strain) field in the media play equivalent important roles. For example,
in tissue engineering the porous scaffold is used to guide cell proliferation and tissue growth.
A desirable scaffold should provide enough effective stiffness and support more uniform
growth of cells, which is mediated by the local stresses. Although it is beyond the scope of our
study, the PFM approach can also be extended to predict inelastic properties of
heterogeneous media. For the inelastic response, inelastic strain, �pijðx

�
Þ, can be introduced

as an extra phase-field variable additional to �0ijðx
�
Þ in the effective eigenstrain of PFM

approach, namely, �00ijðx
�
Þ ¼ �0ijðx

�
Þ þ �pijðx

�
Þ. �pij should obey similar kinetic equations (i.e.,

Eq. (9)) expressed for elastic media, except the functional being dissipative potential rather
than elastic potential.

4. Conclusions

We have adapted the phase-field microelasticity method into the homogenization
process to estimate all the effective elastic constants of 3D heterogeneous (multiphase)
materials with both intermingled and dispersed phases. The PFM method is based on the
Eshelby effective eigenstrain approach and the incorporation of the phase-field theory for
attaining the eigenstrain. Our results indicate that such incorporation of the phase-field
microelasticity in the homogenization process can give accurate prediction of the elastic
constants and local deformation of heterogeneous media. We have also demonstrated that,
by adapting the concept of the equivalent inclusion, one can avoid the numerical
singularity to obtain the proper local stress–strain relations for complex porous media with
suspended inclusions. In addition, this study has shown that PFM approach and the
Hashin–Shtrikman (H–S) variational principle have likeliness in the expression for elastic
energy of the equivalent system. The PFM approach predicts the effective properties of
heterogeneous media while the H–S approach can only provide bounds of effective
properties. Although, two-phase heterogeneous medium, with both phases being



ARTICLE IN PRESS
Y. Ni, M.Y.M. Chiang / J. Mech. Phys. Solids 55 (2007) 517–532 531
homogeneous and linear isotropic materials, were examined in the study, the current
method is applicable to the multiphase medium with their constituents being anisotropic
materials.
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