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A novel approach is described for the selection of optimal instrument parameters that yield

a mass spectrum which best replicates the molecular mass distribution of a synthetic poly-

mer. The application of implicit filtering algorithms is shown to be a viable method to find the

best instrument settings while simultaneously minimizing the total number of experiments

that need to be performed. This includes considerations of when to halt the iterative opti-

mization process at a point when statistically-significant gains can no longer be expected.

An algorithm to determine the confidence intervals for each parameter is also given. Details

on sample preparation and data analysis that ensure stability of the measurement over
Implicit filtering

Instrument optimization

Objective function

Standards

the time scale of the optimization experiments are provided. This work represents part of

an effort to develop an absolute molecular mass distribution polymer Standard Reference

Material.

Published by Elsevier B.V.

of instrumentation in the measurement of the MMD. They
Stochastic gradient approximation

1. Introduction

There has been sustained interest in the use of matrix-assisted
laser desorption/ionization (MALDI) mass spectrometry as a
means to measure quantitatively the molecular mass distri-
bution (MMD) of synthetic polymers ever since Tanaka et al.
[1] first demonstrated the technique on poly (ethylene glycol)
and poly (propylene glycol) almost 20 years ago. As early as
the second paper in the field in 1992 Wilkins and cowork-

ers [2] pointed out the importance of the proper choice of
ion-extraction delay time following the laser ablation event
and its possible role in mass discrimination. In the same year
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Hillenkamp and coworkers [3] investigated the mass discrim-
ination that arises from the loss of detector sensitivity for
higher mass oligomers, which often results in an underesti-
mation of the moments of the polymer MMD. From that time
forward the central role of instrument tuning on the accu-
rate determination of the MMD has been a widely recognized.
McEwen et al. [4] in the context of wide-polydispersity poly-
mers were the first to examine systematically the specific role
nology; not subject to copyright in the United States.

concluded that instrumental effects play as significant a role
as do laser desorption/ionization effects. In 1999 Vitalini et al.
[5] explored the interplay between ion-extraction delay time
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nd ion-extraction voltage on the measured peak resolution
nd mass accuracy of mixtures of poly (ethylene glycols). They
iscovered that highest resolution and mass accuracy could
ot be obtained across all parts of a wide-polydispersity poly-
er, only parts of the spectrum could be optimized for any

iven machine settings. Vitalini et al. conducted their exper-
ment by systematically varying each of the two instrument
arameters to map out in full the two-dimensional param-
ter space. This necessitated taking hundreds of spectra. If
hey had added a third parameter and sought the same cov-
rage of the parameter space their effort would easily have
xpanded into thousands of spectra. Beyond three parameters
he experiments necessary would have become prohibitively
ime consuming. To reduce the number of experiments that
eed to be performed when studying the effects of more
han two parameters, Wetzel et al. [6] used an orthogonal
xperimental design to isolate the effects of five instrument
arameters (and two sample parameters) on the signal-to-
oise ratio of polystyrene MALDI mass spectra. The use of
n orthogonal experimental design allowed for a large num-
er of parameters to be studied but did not require complete
overage of the parameter space. While the work of Wetzel
t al. revealed which parameters played the greatest role in
etermining signal-to-noise ratio it did not explicitly provide
means to optimize that ratio.

A variety of mathematical methods exist that allow the
xperimentalist to optimize instrument settings without per-
orming an exhaustive search of the parameter space. Broadly
lassified, these methods are all forms of numerical optimiza-
ion. When the topology of the search space is very complex, for
xample when it has great sensitivity to one or more param-
ters (as mass spectrometers often do), the methods used are
art of the field of non-linear programming [7]. They are called
on-linear because some (or all) of the instrument param-
ters do not have a linear relationship between parameter
alue and measurement response, that is, the derivative of the
arameter-value versus measurement-response curve is not
constant. A simple example is laser intensity and its effect

n signal-to-noise ratio where a relatively sharp threshold is
bserved experimentally. When the measurement outcomes

which in the present case are mass spectra) contain ran-
om noise the mathematical methods are termed stochastic
umerical optimization [8,9]. Stochastic methods are important
n mass spectrometry because all mass spectra have noise,
his noise varies as the instrument parameters are adjusted,
nd the noise will often change across the spectrum. In this
ase, we will use the word noise to mean uncorrelated, random
ariations in the spectrum as a function of instrument param-
ters. Measurement noise presents a significant challenge to
ny optimization method especially for cases where signal-
o-noise is not the measurand to be optimized. Nevertheless,
umerical optimization methods offer experimentalists a
ay to tune the instrument parameters to achieve the
esired goal without having to search all possible parameter
ombinations.

A type of numerical optimization known as genetic search

as been applied recently by Kell and coworkers [10] to the
ptimization of electrospray ionization (ESI) mass spectrom-
try in the study of proteins. They optimized 14 instrument
ettings to achieve the highest simultaneous detection effi-
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ciency for five proteins in an equimolar mixture. They found
that the optimal settings for any one protein are not the opti-
mal settings for the mixture of proteins. Furthermore, some
instrument settings have several optimal (or near-optimal
settings) while others show an unambiguous single optimal
value. In a more recent paper Kell and coworkers [11] have
gone on to show how genetic algorithms can be used to auto-
matically (that is, without operator intervention) optimize a
gas-chromatography–mass spectrometer (GC–MS) over nine
instrument variables. Using mass spectrometry and working
to identify the various metabolites in human serum and yeast
fermentations they define a mulitobjective optimization func-
tion where not only the signal-to-noise ratio but also the total
number of peaks and the total run time of the chromato-
graphic separation were optimized simultaneously.

To measure the absolute molecular mass distribution of
a synthetic polymer, it would be ideal to locate a region in
parameter space where the instrument response function was
uniform across the entire mass range. Finding the instrument
response function is necessary to calibrate the intensity axis
of the mass spectrum, that is, to go from mass spectrum
to molecular mass distribution. If the instrument response
function is uniform then the relative peak areas in the
mass spectrum correspond directly to the relative abundances
of individual n-mers in the sample. A uniform instrument
response function would be a line of zero slope, that is, it
would have a derivative of zero. If not uniform, the instrument
response function could slowly vary across the mass range,
preferably linearly with mass. The optimal conditions are
those that give the simplest (or flattest) instrument response
function, that is, the one with the smallest derivative.

To determine the instrument response function, a
gravimetric mixture was made consisting of three low-
polydispersity polystyrenes that were very close in average
molecular mass. The optimal instrument settings were those
that provided the closest match between the total integrated
peak intensity of each of the three polymers in the mass spec-
trum with the known gravimetric ratios. Note that there is no
guarantee (or even assumption) that the optimal instrument
settings that give the flattest instrument response function
will also yield optimal signal-to-noise ratios. In fact there is
no reason to believe that a search for the instrument settings
that optimize the gravimetric ratios will not lead into a region
where the mass spectra become so noisy as to make peak
integration impossible. Thus, to find the optimal instrument
settings we used stochastic gradient approximation methods [8,9].
These methods have proven to be extremely robust in cases
where the measured data are very noisy.

2. Experimental methods

2.1. Polymer samples

Instrument optimization was performed using a gravimet-
ric mixture of three polystyrene samples custom synthesized

by Scientific Polymer Products, Inc. (Ontario, NY) [12]. The
samples where made by anionic polymerization using either
n-butyl lithium or n-octyl lithium as initiators. Each was termi-
nated with a proton. Their molecular mass distributions were
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measured by the vendor using gel permeation chromatog-
raphy (GPC) with light scattering detection. By this method
the two n-octyl polystyrenes had number-average molecular
masses (Mn) of 6100 u and 12160 u, and the n-butyl polystyrene
had an Mn of 9030 u. Each had a polydispersity of 1.01 or
less. The initiation of two samples with n-octyl lithium was
employed to allow separation of overlapping molecular mass
distributions in the mass spectrum. The as-received samples
were heated in a vacuum oven at 60 ◦C for 24 h to remove
any residual solvent. This was important since the method
is based on knowing accurate gravimetric ratios between the
polymers.

2.2. Reagents

The MALDI matrix used was all-trans retinoic acid (RA) pur-
chased from Aldrich Chemical (Milwaukee, WI) and used
without purification. The retinoic acid was stored in a freezer.
Silver trifluoroacetate (AgTFA) (Aldrich) was the cationizing
agent and was used as received. The solvent was unstabi-
lized tetrahydrofuran (THF) (Aldrich). The THF was checked
before each experiment for presence of peroxides using
Quantofix Peroxide 100 test strips (Macherey-Nagel, Düren,
Germany).

2.3. Mass spectrometry

The experiments were performed on a BrukerDaltonics (Biller-
ica, MA) Reflex II MALDI-TOF mass spectrometer in reflectron
mode using a dual microchannel plate detector. A nitrogen
gas laser (337 nm photon wavelength) with a 3 ns pulse width
was used. The laser intensity was varied using a continuously-
variable neutral density filter. The sample plate was held at
25 000 V. An extraction plate approximately 2 mm from the
sample plate initially held at sample-plate voltage but sub-
sequently pulsed to a lower voltage was used to pull the ions
out of the ablation plume. The extraction-plate voltage drop
and the delay time for the extraction pulse were variable. The
delay time could be varied in three steps of 250 ns, 500 ns, and
750 ns corresponding to ‘short’, ‘medium’, and ‘long’ extract
times. The instrument used a variable-voltage Einsel lens to
focus the ions into the reflectron whose backing plate volt-
age was held at 26 250 V. Lastly, the voltage applied to the dual
microchannel plate detector was variable. The laser intensity,
extraction voltage, extraction delay time, lens voltage, and
detector voltage were each varied in order to find the optimal
instrument settings to measure the correct molecular mass
distribution of the polymer mixture. The sample plate volt-
age and reflectron voltages were held constant because their
numerical relationship is determined by the geometry of the
ion optics system.

2.4. Sample preparation

Samples of each of the three polystyrenes was dissolved in
unstabilized THF at a concentration of 5 mg mL−1. These three

solutions were mixed into a master solution corresponding to
70% n-butyl PS (GPC Mn 9030 u), 10% low mass n-octyl PS (GPC
Mn 6100 u) and 20% high mass n-octyl PS (GPC Mn 12160 u). For
each experiment fresh solutions of retinoic acid (50 mg mL−1)
a 6 0 4 ( 2 0 0 7 ) 62–68

and AgTFA (5 mg mL−1) were prepared in unstabilized THF. The
choice of retinoic acid as the MALDI matrix was based in part
on an interlaboratory comparison conducted by the National
Institute of Standards and Technology (NIST) [13]. The poly-
mer, matrix, and salt solutions were mixed in a ratio of 1:10:1
by mass. This solution was deposited onto the sample target
by electrospray (ES) to increase signal repeatability by creating
a uniform sample [14–16]. The electrospraying was done using
a voltage of 5 kV and a flow rate of 5 �L min−1. The sample
target was held 3.8 cm from the tip of the needle. The sam-
ple target was divided in half by using Teflon film to mask
one side at a time. The first side was electrosprayed with
matrix and salt only (no polymer). This half of the target was
used to create a background spectrum used later during the
data analysis. Reversing the film position, the second side was
electrosprayed with the polymer, matrix, and salt solution. In
this way analyte spectra as well as background spectra could
be taken on the same target at (nearly) the same time. This
prevented temporal changes in the instrument stability from
greatly affecting the measurement.

2.5. Instrument operation

The laser energy was tested both before and after the experi-
ments to control for laser energy drift. This was done using a
using a Laser Probe, Inc. (Utica, NY) model RM-3700 universal
radiometer with a model RJP-465 silicon energy probe with a
neutral density filter to bring the laser intensity to the middle
of the detector’s operating range. Averages of 20 laser shots
were used because shot to shot variability is high for nitrogen
gas lasers.

Rough calibration of the mass axis of the mass spectrome-
ter was performed using a mixture of angiotensin II (1046.54 u),
bovine insulin (5734.51 u) and cytochrome C (12 361.96 u). The
rough calibration was improved by using five polymer peaks of
known mass, three in the central n-butyl PS distribution and
one each in the two n-octyl PS distributions.

2.6. Data collection

Several experiments could be completed in 1 day’s time. An
experiment consisted of five repeat spectra on the analyte
side of the target and five repeat spectra on the blank side
of the target for a total of 10 spectra. Each spectrum consisted
of 1000 laser shots. This sequence was repeated for all five
adjustable parameters (detector voltage, laser energy, delay
time, extraction voltage and lens voltage). Each was varied
from its initial setting (and then restored to its initial setting
after spectrum collection) in random order. We found it nec-
essary to recalibrate the mass axis after changing each of the
following parameters: delay time, extraction voltage, and lens
voltage.

Each iteration over the optimization loop produced 60 spec-
tra: 30 for the analyte paired with 30 for the background. There
are 30 for each because 5 instrument parameters are changed
plus a set of spectra taken with no settings changed for a total

of 6 possible instrument settings. There are 5 repeats at each
setting giving us 6 × 5 = 30 spectra. Summing spectra for the
analyte and the foreground there are 30 + 30 = 60 total spectra
per optimization loop.
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Fig. 1 – MALDI-TOF mass spectra of the mixture of three
narrow-polydispersity polystyrenes. Top panel: analyte
spectrum (black) and background spectrum (grey). Bottom
panel: integrated analyte peak intensities using
M
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(1) Given x0, an initial set of instrument parameters.
(2) Estimate noise in J(x) with respect to each xi.
(3) Use the result of (2) to estimate, εi, the new step length.
assSpectator computer code [17–19].

.7. Data analysis

he peaks in each spectrum were automatically identified and
ntegrated using our MassSpectator software [17–19]. Additional
ode was written to take the peak positions with associated
ntegrated peak areas provided by MassSpectator and, for each
f the three polymers in the mixture, obtain a number propor-
ional to the total measured mass attributable to each series
nd determine the moments of the molecular mass distribu-
ion for each series. This was done by sorting the individual
eaks by mass into their corresponding series. The code also
ad the ability to recalibrate the mass axis using the largest
eaks in the center of the molecular mass distribution.

The top panel of Fig. 1 shows a typical mass spectrum
or the gravimetric mixture of the three polymers. In black
s the analyte mass spectrum and overlaid in grey is the back-
round spectrum. The background spectrum is taken with all
he same conditions as the analyte spectrum except that the
nalyte is omitted from the target. The bottom panel of Fig. 1
hows the integrated peak intensities. Three polymer distri-
utions are clearly visible. It can be seen that the different
nd group masses allow each peak to be sorted into its proper
istribution with no ambiguity.

. Numerical methods

he objective function used for the numerical optimization of
he instrument parameters was:

⎛⎛∑
OPSL

⎞ ⎞2 ⎛⎛∑
OPSH

⎞

(x) =
⎜⎜⎝

⎜⎜⎝ MS∑
MS

BPS

⎟⎟⎠ −
(

OPSLG

BPSG

)⎟⎟⎠ +
⎜⎜⎝

⎜⎜⎝ MS∑
MS

BPS

⎟⎟⎠ −
(

OPSH
BPSG
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where OPSL and OPSH, represent the peaks in the spectrum
associated with the low-mass and high-mass n-octyl-initiated
polystyrenes, respectively. Likewise, BPS represents the n-
butyl-initiated polystyrene. The summation � is over all the
mass spectral peaks. The subscript G represents the gravimet-
ric amounts of each polymer in the mixture. The variable x
represents the five-dimensional vector of instrument settings.
When J(x) = 0 the integrated mass spectral peak ratios equal
the gravimetric ratios and the instrument settings are at their
optimum values.

The function J(x) is a noisy function with respect to the
parameter vector x due to the inherent statistical noise in
the mass spectra. This complicates the task of numerically
locating the minimum of J(x). The fact that each evaluation of
J(x) requires an experiment, and subsequent interpretation of
experimental results, means that there is a high cost for each
function evaluation. This limits the number of function evalu-
ations that are feasible and further complicates any numerical
procedure that seeks to minimize J(x). Taken together these
factors make the task of finding a useful minimum of J(x) a
natural candidate for popular sampling optimization methods
like genetic algorithms [20], simulated annealing algorithms
[21], and direct search methods [22]. However, these methods
are not the best available for a number of reasons. First, the
large number of function evaluations required precludes their
use in a reasonable way when the experiments are time con-
suming. Second, when the number of function evaluations
grows too large it jeopardizes the physical assumptions on
the continuity of J(x) with respect to the vector x because as
time passes a natural experimental irreproducibility occurs
which arises primarily from instrument stability considera-
tions. Third, all three of these algorithms may generate sample
or trial points that cannot be evaluated, for example, out-of-
range instrument parameter settings. Fourth, for these types
of approaches the problem of terminating the minimization
process is not well defined. This is especially true for an
objective function whose output depends on a spectroscopic
experiment where noise can be a significant factor.

One method for minimizing noisy functions that seeks to
approximate the gradient of the objective function �J(x) is
called implicit filtering [23]. Broadly speaking this method uses
a very coarse grained step-length to build a finite-difference
approximation to �J(x). This gradient is then used to generate
steep-descent directions for a minimization process. As iter-
ates draw closer to the solution, and the objective function
decreases, the finite difference step-length is decreased until
it approaches a number small enough to suggest convergence
of the algorithm to the minimum value. The algorithm can be
described qualitatively as follows:
G
)⎟⎟⎠ (1)
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Fig. 2 – Value of the objective function J(x) and its gradient

measure, the solution was clearly attained.
Fig. 3 shows the individual instrument parameter values

as a function of iteration number. The uncertainties for the
final (optimal) values are given in Table 1. (How the uncertain-

Fig. 3 – Instrument parameter value vs. iteration number.
The zeroth iteration is the starting value.

Table 1 – Optimal instrument settings and confidence
intervals at the 95% level

Instrument parameter Optimal setting
± confidence interval

Detector voltage (1.7 ± 0.03) kV
66 a n a l y t i c a c h i m i c a

(4) Approximate the finite-difference gradient �J(x) using
finite difference step-length.

(5) Generate gradient-based search direction and apply to
next iteration.

(6) Check for convergence using the norm of the gradient and
total change in parameter values.

Here the initial guess at the instrument parameter values,
and the initial guess at the perturbation values εi, was gener-
ated by past experience with the instrument from a previous
interlaboratory comparison on a similar polystyrene [13]. The
estimate of the noise function is then used to find the value
of the finite-difference step length parameter that maximized
the expected value of the correct gradient. This probabilistic
optimization maximizes the likelihood of the gradient being
correct. This approach results in a gradient that can be used
to generate a minimization search direction. In this exper-
iment we used a Broyden–Fletcher–Goldfarb–Shanno (BFGS)
method [8,24]; however, other gradient based methods to
determine the search direction could have been employed.
Finally, gradient-based convergence is used as the stopping
criterion.

The method implemented here was motivated by the
implicit filtering algorithm; however, the choice of the
finite-difference step-length is based on a problem-specific
estimation of the amount of noise in the objective function.
In so doing, the algorithm will build an approximation to the
gradient that perturbs in an amount proportional to the noise
in the function. If one has a reasonable estimate of the noise
in the function J(x), this method has considerable benefits. It
allows for a more rapid convergence than sampling methods
that do not estimate the gradient, the gradient approximation
can be used to yield information about the optimal parame-
ters (for example confidence intervals) and finally this method
attempts to collect data (or sample) in a region that appears to
be more likely, probabilistically, to contain the solution. This
response surface methodology (RSM) can also help determine if
the norm of the gradient is sufficiently small to indicate con-
vergence of the algorithm.

A few additional notes on this method bear mentioning.
Constraints can be handled in a straightforward way by form-
ing the appropriate Lagrangian function. In the case study
described here the constraints did not become active, nor were
they binding at the solution, thus we did not complicate the
algorithm with details of Lagrange multiplier estimates. The
algorithm appeared to converge to a reasonable prescribed
tolerance after five iterations. The trajectory of convergence
suggested that the gradient approximation was successful and
that the noise in the objective function with respect to the
parameter values, x, decreased with iterations. Both statisti-
cal sampling and RSM strongly indicated that the algorithm
terminated at an optimum set of instrument parameters.

4. Results
Fig. 2 shows the objective function J(x) and the value of its
local gradient �J(x) as a function of iteration step. There is
an initial steep drop in the objective function followed by
gradual movement to the optimal parameter settings. The
�J(x) vs. iteration number. The zeroth iteration is the
starting value.

gradient of the objective function also decreases steadily as
the optimum point is approached. Similarly the step length
in five-dimensional parameter space is also decreasing. These
monotonic responses indicate that the optimization routine is
converging robustly. At the optimum value the objective func-
tion is so small that it cannot be reduced further due to the
inherent noise in the measurement. Likewise, the step size
indicated for each parameter at this point is so small as to
be below the precision of the instrument’s settings. By this
Laser intensity (1.86 ± 0.11) �J/pulse
Delay time 500 ns
Extraction voltage (18.2 ± 0.80) kV
Lens voltage (8.6 ± 2.0) kV
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ies were determined is described in the Section 5.) The values
scillate about their final values as the optimization proceeds.
he laser intensity undergoes the greatest excursions decreas-

ng in the first two iterations, returning to its initial value in
he third iteration, and then increasing in the fourth iteration
efore settling into its final value. The four other parameters
ake an excursion in the direction of their final values in the

rst iteration, return to their initial value in the second iter-
tion, and find the equilibrium values by the third iteration.
his initial zigzag pattern is characteristic of gradient steps
eing applied to optimization a nonlinear function. This non-

inearity arises in the instrument parameters coupling, that is,
arying one parameter requires all others to vary in a nonlin-
ar response if J(x) is to move closer to its optimal value. Thus,
he vector xi+1 has a tendency to be normal to the vector xi

in its five-dimensional space). The laser intensity varies the
reatest amount and would seem to be the most sensitive vari-
ble. The primacy of the laser power setting is in accord with
ost users’ experiences with MALDI-TOF mass spectrometry

f synthetic polymers.

. Discussion

alculation of the confidence interval for each instrument
arameter is critical in determining the Type B (“systematic”)
ncertainty in the measurement of the polymer MMD. To do
his we employ a profile-likelihood function derived from the esti-

ate of the derivatives of the objective function with respect
o the variables over which we are optimizing. Caution must be
xercised because we only have a secant approximation to first
erivatives, that is, finite difference estimates with a coarse
nite difference step-length parameter, and a weak (quasi-
ewton) approximation to the matrix of second derivatives.
he profile likelihood function used was the logarithmic-

ikelihood function [25]. This functional form was chosen over
he more typically used Gaussian distribution because while
he noise in the background spectra was Gaussian the noise
n the analyte spectra had additional components that could
ot be modeled by a Gaussian distribution. Expressed another
ay, while the noise in the background spectra was indicative
f the sum of many factors, the noise in the analyte spectra
isplayed noise that was the result of a multiplicative mech-
nism acting on some (or all) of these factors [26].

Now consider our solution, x* = (x1
*, x2

* . . . x5
*), the

ptimized instrument parameters. Further consider the loga-
ithmic distribution function, L, associated with the equation
= x∗

i
where x∗

i
is our proposed optimal value of xi,

L∗
i
(x∗

i
) = max

x
L(x)

s.t. xi = x∗
i

(2)

If we take L* to denote the logarithmic likelihood evaluated
t the optimal value, xi = x∗

i
then from elementary statistics

(L∗ − L∗
i
(x∗

i
)) has a limiting �2-distribution with a single degree
f freedom [25]. Thus, a single degree of freedom 100(1–˛) per-
entile of the �2-distribution, (�1−˛,1)2, obeys:

2
1−˛,1 = L∗ − L- (3)
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For x∗
i

such that L∗
i
(x∗

i
) ≤ L-. The estimate �J(x) can be used to

in conjunction with the approximate Hessian matrix (using
the BFGS formulas). With a gradient and a reasonable Hes-
sian approximation the sequential quadratic programming
method can be used to solve numerically the constrained
optimization problem (2) for the endpoints of the confidence
intervals. Clearly any constrained nonlinear optimization
algorithm could be employed. Using this method the list of
parameters and confidence intervals at the 95% level for the
optimal instrument settings are given in Table 1. Of course,
with the ion-extraction delay time no uncertainty is possible
since this is a discrete variable. We can only say with 95% con-
fidence that the value is 500 ns and not the other two options,
250 ns and 750 ns.

6. Conclusion

A specialized noise-adapted filtering method has been applied
to the problem of finding the optimal instrument parame-
ters for a MALDI-TOF mass spectrometer. Finding the optimal
instrument parameters was a critical step in creating an abso-
lute molecular mass distribution polymer Standard Reference
Material. The task of tuning the instrument’s five main param-
eters could not be approached by exhaustive search methods
given the amount of effort needed to take and to reduce the
data in a statistically meaningful way at each set of instrument
parameters. Additionally, this method produces an estimate of
the sensitivity of each optimal parameter estimate not avail-
able to traditional exhaustive search methods. Each of the
subtasks in the process could be automated to create an inte-
grated closed-loop optimization scheme.
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