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ABSTRACT: We examine the effects of small-scale, hexagonal, lateral confinement on microdomain ordering
in diblock copolymer thin films using self-consistent field theory simulations. Specifically, we examine a hexagonal
confinement well with side length approximately equal to five cylindrical microdomain lattice spacings. The
commensurability constraints of the small-scale, lateral confinement, coupled with surface-induced effects allow
the confining well to have a significant effect on the perfection of microdomain order. We ideotifjnensurability
windowsin L that depend on the segmenvall interaction and the “temperature” annealing rate (modeled as a
Flory y ~ 1/T annealing rate). The effect of added majority-block homopolymer is also explored.

1. Introduction of the various methods of enhancing order in BCP material,
see refs £3). For example, Segalman et al. have examined
the effects of a boundary on the ordering of hexagonally packed
microdomains:8 In short, they observed increased microdomain
order inside of a region extending approximately 4uisfrom

the boundary [for the polystyrer®{2-vinylpyridine) system
studied, withN = 670 andfpyp = 0.129, this is approximately

Block copolymer (BCP) thin films represent a promising tool
for generating sub-optical lithographic pattetndand as such,
ordering of hexagonally packed microdomains in BCP thin films
has received much attention in recent yefafsin particular,
there is considerable technological interest in using self-

assembled BCP microdomain arrays in next-generation, sub-1gq mjicrodomain lattice spacings]. In addition, Ross and co-

: L : % o ' : _
micrometer fabrication techmq_ués. A BCP thin film con workers have examined the effects of ordering and com-
sisting of a large array of microphase-separated spheres or,

. - mensurability in small-scale confining channels and near
cylinders can be used to pattern a substrate yielding a large

£ (10 dots. Such d all “l confining corner$:12-14 These results suggest that template-
array of (10 nm ) dots. Such dot arrays are potentially useful o cteq assembly, and in particular lateral confinement repre-
in next generation high-density magnetic media and semicon-

. . . X sents a promising tool for controlling microdomain order in BCP
ductor device8.However, if such devices are to be realized, b 9 9

systems.
the dot arrays must exhibit high uniformity and order. This y

requirement translates into the need for large, quasi-2D arrays [N thiS paper, we present a computational study of small-
of uniform. well-ordered BCP microdomains. scale, lateral confinement as a means of controlling microdomain

o ree order in thin film BCP systems. Motivated by recent work on
Unfortunately, it is difficult to generate large, 2D arrays of hexagonally confined BCP thin film% 18 and planned experi-
uniform, well-ordered microdomains. While reasonably ordered o ns involving small-scale confineméftwe focus on a
micrometer-sized grai_ns are often possible with exceptionally hexagonally confined, cylinder-forming AB diblock copolymer
long thermal annealing times, recent work by Segalman s fiim poth with and without added A homopolymer. The
et al. suggests that large 2D arrays of BCP microdomains |5tera) size of the hexagonal confining well is selected such that
exhibit equilibrium defect populations and defect-mediated i cylinder rows fit across the hexagon (or, equivalently, five

melting transitions consistent with the KosteriZhouless- microdomains along an edge, giving a total of 61 enclosed
Halperin-Nelson-Young (KTHNY) theory of 2D melting. microdomains). This size roughly corresponds to proposed
Accordingly, defect formation in large 2D systems appears 10 gyperimental confinement siz&sThe size of the hexagonal

be unavoidable. confining well can be made to be commensurate with the

There has also been substantial work on enhancing order inhexagonal microdomain lattice formed by the bulk microphase-
thin film block copolymer systems. Possible techniques for separated BCP. It is reasonable to suppose that the confinement
inducing order include applied external fields (e.g., electric, will have a significant effect on ordering in the relatively small
sheer, etc.) and lateral confinement, among others (for reviewshexagonal array of microdomains.

The confined BCP system was simulated using a self-

* Corresponding author. E-mail: ghf@mrl.ucsb.edu. consistent field theory (SCFT) for polymer melts (for a more
T Department of Physics, University of California, Santa Barbara, and detailed account of SCFT, see ref 20) where the hexagonal
Polymers Division, National Institute of Standards and Technology. confinement well was modeled as a fixed particle density

+ Department of Mathematics, University of California, Santa Barbara. L “ o . .
$ Departments of Chemical Engineering and Materials and Materials (Similar to the “masking” technique introduced by Mat&gn

Research Laboratory, University of California, Santa Barbara. In our study, we varied the side length of the confining hexagon
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and the sign of the segmenivall interaction to achieve either  the microscopic homopolymer A-segment density is given by
A- or B-block wetting.
We demonstrate that the side length has an appreciable effect M
on the ordering of the confined microdomains. Furthermore, Pan(r) =N Z ﬁ) dso(r —ry(9) 3)
we identify a “commensurability window” of side lengths such =
that a near-perfect, small-scale hexagonal array of microdomains . . - '
is reprodutfi)bly obtained within thg well. W)(/E examine the and the microscopietal A-segment density is defined by
dependence of the window’s width on the polymerall A N A
interaction, the temperature annealing rate (modeled via the Pall) = Paall) + Pan(r) @
Flory y parameter), and the fraction of majority-block A | ixewise, the microscopic B-segment density is given by
homopolymer added to the copolymer. Finally, we explore the
mechanisms by which the surfaces of the well induce order oo
within the hexagonal domain. _ Pay(r) =N Z jf’ dso(r — r4(9) (5)
Our presentation is outlined as follows. In section 2, we =
present the model and SCFT formalism for an ABA + wall
system. In section 3, we present our results and discussion.Finally, the microscopic wall “particle” densitpu(r) is a
Specifically, in section 3.1, we examine the case of a quench Predeterminedfixed function with 0= pw(r) < po, for all r.
to a fixed F|oryX parameter (ana|ogous toa quench from infinite We use this function to model a confinement well, and we often
temperature to a temperature Corresponding)tdn section use the termwall field to refer to the micrOSCOpiC wall “particle"
3.2, we examine the effects of controlled temperature annealingdensity pw(r). Melt incompressibility requires that the micro-
(i.e., ¥ annealing) during the SCFT relaxation. In section 3.3, Scopic densities locally sum up to the average total segrhent
we examine and discuss the effects of a majority-block Wall density:
homopolymer additive. And finally, in section 4, we close with

a short summary and concluding remarks. Par) + pg(r) + pu(r) = po (6)
2. Model and Methods Alternatively, we can express eq 6 as

A lalend. of A'I’B.block copolymgrs, A homopolymers, :?md fixed pa(r) + Pe(r) = p(r) @)
wall “particles” is modeled using a standard Gaussian thread
model with a Flory-type segmensegment and segment/all where we have introduced tfixed total segment density
interaction. The fixed wall field and segmetwall interaction
are modeled using a method similar to that introduced by p(r) = po — py(r) (8)

. . w

Matser?! In section 2.1, we outline the AB- A + wall model,
and in section 2.2, we outline our numerical methods. In the canonical ensemble, the partition function of the AB

2.1. Model and SCFT.We consider an incompressible melt A + wall system is given by functional integrals over all

of ng monodisperse AB diblock copolymens, monodisperse  configurations of all the polymer space curves:
A homopolymers, andy, wall “particles” in a volumeV. The

fraction of A-segments in the AB diblock is denotethe index M4 Mh

of polymerization of the AB diblock is denotddy = N, and Z= f Or g I_' Ory O[pa + P + oy — pole oY
the index of polymerization of the A-homopolymer is denoted = I= )
Nh = aN, so that the parameter is defined by the ratio. =

Ni/N. where

Each polymer is modeled as a continuous Gaussian chain
characterized by space curvegs) andry(s), wherei = 1, 2, 1 6 dr4(9),2 L drhj(s) 2
..ngandj =1, 2, ...,ny are polymer indices. For the AB Uy=—o" Zﬁ) ds‘ ‘ -|-—Z ﬁ) ds‘ ‘
diblock, the contour variableruns froms = 0 at the beginning 4R§o = ds 4R§o = ds
of the A-block end tes = 1 at the end of the B-block end, with (10)
s= f corresponding to the end of the A block and the beginning
of the B block. For the A homopolymes,runs froms = 0 to
s = a. We assume the statistical segment lengths of the A and
B segments are equdly, = bg = b. Therefore, the unperturbed U, == j;/ dr[%pa()Ps(r) — xwapru(r)poalr) —
radius of gyration of the AB diblock is given Hyy® = b>N/6. Po

The volumey, occupied by A segments, B segments, and wall XwePul(r)Pe(r)] (11)
“particles” is given byvy = 1/po, Wherepg is the average total
segmentt+ wall density: Here y is the Flory parameter for A-segmerB-segment
interactionsywa is the Flory-like parameter for walA-segment
ngN + n,aN + n,, interactions, angs is the Flory-like parameter for watB-
Po="vyv 1) segment interactions. In eq 8[pa + ps + pw — pg] is ao

functional that enforces the incompressibility of the polymer
The AB+ A + wall system is characterized by four microscopic melt at all points in the domain.
densities. The microscopic diblock A-segment density is given  Note that
by
- - - XwA AwB ~
L HwaPa T XwePe = XwP— T+ % py t % P (12)
Prel) =N 3 Jo dsor = rg(9) )
=

where
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XwA — XwB
="

13)
[ N (14)
and we have dropped the explicitlependence for clarity. Using

eqs 12-14, and explicitly enforcing the incompressibility
constraint,po(r) = p(r), gives

U =— X

2
i for [b_(r) + 2’%”pw(r)] (15)

up to a constant shift in energy. We now write the interaction
terms as follows (again, we elect to drop explicttependence),

2
Ui = ey L s 4w ) _
e ex;{4p0j;/dr (p_+2x Pu ]

S o exp{j\'/ dr [(;‘) + Z%V pW)W - %)WZ]} (16)

We also represent thé functional in eq 9 as a functional
integral:

ooy — pl = [ ow, exp[-i [[ dr (. — p)w.] (17)
After some manipulations, we arrive at the following expression

for the partition function in terms of the conjugate potential
fields Wy = Nwy:
Z= [ oW, owW_e "W (18)

where

HIW,, W] = C [, dx [X_:'L\l W_2(x) — ()W, (x) —

2);—W ¢W(X)W(X)] — C(1— @)@V log Q[W,, Wg] —
(th_ﬁv
a

C log Q\[W,] (19)

HereC = pd/N, ¢(x) = p(X)/po, duw(X) = pw(X)/po, Wa = IW

— W_, andWs = iWy + W_. Furthermoreall lengths have
been scaled by the radius of gyration of the AB diblock
copolymer wherex = r/Ryo; for example, the system volume is
expressed as a dimensionless variallBg® — V. The quantity

¢ = (IN) fv dx ¢(X) = (NgN + naN)/(NgN + npaeN + ny)
represents the averagegmentolume fraction of theentire

Macromolecules, Vol. 40, No. 26, 2007

0
8_Sqd(xi S [WA! WB]) =

V2Gy(%, S [Wa, Wa]) — 14(X, S)0y(X, S [W, We]) (22)
subject to the initial conditiomg(x, 0; [Wa,Wz]) = 1 with

W,(x),0<s<f

%(X, ) = {WB(X), f<s<1 (23)

andgn(x, s; [Wa, We]) satisfies

00,5 W, W) =
Vth(Xv S; [Wa, W) — WA(X)an(X, S; [Wa, We]) (24)

subject to the initial conditiorgn(x, O; [Wa, Wg]) = 1. The
average microscopic volume fractiopgy, ¢an, andgs can be
expressed as integrals over the propagators:

(1- §0h)§75 o
Q4
[ ds qy(x, s; [Wa, Wal)Gi(x, 1 — s [W,, Wel) (25)

Pl o
Dan(X; [Wa, We]) = (XLQh j(‘) ds x

An(X, S; [Wa, We])Gn(X, o — s [Wa, Wg]) (26)

Bag(X; [Wa, We]) =

and

L= o
Pg(X; [Wa, We]) = ¢ X
d

[ ds qy(x, s; [Wa, Wal)Gi(x, 1= s [Wi, Wel) (27)

where the “backward propagatoqg(x, s; [Wa,Wg]) satisfies
the following differential equation

0
75 QX S [W, Wa]) = V2gg(x, 5; [Wy, We)) —

wax, 9, s [Wa, Wel) (28)
subject to the initial conditiomy(x, 0; [W.]) = 1 with

Wp(x),0<s<1—f

Va9 = {WA(X), 1-f<s<1 (29)

In the formalC — o limit, we use the saddle-point approxima-

system (i.e., the volume fraction of the system that correspondstion to find mean-field configurations of the conjugate fields
to polymer segments), and the quantity = n,aN/(ngN + W.. The saddle point equations are given by the standard
nmoN) represents the fraction of segments that belong to A expressions:
homopolymers.

The single-chain partition functior@[Wa, W] and Qn[Wa] OH[W,, W_]

can be expressed in terms of the “forward propagatq; s; OW,(X) |y = ICLeaa(X; W) F dan(x; [WLD) +

‘Wi

[Wa, Wa]) and gu(x, s; [Wa,Wg]) as follows: 90 L) — 600 = O (30)
QUWa, Wel =5 [ X ax, 1 o, We)  (20)  and
SH[W,, W._] i
and - _ _
1 S0y, ~ G0 = 260
QWar Wol =7 de o i [Wau Wel) - (21) Dad; IWL) = VL) + g IWLI)] =0 (31)

whereqq(x, s; [Wa, Wg]) satisfies whereW.. are the saddle point values 0f.. The saddle point
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value of W, is strictly imaginary, and the saddle point value of and in order to retain the stability characteristics of standard
W_ is strictly real?220 Accordingly, we define a real valued saddle point search methods (to be discussed below), the
pressurefield Z = iIW, = —Im[W,] and a real valued transition is selected to be a hyperbolic tangent form:
compositiorfield W= W_ = Re[W_]. This gives the following 60
p\X )

saddle point equations: 3o (X) = % [1 . tanh(z :

Bag) + dan(¥) + Pe(X) — B(X) = 0 (32)
Here z and 0 are factors used to define the transition region
and and set the width of the transition region, respectively, and
do(x) is defined as the distance from the paxnito the nearest
(2HN)WX) = 2000/ 2%)P0(X) = Pad(X) — Pan(X) + ¢g(x) =0 edge of the boundary of the hexagonal well. The boundary of
3 the hexagonal well is defined to be at the midpoint of the smooth
transition region (i.e., where(x) = 1/2). We seleciz such
that the wall transition region is defined to begingaf(x) =
0.01 and end apw(x) = 0.99 with a width ofd. This givesz=
l0g(99) ~ 4.5951. We do not expect the specific valuedof
selected to affect the results, provided thas approximately

(36)

We solve these equations by introducing a fictitious “time”
variablet and relaxing the fields forward in time in the direction
of the thermodynamic forces. This “steepest descent” saddle
point search is formally given by

9 _ OH[E, W] equal to the AB interface width (i.e., a fraction oRg).
e E(x, )= m (34) 2.2. Numerical Methods.In order to examine the effects of
v lateral confinement on the BCP melt, we simulate the ABA
9 _ OH[E,W] + wall system in 2D. We sample all relevant fields on a square,
ﬁW(x, H=- SWIX, 1) (35) periodic lattice inx andy:
Clearly, eqs 32 and 33 are satisfied when eqs 34 and 35 are %=IiAx i=0,..,n—1
stationary. y,=jAy j=0,..,n—1 (37)

The fictitious time, continuous steepest descent search given ) o
by egs 34 and 35 is not the only possible SCFT update capablewheren, andny are the number of lattice points in theandy
of yielding saddle point solutions. For example, quasi- directions, respectivelyd\x = Ly/nxandAy = L,/n, are the grid
dynami@324 variants of the steepest descent search exist thatSPacingsky is the length of the system in thedirection, and
can provide qualitative and in some cases quantitative informa-Ly iS the length of the system in the direction. We will
tion about the kinetic pathway to equilibrium, albeit at the Subsequently use a single, bold-face indew represent the
expensive of significantly increased computational cost. A ordered pairi( j). Itis important to note that the above-defined
discussion of such “dynamic SCFT” methods is beyond the discretization represents a uniform collocation grid allowing for
scope of this paper; specifically, here we are interested in the use of fast Fourier transforms (FFTs).
equilibrium and metastable saddle point configurations of the  The system is assumed to be uniform but finite in the
BCP melt. The steepest descent search summarized by egs 34irection, and the film thickness is denotégd Under this
and 35 has been demonstrated to be an effective means ofssumption, the film thickness always appears as a constant

identifying physically relevant saddle point solutiéhand will factor in combination withC. In SCFT, the factor ofC, and
thus be adopted for this study. thusL,, is absorbed into the relaxation time st&fy discussed
This completes the standard framework for the SCFT of an below. With the above-defined simulation space, the volume
AB + A + wall system. The mean-field configuratioksand ~ Of the system is denoted = L,L,L, and the total number of
W are found by iterating the following scheme: lattice points is given bV = nyn,.
1. Initialize the pressure and composition fiel&i$x, 0) and Provided that the top and bottom surfaces do not have a
W(x, 0). selective interaction with the BCP melt, our simulation meth-
2. Solve the modified diffusion equations fap(x, S), odology should p_rovide useful insight_into the e_ffects of small-
qg(x,s), andgn(x,s). scale,later_al confinement on B_CP mlqodo_maln ordering. In
3. CalculateQq, Qn, dad, dan, andeg. order to simulate more compllt_:ated situations \(vhelre the top
4. UpdateZ(x, t) andW(x, t) by integrating eqs 34 and 35 and bottom surfaces of a BCP film have a selective interaction
forward over a time intervat. with the two blocks, a full 3D simulation framework would be

5. Repeat steps—5 until a convergence criterion has been reduired. ) _ )
met. We also discretize the chain contour variakle

More complete details of the Gaussian thread model and _ _
polymer SCFT can be found in ref 20. Sn=MAS, M=0, ...ng (38)
_ The wall field ¢w(x) = pw(X)/po is a fixed function ofx that wherens is the number of steps along the polymer backbone,
is specified before starting the SCFT simulations. We select ;4 A = 1/ns is the contour step size. The fictitious time
#w(x) to be a regular hexagonal pattern centered about the, ,.onjet is also discretized:
midpoint of the simulation space. The interior of the hexagon
is set togw(X) = 0, and the exterior of the hexagon is set to t,=nAt, n=0,..n (39)
ow(X) = 1, with a narrow, smooth transition region connecting
the interior and exterior. The incompressibility constraint eq 6 The value ofAt selected depends on the method used to solve
restricts polymer segments to the interior of the hexagon. In the relaxation equations (discussed below), andefines the
other words, the fixed wall field(x) acts as a confinement total number of SCFT iterations used to relax the saddle point
well for the segments of the fluid. equations.

In order to minimize the number of required Fourier modes  In step 2 of the SCFT algorithm, outlined in section 2.1, we
needed to resolve thg,(x) = 0 to ¢w(x) = 1 transition region, solve the modified diffusion equations using the pseudo-spectral
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operator splitting method developed by Rasmussen and co-

workers?>26 That is, motivated by both the formal solution

A

q(x, s+ As) = €*¥q(x, 9) (40)

with the initial conditiong(x, 0) = 1, and the BakerCampbel-
Hausdorff identity?” we perform an@(As?) splitting of e's’:
eAs/’z efAsz/z(x,s)IZeAsVZefAsw(x,s)/Z+ (9(AS3) (41)
where /= V2 — y(x, s). The functiony(x, s) is diagonal in
real space, and the Laplacian operator is diagonal in Fourier
space; thus, 8s/*972 js evaluated in real space antF¥ in
Fourier space. As mentioned above, the collocation grid allows
us to move between real and Fourier space using FFTSs.
The time integration of eqs 34 and 35 is performed using an
explicit, forward-Euler algorithm:

H[E", W]
n

.
—j

—n+1 __

=M+ At (42)

W m o HEW
oW

(43)

where superscriptsrepresent discrete steps in the time variable
t. As indicated aboveC and L, are constant factors in the
HamiltonianH[Z", W1]; therefore, they represent a modification
to the Euler time step\t. Henceforth, we use the symbat to
represent the total time steftCL,.

We use as a convergence criterion thenorm of the sum of
the thermodynamic forces at SCFT iteratiaf®

SHIE", WY SH[E", W]
+

o=" ow' 1
1 M BH[E", W aH[E", W
— + (44)
M4 o=

Clearly, a completely relaxed saddle point solution gives
|OHIOZ + OHIOW]|; = 0.

3. Results and Discussion

In order to examine how hexagonal, lateral confinement
affects ordering in block copolymer thin films, we simulated
AB + A + wall systems in 2D using SCFT, as discussed above.
The results of these simulations are presented below.

For all simulations we sét= 0.7—with this choice we identify
the A block as the majority blodR For the quenched simulations
presented in section 3.%N was held fixed ayN = 17. This
value off andyN yields saddle point solutions corresponding
to a hexagonally ordered cylindrical microphase. For ghie
annealing simulations presented in section g\Newas ramped
from yN = 12 to the final value ofN = 17. The value ofN
was selected to bgyN = 17, ywN = 0, or yyN = —17 for
A-attractive, neutral, or B-attractive walls, respectively. For the
AB diblock simulations (sections 3.1 and 3.2), the A homopoly-
mer fraction was set tg, = 0, and for the AB+ A blend
simulations (section 3.3), the A homopolymer fraction was set
to ¢n = 0.20, indicating that the blend is 20% A homopolymer.
The A homopolymer length was selected to be 35% percent of
the copolymer lengthoe = 0.35.

The system size was chosenlgs= Ly, = 48; this system
size allowed us to explore a wide range of possible hexagon

Macromolecules, Vol. 40, No. 26, 2007

sizes, up to a maximum hexagon side length of approximately
L = 24. The wall transition region width was selected todbe

= 1. We were interested in hexagon side lengths that yielded
nine rows of microdomains across the hexagon, or equivalently
five microdomains along an edge. There are exactly 61

microdomains contained in such a confining hexagon. With this

in mind we focused on a range of hexagon side lengths between
L = 14.00 and. = 23.00.

The spatial resolution was selected in order to resolve both
the A—B interfaces and the wall transition region. We found
that Ax = Ay = 0.25 was a sulfficient resolution for our
purposes; therefore, we sef = ny = 192. The number of
polymer contour steps was selected to mpe= 50. These
parameters allowed for sufficiently accurate evaluation of the
energy functional (Hamiltoniari[=, W] in order to differentiate
between the various systems of interest (specifically, the various
values of hexagon side length).

For all simulations presented here, the Euler SCFT time step
was selected to b&t = 2. Larger time steps resulted in stability
problems. The total number of SCFT iterations was set to
20 000, unless otherwise indicated. For the Euler update
discussed above, witht = 2 andn; = 20 000, we were able to
determine the saddle point solutioBsand W with |0H/OE +
OH/IOW|; = @(1079). Using the above simulation parameters
(ny = ny=192,ns = 50, andn; = 20 000), the average single
simulation run time was approximayel/ h on adedicated
compute node. A total of 935 full production runs were carried
out giving a total of approximately 6545 compute-hot¥s.

In order to identify the window irL that yielded a well-
ordered array of microdomains (henceforth called ¢oen-
mensurability windoyy we measured the average standard
deviation (SD) of nearest neighbor (NN) microdomain separa-
tions inside the confining hexago([] This average was
calculated from five or ten independent simulations, started from
five or ten distinct random initial conditions (we used ten
independent initial conditions for our quenched simulations and
five independent initial conditions for our annealed simulations).
When defects form, the nearest neighbor separation between
microdomains will change locally (near the defects). Therefore,
we expect to see a defect-induced jump in the standard deviation
of nearest neighbor microdomain separations. We use the
notation A {ywN) to represent the commensurability window
with exactly. 1"enclosed microdomains for a specific value of
xwN.

For side length& outside of the commensurability window,
we observed microdomain defect formation as a result of
deviations fromexactly ./” = 61 enclosed microdomains
discussed above. Accordingly, a deviation from 61 enclosed
microdomains indicates a defective array. However, the jump
in [@0is much more abrupt (nearly an order of magnitude in
[60over a change in hexagon side lengthAdf ~ 0.50), and
thus we usedllas our primary metric for identifying com-
mensurability windows.

3.1. AB Quenched SimulationsHere we present results for
a quench toyN = 17 (modeled as a SCFT relaxation from
random initial conditions at a fixegN = 17) for the AB+
wall system presented above. There is no A homopolymer
present in this system, so we sggt = 0.

In Figure 1, we present graphs@fvsL for the AB diblock
system with an A-attractive waly¢N = 17), neutral wall f,N
= 0), and B-attractive wallf,N = —17). Recall, forf = 0.7,
the A block is the majority blockrom Figure 1a we see that
the commensurability window for the A-attractive wall is given
by Ae1(17) = [15.75, 17.00]. This window defines the region
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Figure 1. Graphs oflgUvs L for an AB melt after a quench from T T S

random initial conditions togN = 17 for (a) an A-attractive wall{N Figure 2. Representative composition profiles (lighter shades cor-
= 17), (b) a neutral wally,N = 0), and (c) an B-attractive walj¢{N respond to larger values afa) and their corresponding Voronoi

= —17). For each case, there is a regiorLifthe commensurability diagrams (hexagon in white, pentagon in gray, and heptagon in black)
window) inside which there is a perfect array of 61 hexagonally ordered for (a—c) an A-attractive wall, (ef) a neutral wall, and (gi) a
microdomains. B-attractive wall. For the A-attractive wall, we plot composition profiles

and their corresponding Voronoi diagrams for (a5 15.00, (b)L =
16.25, and (cL = 17.75. For the neutral wall, we plot composition
in L inside which we observed a well-ordered, hexagonal array Profiles and their corresponding Voronoi diagram for Ldy= 17.75,
o1 61 microdomains foall 10 sarmpled random nitial conditions 50+ 18:50,and (0 19,50 Fnaly for e B-atvacive wall we
and high uniformity in microdomain size and shape. Eorside (g) L = 18.00, (h)L = 19.00, and (i)lL = 20.00.
of the commensurability windows[J~ 0.05, and outside the
window [¢is larger by approximately 1 order of magnitude. smaller than the commensurability window identified for the
From Figure 1b we see that the commensurability window for A-attractive wall. In fact, the commensurability window for the
the neutral wall is given by\e1(0) = [18.50, 18.75]. Finally, A-attractive wall is 2.5 times larger than the window for the
from Figure 1c, we see that the commensurability window for B-attractive wall and five times larger than the window for
the B-attractive wall is given bye(—17) = [18.75, 19.25]. the neutral wall. Furthermore, there appears to be a tendency
In Figure 2, we present representative compositions profiles for the defects to form along the confining wall far <
and their corresponding Voronoi diagrams for A-attractive, min[Ae1(ywN)] and in the center of the hexagon far >
neutral, and B-attractive walls. The composition profiles and max[Asi(xwN)]. The above identification of commensurability
Voronoi diagrams indicate the presence of defects for valueswindows may have important technological applications. The
of L outide of Agi(ywN) and the presence of a well-ordered array simulation results suggest that if one can engineer a confining
for values ofL inside of Agi()wN). wall that attracts the majority block, then one may be able to
It is important to note that the commensurability windows exploit wider tolerances i when constructing a confining
identified for the neutral and B-attractive walls are considerably hexagon.
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It is not immediately obvious why the commensurability (a)
window for a majority-block-attractive wall should be wider A
than the window for neutral or minority-block-attractive walls. :
We can gain some insight into this observation by examining
microphase development near the wall.

The above simulations essentially model a quench to a
temperature corresponding #®& = 172° In the bulk (i.e., far
away from a wall), there are two particularly important values
of ¥N for an asymmetric diblock (i.ef,= 0.5). First, there is
the microphase separation transition (MST) validenoted
(xN)msT. Second, there is the spinodal value, denojéd)43°
For the diblock system of interest in this paper, witk 0.7, 0.4 |
(xN)s= 15 and gN)ust ~ 14.75%0If N is selected to be below
the MST valueyN < (¥N)ust then the composition profiles in
a bulk simulation will rapidly relax to a homogeneous (also
called disordered) state withy(x) = f and¢g(x) = 1 — f. For (b)
a bulk simulation with¥N)ust < ¥N < (¥N)s, the homogeneous
(disordered) phase is metastable, and microphase separation can
proceed via nucleating of the ordered phase (for a discussion
of nucleation of the lamellar microphase in BCP systems, see
refs 31 and 32). In this metastable region, the disordered phase
BCP scattering functioS(k) is strongly peaked arourid= ko,
corresponding to the periodicity of the microph&&inally,
asyN approaches\)s, the disordered phase scattering function
diverges akp, the homogeneous phase becomes unstable (i.e.,
nucleation barriers vanish), and the system rapidly microphase
separate® In other words, foryN > (xN)s, we expect rapid, :
global microphase separation on a length scale corresponding 5 10 15 20 o5 30
to 2n/ky. For symmetric diblock copolymers € 0.5) in the M
mean-field limit C — «), the values of N)ust and ¢N)s Figure 3. Graphs ofy(x, 24,t) vs x, averaged over ten independent
coincide, and for weakly asymmetric diblocks, the values are random initial conditions, for (a) A-attractive wall (at point “A”) and
nearly co-incident. (b) B-attractive wall (at point “B"). In both figures, we plat(x, 24,t)

Microphase development of asymmetric BCPs near a bound- 2t t :IZS)FAB (Sﬂugrg+ dg‘ShEd)’ 48t (circle + dotted), and 8t
ary is complicated and rather subtfe3® Accordingly, when (triangle+ dashed-dotted).
necessary we draw comparisons from work on symmetric and aty = 24 [i.e.,y(x, 24,1) vsX], averaged over ten independent
weakly asymmetric BCPs. For example, Fredrickson showed random initial conditions, for a AB diblock quenchedy =
that if a boundary has a preferential attraction to one component17, and confined by & = 17.75 hexagonal wall. The ling=
of a symmetric or weakly asymmetric diblock copolymer, one 24 is a perpendicular bisector of two opposite edges of the
observes low-amplitude composition oscillations that extend into confining hexagon. The order parameteix, 24,1) is plotted
the bulk, with a magnitude that dies off exponentidfiythese ~ at iteration times = 20At, 40At, and 8Q\t during the saddle
composition oscillations are observed in the disordered (homo- point search. Here we only plot the A-attractive and B-attractive
geneous) phase, for temperatures well above the spinoda[\Na” interactions. We can clearly see composition oscillations
temperature [or equivalentlyN < (xN)g]. As the system is near the boundary at ~ 8.6. These oscillations extend into
cooled toward the spinodal temperature, the composition oscil- the center of the hexagon and appear to rapidly decay. The shape
lations increase in magnitude and penetration depth, extendingand time dependence of the composition oscillations appears
increasingly far into the bulk® As e = [yN — (xN)s|/(xN)s — to be consistent with the surface-induced microphase separation
0, the magnitude of the composition oscillations approach the phenomena referenced abd¥e.
bulk microphase separation values, yielding a “wetting layer”  Of primarily importance in Figure 3 is the observation that,

v(x,24,t)

10 15 20 25 30

(3]

-{ @

y(x,24,t)

02 AL W

-0.4 |

with thicknessw [ log € that diverges logarithmically as— when ignoring the surface enrichment layte first peak inp

0 (e.g., see ref 37). inside of the boundary idarger for the A-attractive wall than
For quenches into the ordered phase [iH.> (xN)s], Brown for the B-attractive wall. The first peak i inside of the

and Chakrabarti demonstrated that composition oscillations form boundary corresponds to the first interior cylinder-like B

near the boundary and propagate into the Bfilkurthermore, microdomain. The additional peaks inthat are even further

they showed that the long-time form of the quenchéd > inside the well are also larger for the A-attractive wall.

(xN)s composition profiles are well fit by the functional form  Furthermore, we can see that all of the interior composition
identified by Fredrickson in ref 31 fgiN < (yN)s composition peaks remain larger for the A-attractive wall over all times
oscillations3® reported in Figure 3. In Figure 4, we superimpose plotg ©f

For the block copolymer system of interest here, the B 24,t) vsxfor A-attractive and B-attractive walls, averaged over
segments microphase-separate to form a microdomain lattice.10 independent random initial conditions. We also shift the order

Therefore, it is useful to examine the order parameter parameter curves in Figure 4 so that the first interior composition
peaks (not the surface enrichment layer) are aligned. With the
WYX, 1) = ¢g(X, t) — (1 — Hep(X) (45) order parameter curves superimposed and aligned, the larger
peaks iny for the A-attractive wall are more easily identified.
where as discussed abovx) = 1 — ¢y (x) is the fixed total The difference in peak size is due to the rapid decay enve-

segment fraction function. In Figure 3, we plptx, y, t) vs x lope 3338 For the case where A-segment is attracted to the wall,
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(a)

(b)

W(x,24,20A1)

(a)
((:}

Figure 5. Representativeequilibrium density composition profiles

(d)

y(x,24,40At)

04y (lighter shades correspond to larger valueggf for (a) A-attractive
wall at yN = 12, (b) A-attractive wall afyN = 14, (c) B-attractive
X wall atyN = 12, and (d) B-attractive wall gtN = 14.
Figure 4. Shifted graphs ofy(x, 24, t) vs x, averaged over ten
independent random initial conditions, at (ar 20At and (b) 4@\t. In addition to the wall’s role in surface-induced microphase
In both figures, we ploty(x, 24,t) for an A-attractive wall (square- separation phenomena, the shape of the well helps orient the

dashed) and a B-attractive wall (circte dotted). The A- and B- f P : :
attractive wall positions are marked as “A” and “B,” respectively. The microdomains in a way that is commensurate with a hexagonal

(% 24,1) curves have been shifted iso that the first interior order  lattice. Provided the hexagon side length is carefully selected
parameter peaks (at point “P") are aligned. This allows for an easy [i.e., L € A (xwN)], the hexagonal shape of the boundary will
visual comparison of the peak heights. work to encourage the surface-induced composition waves to

the polymer architecturelictates that the first B microdomain form a well-ordered hexagonal microphase array.

forms much closer to the wall than for the B-attractive wall; ~ We noted above that fot. below the observed com-
accordingly, during the early stages of microphase separationMensurability windows, defects tend to form along the wall.
near the surface, the amplitude for the positive pealks will This is most likely due to direct incommensurability effects.

be larger for the A-attractive wall. That is, the side length is not commensurate with the natural

The positive peaks iy correspond to points of increased Microdomain cylinder spacing. In contrast, forabove the
B-segment fraction. The microphase-separated B microdomainserdered window, defects primarily form inside the confining

form at or around these locations. Since the peaksane larger hexagon. This kind of defect formation likely involves incom-
in amplitude for the A-attractive walls, we expect the A- mensurability effects as well; however, it may also involve a
attractive wall to have more influence over the enclosed B Competition between surface-induced microphase separation and

microdomains than the B-attractive wall. This is precisely what Pulk microphase separation. Simply stated, the wall will have
is illustrated in Figure 1. less influence over the central region for larger systems than
Even though the resulting microphases have similar lattice for smaller systems.
constants (i.e., nearest neighbor separations), as can be appreci- One could imagine that controllgd\ annealing from below
ated in Figure 2, the polymer architecture also dictates that the ((N)ust and ¢N)s to a final value aboveyfN)ust and §N)s
confinement scale for the A-attractive wall is smaller than for could “magnify” the effects of the hexagonal well on micro-
the neutral or B-attractive wall (see Figure 2). This smaller- domain ordering by allowing composition oscillations to slowly
scale confinement, coupled with the architectural dependenciesset in and eventually form a well-defined, partially microphase-
of surface-induced phase separation, suggests that the A-Separated surface layer, as referenced above.yNuér is
attractive wall will have more influence over the B microdomain Ccrossed, the surface layer will encourage further ordering, and
formation (and thus ordering), when compared to neutral or then once N)s is crossed, bulk microphase separation will
B-attractive walls. occur throughout the inside of the hexagon. We study such an
We have largely ignored the neutral wall up until this point. annealing situation below.
This is because the neutral wall appears to both quantitatively 3.2. AB Annealed Simulations. As mentioned above,
(Figure 1) and qualitatively (Figure 2) resemble the B-attractive composition oscillations appear near the boundary for values
wall. That is, the B segments are attracted to the neutral wall of yN below ¢N)ust. In Figure 5, we present representative
much like the B-attractive wall, and the size and width of the equilibrium density composition profiles for A-attractiveN
commensurability windows are similar for the neutral and = 17) and B-attractiveyqyN = —17) walls atyN = 12 andyN
B-attractive walls. = 14. Recall thatfN)ust ~ 14.75 for our system with= 0.7,
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so these values gfN correspond to the homogeneous (disor- (a)
dered) phase. With the exceptionyd, we used the exact same 05
system and simulation parameters discussed above. Each of N=17 e
these simulations were run at fixgdN for n; = 20 000 field 04
iterations. AtyN = 12, we observe composition oscillations
near the wall, even though the system has not undergone a bulk 03} li"}
microphase separation, andydt = 14, we identify well-defined o
microphase separation and ordering near the wall, again, even Vo2t
though the system has not undergone a bulk microphase |
separation. It is our hope to take advantage of surface-induced 0.4 | L |
composition oscillations, microphase separation, and ordering reayeed
by slowing annealing from below/N)ysr. 0 15 16 17 18 19 20 21 22 28
In order to further examine surface-induced microphase L
separation and ordering effects, we developed a (relatively) slow b
N annealing scheme. Specifically, we annegiétfrom yN (b)
= 12 < (xN)wmsT, through ¢N)mst and §N)s, to the final value 05 ZuN=0 —a—
of yN = 17. We incrementegN by 0.25 every 500 SCFT time
steps, beginning at = 500At and ending at 10 0Q%&. This 04t
annealing rate and step size allowed the system to fully relax
between steps igN; accordingly, on the time scale of th&\ A 03 |
increments, the system can be assumed to have reached a local Yoozl
equilibrium. After theyN annealing, we then further relaxed ’
the system using the standard SCFT saddle point search at fixed o1 | \ /\[
N = 17 until n; = 20 000. Well-defined surface-induced
microphase separation was observed during the anneal [much 0 L e
like the example presented in Figure 5b and Figure 5d], and 14 15 16 17 18 19 20 21 22 23
this ordered layer facilitated formation of a hexagonal lattice L
once §N)s was crossed and bulk microphase separation oc- (c)
curred. 05
The result of the annealing runs for an A-attractive wallN TuN=A7 e
= 17), a neutral wallyN = 0), and a B-attractive wall(,N 04}
= —17) are presented in Figure 6. We note that in all three i
cases theyN annealing increased the width of the com- 03 f \
mensurability window compared to those presented in section o i '&/-
3.1. For the A-attractive wall, the commensurability window is Yozt \,.1 / y
given by Ae1(17) = [15.75, 17.75]. For the neutral wall, the \
commensurability window is given b¥g1(0) = [17.25, 19.75]. 0.1 | i !
And finally, for the B-attractive wall, the commensurability L N
window is given by Aey(—17) = [17.75, 19.75]. TheyN Y T 6 7 16 v o 21 = =
annealing has effectively equalized the ordering effects of the L

A-attractive, neutral, and B-attractive walls. Figure 6. Graphs offldClvs L for an AB melt after ggN anneal from

For the annealed systems presented here, defects likely fornfrom random initial conditions agN = 12 to yN = 17 for (a) an
as the result of direct incommensurability conditions. That is, g':ggggzg V\\/lvﬂlllkzNN: 17), 1(% a;le;:au(\;\/ra'ggvcl\rl] = ggéaqﬂ e(rcg an_
for S”.‘a” .Or large SyStemS’ the elastic S.t.raln energy I.S too greatcommensurability v‘\,/vindow i inéidgwhich thereis a pen"ect array of
to maintain a perfect lattice for the specific hexagon side length, g1 hexagonally ordered microdomains.
and as a result microdomain defects form. If one were able to
minimize the energy of distortion associated with a highly yery similar to the those presented in Figure 6 for the AB melt;
incommensurate confining hexagon, perhaps the width of the however, there are a few important differences. First of all, each
commensurability window could be increased further. In the of the commensurability windows in Figure 7 are shifted to
next section, we examine the possibility of relieving chain larger values of hexagon side length This is because the
stretching in the majority block coronas with a majority-block atrix in the AB + A blend is swollen (as a result of the
homopolymer additiv'e., anq thus potentially increase the width presence of the A homopolymer), resulting in a larger average
of the commensurability window. NN distance for the ordered microphase. Specifically, with the

3.3. AB + A Annealed Simulations. In this section, we  addition of 20% A-homopolymer, the NN separations increased
examine the effects of adding an majority-block homopolymer by approximately 6% for the A-attractive wall, 10% for the
(i.e., A homopolymer) to the AB- wall system studied above.  neutral wall, and 8% for the B-attractive wall. In addition, the
The fraction of A homopolymer is fixed atn = 0.20 so that  commensurability window for the majority-block-attractive wall
20% of the melt is A homopolymer, and the A homopolymer (4N = 17), illustrated in Figure 7a, is considerably smaller than
length is selected to be = 0.35. Given the obvious advantages for the annealed AB melt, illustrated in Figure 6a. This is
of %N annealing, all simulations presented in this section were hecause the A homopolymer tends to aggregate along the wall,
run using theyN annealing scheme outlined in section 3.2.  producing an A-homopolymer surface layer. This layer is clearly

In Figure 7, we plotalvs L for the AB + A blend with a visible in Figure 8a. The A homopolymer aggregation along
A-attractive wall fwN = 17), a neutral wall®,N = 0), and an the wall hinders the effectiveness of the A homopolymer at
B-attractive wall £,N = —17). Qualitatively these results are reducing chain stretching in the microphase matrix. In fact, the
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(a) b and c, we can see that the commensurability windows for the
05 neutral and minority-block-attractive walls appear to be about
TN=17 e the same size as reported in section 3.2, albeit shifted to larger
04| ‘\-.bﬂ ] values ofL. Furthermore, the homopolymer appears to be evenly
! po= distributed inside the hexagon for the neutral and B-attractive
L 03} i i ] walls, as illustrated in Figure 8, parts b and c.
© ’3 ! The slight shift inL for the commensurability windows may
02} i i offer enough of a technological advantage to warrant incorpora-
’x § tion of majority-block homopolymer in real-world studies of
01 i 1 small-scale, lateral confinement of block copolymer systems
begma b it allows one to achieve a high level of ordering (as measured

with [60) with larger confining hexagons. We suspect that a
further shift and perhaps widening of the commensurability
windows can be achieved by some subtle tuning of the
(b) hompolymer lengthoe and segment fractiogn.

3.4. “Control” Case: 37 Enclosed Microdomains.In an
attempt to test the validity of our observations and conclusions
0471 ' ] for other small-scale confinement sizes, we ran a parallel set of

i\ simulations, using exactly the same system parameters, except
03y A W ] with a smaller hexagon size. The hexagon size was selected
| in order to yield seven rows of microdomains across the hexa-
;’ gon, or equivalently four microdomains along an edge. There
i" | are exactly 37 microdomains contained in such a confining
{

05 wa=0 ——

<0>

0.2

0.1 . . .
hexagon. In order to conserve computer time, the simulations

. L were carried out in a slightly smaller simulation space with
14 15 16 17 18 19 20 21 22 23 = Ly = 36 andny = ny, = 144. Otherwiseall system and

L simulation parameters were exactly the same as given above.
(c) In qualitative terms, our observations appear to carry over to

the case of 37 enclosed microdomains. We can see from Figure
XwN=-17 oo 9 that the relative positions and sizes of the commensurability
04l A windows, and the relative change in positions and sizes for the
'\j‘ } smaller confining hexagons agrees well with the observations

1 L reported in sections 3.1, 3.2, and 3.3.
’a,. | For this smaller system, we also ran a series of 100 quenched
i ' simulations (using 100 different random initial conditions) for

0.5

03

<0>

0.2 i
X an A-attractive wall and a confining hexagon with= 13.00

i

01} ! J in the center of the commensurability window. Again, all other
| system and simulation parameters were the same as outlined
0 _— above. The observed values of the standard deviation of nearest

415 16 17 18 19 20 21 2 23 neighbor separations for the 100 different initial conditions
Figure 7. Graphs ofiglivs L for an AB + A blend after gyN anneal were id.enticall, and perfect 0rdering was achieved in each
from random initial conditions ayN = 12 to yN = 17 for (a) an realization. This gives strong evidence that the observed order
A-attractive wall §,,N = 17), (b) a neutral wall,N = 0), and (c) an inside of the confining hexagon is highly reproducible.
B-attractive wall gw,N = —17). Again, for each case, there is a 3.5. Fluctuations. In this study, we used the mean-field,
ggm@s;;ggzﬁy'%’rgvé?ggvyn'i'grg'(féﬁa‘a’g_ch there is a perfect array of  gopy approximation to simplify our model. However, this

approximation ignores (composition) field fluctuations that are

aggregation appears to actually reduce the width of the com- otherwise present in the theory and are observable experimen-
mensurability window. On the other hand, from Figure 7, parts tally, e.g., near the ordetdisorder transition. It is quite possible

Figure 8. Representative composition profiles for an ABA + wall system (lighter shades correspond to larger valuggapfthe A homopolymer

fraction) with (a) an A-attractive wall witlh = 17.50, (b) a neutral wall with = 19.75, and (c) a B-attractive wall with = 20.25. The absolute

shading is not important here, just the relative shading in each frame. In frame a, the area with the highest concentration of light shading is along
the hexagon wall. This indicates that the A homopolymer is aggregating along the A attractive wall. For frames b and c, the A homopolymer
concentration distribution appears to be much more uniform throughout the microphase matrix.
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Figure 9. Graphs oflé0vs L for various AB and AB+ A systems with 37 enclosed microdomains (instead of the 61 enclosed microdomains
reported in sections 3.1, 3.2, and 3.3). The first columncjacorresponds to the case presented in section 3.1 and Figure 1 for an AB melt
qguenched tgyN = 17 with (a) an A-attractive wall, (b) a neutral wall, and (c) a B-attractive wall. The second colunipddrresponds to the case
presented in section 3.2 and Figure 6 for an AB melt annealed fférF 12 toyN = 17 with (d) an A-attractive wall, (e) a neutral wall, and (f)

a B-attractive wall. The third column {g) corresponds to the case presented in section 3.3 and Figure 7 for anABlend annealed fromN

= 12 toyN = 17 with (g) an A-attractive wall, (h) a neutral wall, and (i) a B-attractive wall.

that composition fluctuations could affect the commensurability ~ For a quench tgyN = 17, a majority-block-attractive wall
windows identified in this paper. For example, field fluctuations (in our case the A-attractive) had a larger effect on the ordering
can serve to populate, as well as provide a path for escape frompf the resulting microdomains than a neutral or minority-block-
low-energy defect structures. This competition could have an attractive wall. Specifically, for an A-attractive wall, the width
influence on the widths of the commensurability windows. In of the commensurability window was 2.5 times larger than for
any event, the importance of fluctuations can be systematically the B-attractive wall and five times larger than for the neutral
controlled by varying theC parameter of section 2.1 (which  wall. This difference can be explained by examining the effects
varies with molecular weight a8 ~ NY?) and eliminated in of surface-induced microphase separation phenomena near the
the C — oo limit where the saddle point approximation becomes MST and the spinodal.

exact. For cases of f|n|té:, fluctuation effects could be Controlled temperature annea"ng from belchIMST to a
incorporated by implementing Monte Carlo or complex Lan-  final value of yN = 17 appears to equalize the effects of
gevin field-theoretic polymer simulation technigisSuch A-attractive, neutral, and B-attractive walls on ordering. This
simulation techniques, however, require considerably more can be explained by observing the effects of significant
computational resources than the SCFT methods utilized here-composition oscillations that form belowN)ust and, in turn,

. encourage improved ordering of the microphase once the bulk
4. Conclusion MST is crossed.

We have examined the effects of small-scale, hexagonal, An A homopolymer (majority block) additive was examined
lateral confinement on ordering and defect formation in SCFT as a means to increase the width of the commensurability
simulations of cylinder-forming block copolymer thin films. The windows. While no appreciable change in commensurability
confining well was modeled as a fixed density field that window width was observed for the 20% A homopolymer
interacted with the segments via the melt incompressibility employed in our study, the added A homopolymer shifted the
constraint and a Flory-type interaction term. commensurability windows to larger values lof
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in this paper.
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