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Phase field modeling of electrochemistry. I. Equilibrium
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A diffuse interface~phase field! model for an electrochemical system is developed. We describe the minimal
set of components needed to model an electrochemical interface and present a variational derivation of the
governing equations. With a simple set of assumptions: mass and volume constraints, Poisson’s equation, ideal
solution thermodynamics in the bulk, and a simple description of the competing energies in the interface, the
model captures the charge separation associated with the equilibrium double layer at the electrochemical
interface. The decay of the electrostatic potential in the electrolyte agrees with the classical Gouy-Chapman
and Debye-Hu¨ckel theories. We calculate the surface free energy, surface charge, and differential capacitance
as functions of potential and find qualitative agreement between the model and existing theories and experi-
ments. In particular, the differential capacitance curves exhibit complex shapes with multiple extrema, as
exhibited in many electrochemical systems.
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I. INTRODUCTION

We develop a phase field model of an electrochem
system. The method employs a phase field variable, whic
a function of position and time, to describe whether the m
terial is in one phase or another~i.e., the electrode or elec
trolyte!. The behavior of this variable is governed by a p
tial differential equation~PDE! that is coupled to the relevan
transport equations for the material. The interface betw
the phases is described by smooth but highly locali
changes of this variable. This approach avoids the m
ematically difficult problem of applying boundary condition
at an interface whose location is part of the unknown so
tion. The phase field method is powerful because it ea
treats complex interface shapes and topology changes.
long range goal of the approach is to treat the complex
ometry, including void formation, which occurs during pla
ing in vias and trenches for on-chip metallization@1#.

Early models of the electrochemical interface, develop
by Gouy, Chapman, and Stern@2–5# focused on the distribu
tion of charges in the electrolyte. These models, which
sume that the charges have a Boltzmann distribution and
subject to Poisson’s equation, are summarized in Appen
D. More recently, density functional models have been
plied to the equilibrium electrochemical interface@6,7#.
These atomic scale models describe the electrolyte with
tribution functions which have maxima at the positions of t
atoms and take the electrode to be a hard, idealized sur
The equilibrium distribution of electrons and ions are co
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puted in these models and relationships between poten
charge, surface free energy, and capacitance are obtaine
kinetic modeling is performed in these papers. Phase fi
models can be viewed as a mean field approximation
atomic scale density functional theories@8–10#, and the two
methods often make similar predictions.

The phase field method has been used widely for sol
fication @8,9#. The present approach is motivated by t
mathematical analogy between the governing equation
solidification dynamics and electroplating dynamics. For e
ample, the solid-melt interface is analogous to the electro
electrolyte interface. The various overpotentials of elect
chemistry have analogies with the supercoolings of al
solidification: diffusional~constitutional!, curvature, and in-
terface attachment. Dendrites can form during solidificat
and during electroplating. It is not surprising, however, th
we find significant differences between the two systems. T
crucial presence of charged species in electrochemistry le
to rich interactions between concentration, electrostatic
tential, and phase stability.

We first pick a minimal set of components required
describe the possible composition variations from the e
trode to the electrolyte through the electrochemical interfa
Next we define concentration and mole fraction variabl
Then a variational principle is used to establish a set
PDE’s that govern equilibrium interfaces. In a second pa
@11#, we explore dynamic solutions to the phase field eq
tions.

Given a minimal set of assumptions, the model predi
the charge separation associated with the equilibrium dou
layer at the electrochemical interface. Changes in surf
potential induce changes in surface free energy~electrocap-
illary curves!, surface charge, and differential capacitan
The decay length of charge in the electrolyte as a function
electrolyte concentration is consistent with the Deby
03-1
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Hückel theory. The parameters of the phase field model
related to the physical parameters of traditional electroch
istry. The results are compared to the classic Go
Chapman-Stern model of the electrified interface as wel
to experimental capacitance curves@12,13#.

II. MODEL FORMULATION

A. Choice of components, phases, and molar volumes

To treat an electrochemical system, we consider a se
components consisting of cations, anions, and electrons
will refer to the metallic conducting electrode phase asa and
the ionic conducting electrolyte phase asb. In this diffuse
interface model, the concentrations of the components
vary smoothly through the interfacial region. The electro
will be considered a phase of primarily two componen
electronse2 ~component 1! and cationsM 1m ~component
2!. The electrolyte will be considered a phase of primar
three components; more noble cationsM 1m ~component 2!,
less noble cationsN1n ~component 3!, and anionsA2a

~component 4!. A model aqueous electrolyte can be cons
ered as a special case by settingn50. The primary charge
transfer reaction for this system is

M 1m~b!1me2~a!
M ~a!. ~1!

All ions are treated as substitutional species with ident
partial molar volumesV̄s . Electrons are treated as an inte
stitial species with zero partial molar volume. The interstit
nature is necessary to recover Ohmic behavior in the e
trode phase. In reality, the partial molar volumes of the s
stitutional components should depend at least on the spe
and phase, but this variation leads to deformation and fl
which are not the focus of this work. We employ mole fra
tionsXj of each componentj that have the conventional defi
nition, such that

(
j 51

n

Xj51, ~2!

wheren54 for the four-component system we consider
this paper. The molar volume varies because the mole f
tions of the components vary from one phase, through
interface, and into the other phase. At each point it is giv
by

Vm5(
j 51

n

V̄jXj5V̄s(
j 52

n

Xj , ~3!

whereV̄j is the partial molar volume of each componentj,
( j 51

n is the sum over all components, and( j 52
n is the sum

over all substitutional components. The mole per volu
concentrations are defined asCj[Xj /Vm , such that

(
j 51

n

V̄jCj5V̄s(
j 52

n

Cj51. ~4!
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Picking one componentj 5n with V̄n5V̄sÞ0, we can al-
ways express its concentration in terms of the others asCn

51/V̄s2( j 52
n21Cj .

B. Equilibrium

We propose a Helmholtz free energy for an isotherm
system of charged components,

F~j,C1 ,...,Cn ,f!5E
V
S f V~j,C1 ,...,Cn!1

kj

2
u“ju2

1
1

2
rf DdV, ~5!

integrated over the volumeV, wheref V is the Helmholtz free
energy per unit volume,j is the phase field variable,f is the
electrostatic potential,kj is the gradient energy coefficien
for the phase field,

r[F(
j 51

n

zjCj ~6!

is the charge density,zj is the valence of componentj ~equiv/
mol or charge units per ion!, and F is Faraday’s constant
The first term in the integral of Eq.~5! represents the energ
density of a system without gradients and with no cha
interactions, the second represents the gradient energy w
out electrostatic effects, and the third represents the elec
static energy.

There are three constraints on the field variables of
system. The total number of moles (nj ) of each speciesj
must be conserved over the volumeV,

nj5E
V
CjdV5VC̄j , j 51,...,n, ~7!

whereC̄j is the average concentration of speciesj. In addi-
tion, Eq. ~4! and Poisson’s equation

“•@e~j!“f#1r50 ~8!

must be satisfied at every point in the system.e~j! is the
electrical permittivity, whose value we take to explicitly d
pend on the phase. Since the phase field is coupled to
other variables, there is also an implicit dependence on
concentrations of different species in the electrolyte.

We note that by invoking Poisson’s equation~8!, the elec-
trostatic energy term in Eq.~5!, given by ~1/2!rf, could
equivalently be represented as (1/2)D•E, one-half the scalar
product of the displacement and the electric field of elect
magnetic theory, or as (e/2)u“fu2. In this third form, we see
that the electrostatic energy density is completely analog
to the phase field gradient energy density.

We perform a variational analysis on the resulting L
grangian
3-2
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PHASE FIELD MODELING OF . . . . I. . . . PHYSICAL REVIEW E69, 021603 ~2004!
L5F2E
V
lV~x!S (

j 51

n

V̄jCj21D dV2(
j 51

n

l jE
V
~Cj2C̄j !dV

2E
V
lf~x!$“•@e~j!“f#1r%dV, ~9!

where we have introduced the Lagrange multiplierslV(x),
l j , andlf(x) for the constraints~4!, ~7!, and~8! @note that
the requirement that Eqs.~4! and~8! be satisfied everywher
in the system means thatlV and lf must be fields#. At
equilibrium, each of the variations ofL must be indepen-
dently zero,

dL
dCj

505
] f V

]Cj
1

1

2
Fzjf2l j2Fzjlf2lVV̄j , ~10a!

j 51,...,n,

dL
dj

505
] f V

]j
2kj¹

2j1e8~j!“lf“f, ~10b!

dL
df

505
1

2
r2“•@e~j!“lf#. ~10c!

Using Poisson’s equation to eliminater in Eq. ~10c!, we
determine thatlf52f/2. Here we have assumed that t
natural boundary conditions 05]j/]n5]f/]n5]lf /]n
hold on the boundary ofV. Substituting this result into Eq
~10a!,

l j5
] f V

]Cj
1Fzjf2lV~x!V̄j , j 51,...,n. ~11!

Since V̄e250 and V̄j5V̄s for all substitutional species, w
can eliminatelV(x).

We thus can summarize the equilibrium governing eq
tions as

l jn5l j2
V̄j

V̄s

ln5F ] f V

]Cj

1FzjfG2
V̄j

V̄s

F ] f V

]Cn

1FznfG
5const, j 51,...,n21, ~12a!

05
] f V

]j
2kj¹

2j2
e8~j!

2
~“f!2 ~12b!

05“•@e~j!“f#1r. ~12c!

It is convenient to identify the classical chemical pote
tials

m j5
] f V

]Cj
, j 51,...,n ~13!

and the classical electrochemical potentials

m̄ j5
] f V

]Cj
1Fzjf, j 51,...,n, ~14!
02160
-
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such that Eq.~12a! becomes

m̄ j2
V̄j

V̄s

m̄n5const. ~15!

In Appendix A we show that, in one dimension,

m̄ j5m̄ j
`1V̄j S kj

2
jx

22
e~j!

2
fx

2D , j 51,...,n, ~16!

wherem̄ j
` is the electrochemical potential far from the inte

face. First, we note that far from the interface, where“j
5“f50, the values of the electrochemical potentials
each componentj are identical in each phase, in agreeme
with Gibbsean thermodynamics@14#,

m̄ j
a5m̄ j

b , j 51,...,n. ~17!

Second, the electrochemical potential ofe2 is uniform
throughout the system. For the substitutional compone
the electrochemical potential varies through the interfa
even though the values in the bulk phases are equal. Bec
“f50 is far from the interface, in the absence of extern
charges, Eq.~12c! requires that charge is zero in the bu
phases, such that

(
j 51

n

zjXj
a5(

j 51

n

zjXj
b50. ~18!

III. INTERFACIAL PROPERTIES

From electrocapillary theory@2#, we know that surface
free energyg, excess charge on the electrodesa, and differ-
ential capacitanceCd are related by

sa52S ]g

]Df D
m j

, ~19!

Cd[S ]sa

]Df D
m j

52S ]2g

]Df2D
m j

, ~20!

where Df5fa2fb is the applied potential differenc
across the interface.1 The potential in the electrolyte far from
the interface isfb and that in the electrode isfa. In a
perfect conductorfa is uniform throughout the phase. Th
variation at constant chemical potential~constant concentra
tion! is difficult to perform with physical electrode
electrolyte systems. In general, this variation can only
performed experimentally for an inert system such as a m
cury electrode against an aqueous electrolyte. We see
determine whether these relationships hold for our ph
field model.

1In classical electrochemistry, the actual differences in elec
static potential across the interface is called the ‘‘inner’’ or ‘‘Ga
vani’’ potential difference.
3-3
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In Appendix B, we derive the expression for the surfa
free energy,

g5E
2`

`

@kjjx
22e~j!fx

2#dx. ~21!

The first term in the integrand represents the contribution
the nonelectrified interface. The second term is the contr
tion of electrostatics, such that the presence of electric fie
always reduces the surface free energy from its charge-
value. In Appendix C we obtain the relationship

sa52S ]g

]Df +D
m j

~22!

if sa is defined by

sa[E
2`

`

p~j!rdx, ~23!

which is a completely reasonable definition of the surfa
charge on the electrode.p(j) is an interpolation function tha
will be described in Sec. IV A; in short,p(j)51 in the elec-
trode andp(j)50 in the electrolyte. The notationDf + dif-
fers from that in Eqs.~19! and~20!. Df + refers to a materials
property of the electrode-electrolyte system, as we will d
cuss in Sec. IV B.~The superscript degree symbol denote
quantity evaluated in its standard state. ThusDf + is the Gal-
vani potential difference across the interface when b
phases are in their standard states.! Because we consider
noninert electrode, we cannot vary the applied poten
without affecting the concentration in the electrolyte. T
variation considered in Eq.~22! is actually a variation with
respect to a changing material property, rather than an
plied potential. The differential capacitance is then defin
to be

Cd[S ]sa

]Df +D
m j

. ~24!

We note that a curved interface exhibits an additional re
tionship between surface free energy, surface concentra
and the interfacial potential drop, consistent with the Gib
Thomson effect@15#.

IV. THERMODYNAMIC FUNCTIONS AND MATERIAL
PARAMETERS

To make the results of the phase field model more c
crete and to permit numerical calculations, we must choo
particular form of the thermodynamic function and the m
terial parameters, at which point the model will be ful
specified.
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A. Choice of form of the thermodynamic function

For simplicity, we assume that the chemical part of t
Helmholtz free energy per unit volume is described by
interpolation of two ideal solutions of the components for t
electrode and electrolyte.

f V~j,C1 ,...,Cn!5
1

Vm
f m~j,X1 ,...,Xn!5(

j 51

n

Cj$m j
+ap~j!

1m j
+b@12p~j!#1RT ln CjVm

1Wjg~j!%, ~25!

wherem j
+a andm j

+b are the chemical potentials of pure com
ponent j in the electrode~metal! phase and the electrolyt
phase, respectively,R is the molar gas constant, andT is the
temperature. Following many phase field models of solid
cation @16#, we use an interpolating functionp(j)5j3(6j2

215j110) to bridge between the descriptions of the tw
bulk phases and a double-well functiong(j)5j2(12j)2

with a barrier height ofWj for each componentj to establish
the metal/electrolyte interface. The barrier heightsWj penal-
ize interfaces which are too broad and the gradient ene
coefficientkj penalizes interfaces which are too narrow. T
polynomials are chosen to have the properties thatp(0)
50, p(1)51, p8(0)5p8(1)50, and g8(0)5g8(1)50.
Other functions could be used.

For use in Eq.~12b!, this free energy leads to

] f V

]j
5p8~j!(

j 51

n

CjDm j
+1g8~j!(

j 51

n

CjWj , ~26!

whereDm j
+[m j

+a2m j
+b .

The quantity] f V /]Cj is also computed to give the elec
trochemical potentials,

m̄ j5m j
+b1Dm j

+p~j!1RT ln CjVm1zjFf1Wjg~j!,

j 51,...,n. ~27!

We note that them̄ j depend on all theCj through the molar
volumeVm .

B. Standard chemical potentials

We require values for the parametersDm j
+ for each of the

n species in our model in order to perform numerical calc
lations with the ideal solution thermodynamic model e
ployed here. Given these numbers, we will know how t
bulk electrode and electrolyte concentrations vary with
potential difference across the interface. From the equalit
the bulk electrochemical potentials@Eq. ~17!# and the ideal
solution form of the electrochemical potential@Eq. ~27!#,

Df52
Dm j

+

zjF 1
RT

zjF ln
Xj

b

Xj
a j 51,...,n, ~28!

where the mole fractions are constrained by charge neutr
of the bulk phases@Eq. ~18!# and the ordinary definition of
the mole fractions@Eq. ~2!#.
3-4
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One procedure to obtain information about theDm j
+ is to

specify one set of concentrations that are at equilibrium,Xj
a+

andXj
b+ . With such a set we can only determine three line

combinations ofDm j
+ . Given these three linear combina

tions, we cannot determine the potential difference across
interface, but we can calculate how the bulk electrode
electrolyte concentrations vary with changes in the poten
difference across the interface. In other words, the poten
difference can only be described with respect to a refere
electrode. Although knowledge of the potential differen
between the phases is not necessary to describe the
equilibrium, it is necessary if one is interested in modeli
the charge distribution between the electrode and electro
We will designateDf + as the potential difference across t
interface for the mole fractionsXj

a+ andXj
b+ , such that

Dm j
+5RT ln

Xj
b+

Xj
a+2zjFDf +, j 51,...,n. ~29!

Thus all four values ofDm j
+ can be computed. The quantit

Df + is a material property that is fixed for a given choice
electrode and electrolyte system.

In traditional electrochemistry, one takes the referen
mole fractions of the electroinactive species to be zero in
phase or the other, e.g.,Xe2

+b
5XA2

+a
50. One would then only

equate the electrochemical potentials between the b
phases of the electroactive speciesM 1m and N1n. In this
case it can be shown that

EM1m
+

2EN1n
+

52S DmM1m
+

mF 2
DmN1n

+

nF D , ~30!

where the standard potentialsEM1m
+ are EN1n

+ are obtained
from a table of electromotive series. Equation~30! would be
adequate to describe the concentration variations betwee
bulk phases.

For numerical purposes, we must assume small but n
zero values for the reference concentrations of the electr
active species, equivalent to assuming large~positive or
negative!, but finite, values for their standard potentials.
reality these concentrations are not zero, as might be i
cated by an electrolyte with electronic conductivity or
electrode with some anion solubility@2,17,18#.

In the remainder of the paper, we perform a detailed eq
librium analysis for an electrolyte where the componentN
has no charge, like an aqueous system (N5H2O) where dis-
sociation of H2O is neglected.2 The lower density of charged
species in an unsupported ‘‘aqueous’’ electrolyte allows u
resolve the equilibrium interface more accurately than i
system where all species can carry charge. Our paper on
dynamic behavior of the electrochemical phase field mo
@11# will treat the case ofN with charge. The bulk standar
state mole fractions are chosen for an electrode ofM metal
and an electrolyte of a solution containing 1 mol/L ofM 12

2The dissociation of H2O could be handled by the addition o
another component.
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andA22 in a N solvent. We take the partial molar volume o
the ‘‘substitutional’’ components (M 12, A22, andN! as that
for pure water; i.e.,V̄s50.018 L/mol or 1/V̄s555.6 mol/L.
The voltage-independent portion of the chemical poten
differences are given in Table I. The values for the electro
active species are chosen to limit the corresponding stan
state mole fractions toXe2

b+
5XA22

a+
5XN

a+51026.
Bulk charge neutrality can be invoked to transform t

four mole fraction variablesXe2, XM12, XA22, andXN into
mole fractions of three charge-neutral compounds,XM
[3/2Xe2, XMA[2XA22, andXN . We plot the equilibrium
phase diagram in terms of these transformed mole frac
coordinates in Fig. 1. Equilibrium states exist only betwe
20.0898 V,Df,10.0427 V. It can be seen that the ele
trode remains essentially pureM (XM12

a
51/3,Xe2

a
52/3)

over the entire voltage range. At the lowerDf limit, the
electrolyte is essentially pureN (XN

b51). At the upperDf
limit, the electrolyte is pureMA (XM12

b
51/2,XA22

b
51/2).

C. Other parameters

A simplification, which should be eliminated in futur
work, is employed for the barrier heightWj . We set equal
values for the substitutional speciesWj P2,...,n5W, and the
value for the electrons,We250. This makes the last term in
Eq. ~26! independent ofCj and eliminates theWj depen-
dence in Eq.~12a!.

In phase field models of solidification, where electrosta
effects are not included, the surface free energygj and the
interfacial thicknessdj ~of the j field! are given@19# by

gj5AkjW

18V̄s

, ~31!

dj5AkjV̄s

2W
. ~32!

We include the subscriptj with the realization that there wil
be an electrostatic contribution to the surface free ene
@see Eq.~21!# and an independent electrostatic length sca
For numerical calculations, we choose the approximate
ues of gj50.2 J/m2 and dj53310211 m, which give W
53.63105 J/mol and kj53.6310211 J/m. In reality, we
would not expect a metallic electrode to have the same
mittivity as an aqueous electrolyte. Moreover, the permitt
ity of the electrolyte is known to be lower near the interfa
than in the bulk as a result of the polarization in the dou

TABLE I. Numerical values of the potential-independent po
tion of the chemical potential differencesDm j

+ .

ln(Xj
b +/Xj

a +)

e2 213.41
M 12 22.919
A22 9.798
N 13.78
3-5
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layer @4,6#. While the variation in the permittivity undoubt
edly affects the structure of the interface, our goal in t
paper is to show the richness obtained from a phase
model with even the simplest assumptions. We defer exa
nation of phase and concentration dependence of the pe
tivity to future work, and takee(j)578.49e0 , wheree0 is
the permittivity of free space. This is the value typically cit
for an aqueous electrolyte@2#.

V. NUMERICAL METHODS

Numerical solutions to the governing equations@Eq. ~12!#
were obtained by both a relaxation method and a ps
dospectral technique on a one-dimensional domain of len
L. The relaxation method had the advantages that it
simple to code and would eventually converge to a solut
even from a step-function initial condition. The main disa
vantage of the technique is that it is very slow. Run times
several hours to several days were needed to reach co
gence on a 1.6-GHz AMD Athlon running Debian GNU
Linux v3.0 with a 2.4 kernel and using the Portland Gro
pgcc compiler.3 In contrast, the pseudospectral technique c
produce solutions in a few minutes, but only from a ve
good initial guess.

A. Relaxation

Relaxation solutions@20# to Eq. ~12! were obtained by
casting the equilibrium ordinary differential equations~12a!
and ~12b! as the time dependent partial differential equ
tions,

]Cj

]t
5“•H M j“

dL
dCj

J 5“•H M j“F m̄ j2
V̄j

V̄n

m̄nG J ,

~33a!

j 51,...,n21

and

]j

]t
52M j

dL
dj

52M jF] f V

]j
2kj¹

2j2
e8~j!

2
~“f!2G ,

~33b!

wheret is time,M j is the mobility of componentj, andM j is
the mobility of the phase field. We defer discussion of t
mobilities M j andM j to our paper on kinetics@11# as their
values are not important to the present analysis of elec
chemical equilibrium. Equations~33! are the simplest ex
pressions that guarantee a decrease in total free energy
time. Poisson’s equation~12c! must still be satisfied every
where. Equations~12c! and ~33! were solved with explicit
finite differences. Spatial derivatives were taken to sec

3Certain commercial products are identified in this paper in or
to adequately specify procedures being described. In no case
such identification imply recommendation or endorsement by
National Institute of Standards and Technology, nor does it im
the material identified is necessarily the best for the purpose.
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order on a uniform mesh. Solutions were integrated to eq
librium with an adaptive, fifth-order Runge-Kutta time ste
per @20#. We defined equilibrium as the point when Eq
~12a! and ~A6! were satisfied to within 0.1%.

Simulations were started with an abrupt interface betw
the bulk electrode and electrolyte phases, such thatja51
and jb50. After choosing a value forCM1

b , the remaining
bulk Cj were determined from Fig. 1. Becauser50 for the
bulk concentrations, Eq.~12c! gives“f50 throughout the
domain for the initial data. The boundary conditions a
listed in Table II.

B. Adaptive pseudospectral discretization

In order to increase the numerical resolution of the int
facial region, we have also employed an adaptive solut
technique based on a spectral approximation@21# to the gov-
erning equations~12!. To reduce the number of unknowns
the system, we eliminate the solute variables by solving
governing equations~12a!, together with the constraint equa
tion ~4!. Given values ofj andf at a point, this provides an
algebraic form for the solute fieldsCj at this point. The

r
es
e
y

TABLE II. Boundary conditions.

Electrode (x50) Electrolyte (x5L)

n•“j50 n•“j50
f50 n•“f50

Cj specified Cj specified

FIG. 1. Potential-composition phase diagram for the parame
in Table I, illustrating the bulk equilibrium between aM electrode
and aN electrolyte with dissolvedMA salt. Tie lines denote differ-
ent values of the quantity (Df2Df +). The inset shows the position
of this charge neutral phase diagram within the quaternary dom
of the charged species.
3-6
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FIG. 2. Profiles through the interface of~a!
the phase field variable,~b! the normalized elec-
trostatic potential, and~c! the normalized charge
distribution forDf°520.1 V, 0 V, and10.1 V.
g(j) is mapped onto the background in gray
indicate the location of the phase field interfac
The tick marks at the top of~a! indicate the po-
sitions of the mesh points for the two differen
solution methods.
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remaining equations~12b! and ~12c! are discretized using a
pseudospectral formulation of a spectral element represe
tion of the second derivative@22#. It is convenient to fix the
interface location by specifyingj(xI)51/2 at a given grid
point xI . The discretization procedure then provides a se
nonlinear equations with an equal number of unknowns. T
nonlinear equations are solved using the quasi-Newton s
ware packageSNSQ @23#. Starting estimates for the solutio
procedure are generally obtained by continuation from
finite difference procedure described above, or from previ
pseudospectral solutions.

An adaptive procedure is obtained by bisecting the e
ments for which an error estimate indicates that additio
refinement is necessary. The error estimate is based on
rate of decay of a Chebyshev expansion of the solution c
ponents; a simple criterion is based on requiring the ma
tude of the last two coefficients of the charge density in e
panel to lie below a given threshold. If a refinement is n
essary, the element is bisected and the previous solutio
interpolated to the nodes of the new panels. The nonlin
equations are then solved on the new nodes, and the pr
dure is repeated until each Chebyshev expansion has r
decay, indicating that the solution is well resolved on ea
panel. Since the previous solution provides a good star
guess, the successive solutions converge quickly, and
overall run time is a small multiple of the time required for
single solution step on a grid with equal pseudospectral
ments.

VI. NUMERICAL RESULTS

Figure 2 shows plots of phase field, voltage, and cha
across the interface forDf°5(20.1,0,10.1) V obtained
using the relaxation method in one dimension~1D! over a
domain 3.2 nm long and containing 1200 mesh points. T
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tick marks at the top of Fig. 2~a! indicate the positions of the
mesh points used in the two different solution methods. T
fields calculated by the relaxation and the pseudospec
methods are indistinguishable on the scale of these gra
so we apply a linear correlation function to compare the c
culation methods. The two methods have a linear correla
of 0.9992 for the most sensitive fieldr; the other fields have
a linear correlation of 0.9999 or better. The difference b
tween the two methods for the most sensitive field is thus
the same order as the criterion for stopping the relaxa
calculations@,0.1% error in Eqs.~12a! and ~A6!#; all other
fields are much closer to convergence.

Figure 2 focuses on the interface region of this compu
tional domain. The bulk concentration ofM 1 andA2 in the
electrolyte is 0.25 mol/L. The variation ofj between the
electrode on the left and the electrolyte on the right for
three cases is virtually identical. A fit of all three curves
j(x)5$12tanh@(x2x0)/2dj#%/2 gives dj5(2.48060.009)
310211 m, which compares well with the value we assum
in Sec. IV C.j changes from 0.9 to 0.1 over a distance
approximately 0.1 nm or 4dj . This represents the thicknes
of the electrode-electrolyte interface. The voltagef changes
smoothly between a value of zero in the electrode~as as-
sumed! to an asymptotic value in the electrolyte far from th
interface equal to (RT/2F)ln@(1 mol/L)/(0.25 mol/L)#
2Df°. The charger, while zero far from the interfacia
region exhibits a distinct charge separation within the int
facial region. The charge distribution is quite different for t
three cases. ForDf°520.1 V and 0.0 V, a negative charg
is present to the left. ForDf°510.1 V, the negative charge
is to the right. Figure 3 shows the variation in the concent
tions from the electrode to the electrolyte. The values at
ends of the full computational domain correspond to a b
M electrode, a 0.25 mol/LMA in N electrolyte, with impu-
3-7
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FIG. 3. Normalized concentration profile
through the interface for different values ofDf°.
g(j) is mapped onto the background in gray
indicate the location of the phase field interfac
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Fig.
a-
he
ter
rities as allowed by Table I. The abrupt change in concen
tions through the distance wherej is changing is followed by
a more gradual change in the electrolyte. The gradual c
centration decay length in the electrolyte is the same as
of the voltage. One could define the surface excess as
difference between the actual concentration and some in
polation between the bulk values, and see that there is
adsorption of the different species at the interface which
pends on the value ofDf°.

In Appendix D we summarize the Gouy-Chapman-St
model of the double layer. That treatment predicts an ex
nential decay of the potential in the electrolyte away fro
the electrode, with a decay length ofdf

GC. Figure 4 shows a
fit of the f vs distance plots from Fig. 2~b! to f5f`

1(f02f`)exp(2x/df). The fit is excellent. The deca
length df of f to its asymptotic value is very close to th
predicted value ofdf

GC. This length is over ten times large
thandj and approximately three times the apparent interf
thickness.

Figure 5~a! shows the surface free energy@from Eq. ~21!#
vs Df° and Fig. 5~b! shows a plot ofsa vs Df°, both ob-
tained by the two numerical methods. The point of ze
charge ~PZC!, defined by sa5sb50, occurs atDf°5
10.005 V for 1 mol/L andDf°510.035 V for 0.25 mol/L.
At the point of zero charge,r is not constant, nor is the
02160
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electrostatic potential, but rather, the integrated charge
zero in each phase and there is some potential step betw
them. We note that Grahame described exactly this condi
in his seminal paper on the electrochemical double layer@2#.
The presence of dipoles at the interface guarantees tha
potential will not be uniform. The surface charge cur
shows a slight deviation from linearity away from the poi
of zero charge. This dome shaped curve in Fig. 5~a! has a
maximum surface free energy of approximately 0.225 J/m2 at
a value ofDf°510.005 V, the point of zero charge. Thi
maximum surface free energy value is very close togj ,
which was used to establish numerical values forW andkj .
Figures 5~a! and 5~b! obey Eq.~19! very closely. The nega-
tive surface free energies obtained for large positive val
of Df° indicate that a planar interface will become unsta
to perturbations which increase surface area. Such pertu
tions are not possible given the symmetry constraints of
1D solutions, but attention will need to be paid to this wh
higher-dimensional calculations are performed.

From Eq.~20!, the differential capacitance is obtained
the derivative of Fig. 5~b! with respect toDf°. The relax-
ation method used to produce the open square points in
5~b! is not fast enough to allow calculating a numeric deriv
tive of sufficient resolution. We thus use the results of t
spectral method, which can compute with a much grea
to
e.
FIG. 4. Exponential fits~heavy dashed lines!
to potential curves of Fig. 2~b! ~light solid lines!.
g(j) is mapped onto the background in gray
indicate the location of the phase field interfac
3-8
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PHASE FIELD MODELING OF . . . . I. . . . PHYSICAL REVIEW E69, 021603 ~2004!
FIG. 5. ~a! Normalized surface free energy,~b! normalized sur-
face charge, and~c! normalized differential capacitance as functio
of normalizedDf°. Open symbols show calculations by the rela
ation method of Sec. V A. Lines show calculations by the ps
dospectral method of Sec. V B.
02160
resolution and over a wider range ofDf°, to calculate Fig.
5~c!.

Our calculated differential capacitance curve, replotted
Fig. 6~a!, does not resemble the hyperbolic cosine predic
by the Gouy-Chapman theory@x250 in Eq.~D5!#, shown in
Fig. 6~b!; neither does it resemble the truncated hyperbo
cosine predicted by the Gouy-Chapman-Stern theory@x2

Þ0 in Eq. ~D5!#, shown in Fig. 6~c! ~we take e/x2

55 F/m2 for illustration only!. On the other hand, it doe
bear a striking resemblance to experimental differential
pacitance curves@2,12,13#, such as Valette and Hamelin’
measurements of Ag electrodes in NaF aqueous soluti
shown in Fig. 6~d!. The density functional calculations o
Tang, Scriven, and Davis@7# also exhibit differential capaci-
tance curves with multiple inflection points.

VII. DISCUSSION AND CONCLUSIONS

This paper has explored the equilibrium structure of
electrified interface between two phases consisting
charged components, as described by a phase field m
Such a model, being a continuum description, adds only
bare essentials of the physics and chemistry of electroche
cal interfaces: mass and volume constraints, Poisson’s e
tion, ideal solution thermodynamics in the bulk, and a sim
description of the competing energies in the interface. D
spite this simple description, the model realizes the of
described behavior of the double layer; namely, the cha
separation at the interface and its dependence on vol
drop ~Galvani or inner potential! across the interface. As th
Galvani potential is varied at constant compositions of
electrode and electrolyte~constant chemical potentials!, the
model reproduces the well-known maximum of the surfa
free energy curve at the PZC. High precision pseudospec
-

f

r-

-

FIG. 6. Comparison of the dif-
ferential capacitance results of~a!
this model with the predictions o
~b! the Gouy-Chapman and~c!
Gouy-Chapman-Stern sharp inte
face theories outlined in Appendix
D and ~d! the experimental mea
surements of Ag~100! electrodes
in aqueous solutions of NaF@Re-
printed from G. Valette, J. Elec-
troanal. Chem.138, 37 ~1982!,
with permission from Elsevier#.
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GUYER et al. PHYSICAL REVIEW E 69, 021603 ~2004!
solutions of the governing equations also deliver differen
capacitance variations with Galvani potential, which exhi
much more complex and realistic behavior than do
simple Gouy-Chapman-Stern models. The full range of
havior encompassed by the model must await further
search. For example, the effect of unequal and/or nonz
barrier heightsWj for the components will surely affect th
adsorption and, in turn, the surface free energy and cap
tance curves.

A recent lattice-gas model of an electrochemical syst
@24,25# exhibits interfacial structures very similar to tho
found in this paper. The model also demonstrates simple d
drites during plating, but those lattice-gas papers do not
plore the electrocapillary behavior discussed in this pa
The similarities of the predictions between that discr
model and our continuum approach may permit a bridge
tween atomistic treatments of the electrochemical interf
and macroscopic descriptions of electroplating.

To model a real electrochemical system with this meth
one needs to match the parameters of the phase field m
to the experimentally determined~or the normally applied!
understanding of the particular electrochemical system
addition to kinetic parameters described in Ref.@11#, equi-
librium solutions require several pieces of information. A
minimum one requires~1! a description of the bulk thermo
dynamics of the electrode and electrolyte,~2! the dielectric
constant of the electrolyte and electrode,~3! an estimate for
the physical thickness of the electrode/electrolyte phase
terface,~4! the actual~Galvani! potential across the interfac
for some concentration of coexisting electrolyte and el
trode phases, and~5! the surface free energyor the capaci-
tance of the interface for these concentrations. Although
currently lack an analytical expression for the relation b
tween the phase field parameterskj andWj and the informa-
tion in points~3! and~5! above, the numerical results of th
paper show that they are connected. In the future,
asymptotic analysis of the governing equations may rev
these relationships directly. Finally, the nonideal solution
havior of the electrolyte, which may involve complexing
ions, should be addressed. Concentration would be repl
by presumably known activity coefficients.

Solution of the governing equations has proved difficu
The resolution of the charge through the interfacial reg
requires many more mesh points than typical of phase fi
models of solidification of binary alloys. This is due to th
more intricate structure of the charge distribution in the
terface as compared to the structure of the phase and con
tration fields. An adaptive solution method, which conce
trates mesh points in this interfacial region, perm
significantly improved calculation speed.
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APPENDIX A: FIRST INTEGRAL

Here we characterize a first integral of the steady-s
one-dimensional equilibrium equations, and use it to obt
an expression for the surface free energyg.

It is convenient to introduce the electrochemical free e
ergy density

f̄ V~j,C1 ,...,Cn ,f!5(
j 51

n

Cj m̄ j~j,C1 ,...,Cn ,f!.

~A1!

Herem̄ j5m j1zjFf5] f̄ V /]Cj is the electrochemical poten
tial of species j, and the charge density is given byr
5] f̄ V /]f. The steady-state one-dimensional equilibriu
equations can then be written compactly in terms off̄ V , and
assume the form

m̄ j2
V̄j

V̄s

m̄n5l jn , j 51,...,n21, ~A2a!

]F̄V

]j
2kjjxx2

e8~j!

2
fx

250, ~A2b!

] f̄ V

]f
1@e~j!fz#x50. ~A2c!

If we differentiate the electrochemical free energy dens
of the equilibrium solution with respect toj(x), Cj (x), and
f(x), we find

d

dx
f̄ V@j~x!,C1~x!,...,Cn~x!,f~x!#

5
] f̄ V

]j
j8~x!1(

j 51

n
] f̄ V

]Cj

Cj8~x!1
] f̄ V

]f
f8~x!

5j8~x!Fkjjxx1
e8~j!

2
fx

2G1 (
j 51

n21 F m̄ j2
V̄j

V̄s

m̄nGCj8~x!

2f8~x!@e~j!fx#x , ~A3!

where we have used the volume constraint@Eq. ~4!# and the
governing equations~A2! to eliminate the partial derivative
of f̄ V . This expression can be simplified to give

d

dx F f̄ V@j~x!,C1~x!,...,Cn~x!,f~x!#2 (
j 51

n21

l jnCj2
kj

2
jx

2

1
e~j!

2
fx

2G50. ~A4!

Since, from Eqs.~4! and ~A1! we have
3-10
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f̄ V@j~x!,C1~x!,...,Cn ,f~x!#5 (
j 51

n21 F m̄ j2
V̄j

V̄s

m̄nGCj1
m̄n

V̄s

5 (
j 51

n21

l jnCj1
m̄n

V̄s

, ~A5!

we may write the first integral represented by Eq.~A4! in the
form

m̄n

V̄s

2
kj

2
jx

21
e~j!

2
fx

25const5
m̄n

`

V̄s

, ~A6!

where we have evaluated the integration constant in the
field wherejx5fx50 andm̄n5m̄n

` . In view of Eq. ~A2a!,
we therefore find that the electrochemical potentials of
substitutional species vary through the interface, with

m̄ j5m̄ j
`1V̄j S kj

2
jx

22
e~j!

2
fx

2D , j 51,...,n. ~16!

The interstitial species, withV̄j50, thus have uniform elec
trochemical potentials.

An alternative form of the free energy functional of E
~5! takes the form4

F~j,C1 ,...,Cn ,f!5E
V
F f̄ V~j,C1 ,...,Cn ,f!1

kj

2
u“ju2

2
e~j!

2
u“fu2GdV. ~A7!

APPENDIX B: SURFACE FREE ENERGY

A conventional definition of the surface free energyg of a
planar interface at equilibrium between two isothermal, m
ticomponent, fluid phases, with no electrical effects or v
ume constraints, is to write@27#

F5(
j 51

n

m j
`nj2P`V1gA, ~B1!

whereP` is the far field value of the pressureP. The inter-
face is located in the interior of the region2L/2,x,L/2
and the free energy is

F5AE
2L/2

L/2

f Vdx5AE
2L/2

L/2 S (
j 51

n

m jCj2PD dx. ~B2!

In our model of the electrolyte-electrode equilibrium, w
are neglecting the pressure term in Eqs.~B1! and ~B2!, and
including a volume constraint and the effects of an elec

4Here we have used the identity*rfdx5*e(j)fx
2dx, which fol-

lows from the Poisson equation with appropriate boundary co
tions.
02160
ar

e
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field on charged components. The appropriate definition og
is analogous to Eq.~B1!, with

F5(
j 51

n

m̄ j
`nj1gA, ~B3!

andnj is defined by Eq.~7!. The surface free energy arise
from the variation in the substitutional electrochemical p
tentials across the interface. From Eq.~A7!

g5E
2L/2

L/2 F f̄ V2(
j 51

n

m̄ j
`Cj1

kj

2
jx

22
e~j!

2
fx

2Gdx. ~B4!

On substitution of Eqs.~A1! and ~16! into Eq. ~B4! we ob-
tain

g5E
2L/2

L/2

@kjjx
22e~j!fx

2#dx. ~21!

APPENDIX C: SURFACE CHARGE AND CAPACITANCE

Here we derive the expression~19! for the variation in
surface free energyg associated with changes in the Galva
potentialDf + under the assumption of ideal solution therm
dynamics@Eq. ~25!#. The derivation can be generalized
nonideal solution behavior if activity coefficients are intr
duced. The variation is computed for fixed values of t
far-field mole fractionsXj

a and Xj
b , so that from Eqs.~27!

and ~29! we see that the variationdDf + then induces corre-
sponding variationsdDm j

+52zjFdDf + and the related ex-
pressiondm̄ j

`52zjFdDf +. The variation inDf + also leads
to variationsdf(x), dCj (x), anddj(x) in the equilibrium
profiles of the field variables as well. We compute the res
ing variation of the surface free energy,dg.

From Eq.~B4! we have

dg5E
2L/2

L/2 Fd f̄ V2(
j 51

n

m̄ j
`dCj2(

j 51

n

Cjdm̄ j
`1kjjxdjx

2e~j!fxdfx2
e8~j!

2
fx

2djGdx. ~C1!

In computing the variationd f̄ V , we must consider not only
the explicit variations arising fromdf(x), dCj (x), and
dj(x), but also take into account the implicit variation ass
ciated with the dependence off̄ V on Dm j

+ . We then find

d f̄ V5
] f̄ V

]j
dj~x!1(

j 51

n
] f̄ V

]Cj
dCj1

] f̄ V

]f
df~x!

1(
j 51

n
] f̄ V

]Dm j
+ dDm j

+ ~C2!

5
] f̄ V

]j
dj~x!1(

j 51

n

m̄ jdCj1
] f̄ V

]f
df~x!2p~j!r~x!dDf +,

~C3!
i-
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where we have used] f̄ V /]Dm j
+5Cj p(j) and dDm j

+5
2zjFdDf +. Inserting this expression into Eq.~C1! and in-
tegrating by parts, we find

dg5E
2L/2

L/2 H F ] f̄ V

]j
2kjjxx2

e8~j!

2
fx

2Gdj1(
j 51

n

~m̄ j

2m̄ j
`!dCj2(

j 51

n

Cjdm̄ j
`1F ] f̄ V

]f
1@e~j!fx#xGdf

2p~j!r~x!dDf +J dx. ~C4!

Using the equilibrium equations~A2!, Eq. ~16!, dm̄ j
`

5zjFdDf +, and ( j 51
n V̄jdCj50 @which follows from Eq.

~4!#, to simplify the results, we obtain

dg5dDf +E
2L/2

L/2

@12p~j!#r~x!dx. ~C5!

If we define the surface charge of the electrode as

sa[E
2L/2

L/2

p~j!rdx ~23!

and the surface charge of the electrolyte as

sb[E
2L/2

L/2

@12p~j!#rdx, ~C6!

Eq. ~C5! recovers the classical electrochemical adsorpt
formula of Eq. ~19!. Note that because the total charge
zero,sa52sb.

APPENDIX D: GOUY-CHAPMAN-STERN

It is useful to perform a detailed comparison to the st
dard Gouy-Chapman model of the double layer. This mo
only treats variations in the electrolyte and the electro
electrolyte interface is considered to be sharp. The input
s

i-

in

-

s

02160
n

-
el
-
to

the model are the difference between the voltage of the e
trolyte at the metal (f0) and the voltage far from the inter
face (f`), the dielectric constant, and the cation concent
tion of the electrolyte far from the interface. The Ste
modification to the Gouy-Chapman model requires an ad
tional parameterx2 , the location of the plane of closest ap
proach to the electrode of ions with a finite radius. T
model assumes a Boltzmann distribution in the electrol
and requires that Poisson’s equation be satisfied, giving
voltage as a function of distance from the metal into t
electrolyte,

tanh@zMF~f2f`!/4RT#

tanh@zMF~f22f`!/4RT#
5exp@2~x2x2!/df

GC#,

0,x2,x,`. ~D1!

f is linear for 0,x,x2 and f2 is the potential atx2 ob-
tained by requiring continuity off and of “f at x2 . The
Debye length of the system is

df
GC5S eRT

2CM
` zM

2 F2D 1/2

. ~D2!

From Gauss’ law

sa52sb52eS df

dx D
x5x2

~D3!

and Eq.~D1!, the surface charge in the metal as a function
f2 is

sa5~8eCM
` RT!1/2sinh

zMF~f22f`!

2RT
, ~D4!

and from Eq.~20!, the differential capacitance as a functio
of f2 is

1

Cd
5F S 2zM

2 F2eCM
`

RT D 1/2

cosh
zMF~f22f`!

2RT G21

1
x2

e
.

~D5!
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