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Phase field modeling of electrochemistry. 1. Equilibrium
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A diffuse interface(phase fielgl model for an electrochemical system is developed. We describe the minimal
set of components needed to model an electrochemical interface and present a variational derivation of the
governing equations. With a simple set of assumptions: mass and volume constraints, Poisson’s equation, ideal
solution thermodynamics in the bulk, and a simple description of the competing energies in the interface, the
model captures the charge separation associated with the equilibrium double layer at the electrochemical
interface. The decay of the electrostatic potential in the electrolyte agrees with the classical Gouy-Chapman
and Debye-Huakel theories. We calculate the surface free energy, surface charge, and differential capacitance
as functions of potential and find qualitative agreement between the model and existing theories and experi-
ments. In particular, the differential capacitance curves exhibit complex shapes with multiple extrema, as
exhibited in many electrochemical systems.
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[. INTRODUCTION puted in these models and relationships between potential,
charge, surface free energy, and capacitance are obtained. No
We develop a phase field model of an electrochemicakinetic modeling is performed in these papers. Phase field
system. The method employs a phase field variable, which immodels can be viewed as a mean field approximation of
a function of position and time, to describe whether the maatomic scale density functional theoriggs-10], and the two
terial is in one phase or anoth@re., the electrode or elec- methods often make similar predictions.
trolyte). The behavior of this variable is governed by a par- The phase field method has been used widely for solidi-
tial differential equatiofPDE) that is coupled to the relevant fication [8,9]. The present approach is motivated by the
transport equations for the material. The interface betweemathematical analogy between the governing equations of
the phases is described by smooth but highly localizedolidification dynamics and electroplating dynamics. For ex-
changes of this variable. This approach avoids the mathample, the solid-melt interface is analogous to the electrode-
ematically difficult problem of applying boundary conditions electrolyte interface. The various overpotentials of electro-
at an interface whose location is part of the unknown soluchemistry have analogies with the supercoolings of alloy
tion. The phase field method is powerful because it easilysolidification: diffusional(constitutiona), curvature, and in-
treats complex interface shapes and topology changes. Omerface attachment. Dendrites can form during solidification
long range goal of the approach is to treat the complex geand during electroplating. It is not surprising, however, that
ometry, including void formation, which occurs during plat- we find significant differences between the two systems. The
ing in vias and trenches for on-chip metallizatidh. crucial presence of charged species in electrochemistry leads
Early models of the electrochemical interface, developedo rich interactions between concentration, electrostatic po-
by Gouy, Chapman, and Ste2—5] focused on the distribu-  tential, and phase stability.
tion of charges in the electrolyte. These models, which as- We first pick a minimal set of components required to
sume that the charges have a Boltzmann distribution and a@escribe the possible composition variations from the elec-
subject to Poisson’s equation, are summarized in Appendixode to the electrolyte through the electrochemical interface.
D. More recently, density functional models have been apNext we define concentration and mole fraction variables.
plied to the equilibrium electrochemical interfad6,7].  Then a variational principle is used to establish a set of
These atomic scale models describe the electrolyte with disPDE’s that govern equilibrium interfaces. In a second paper
tribution functions which have maxima at the positions of the[11], we explore dynamic solutions to the phase field equa-
atoms and take the electrode to be a hard, idealized surfacéons.
The equilibrium distribution of electrons and ions are com-  Given a minimal set of assumptions, the model predicts
the charge separation associated with the equilibrium double
layer at the electrochemical interface. Changes in surface

*Electronic address: guyer@nist.gov potential induce changes in surface free endrjgctrocap-

"Electronic address: william.boettinger@nist.gov illary curves, surface charge, and differential capacitance.
*Electronic address: jwarren@nist.gov The decay length of charge in the electrolyte as a function of
SElectronic address: mefadden@nist.gov electrolyte concentration is consistent with the Debye-
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Huckel theory. The parameters of the phase field model arpicking one component=n with V,=V#0, we can al-

related to the physical parameters of traditional electrochemyays express its concentration in terms of the other€,as
istry. The results are compared to the classic Gouy-_ IN.—S1c.
- s j=2%j"

Chapman-Stern model of the electrified interface as well as

to experimental capacitance curyé2,13.
B. Equilibrium

Il. MODEL FORMULATION We propose a Helmholtz free energy for an isothermal
_ system of charged components,
A. Choice of components, phases, and molar volumes
. . Ke
To treat an eleptr_ochemlca_l system, we consider a set of F(£Cq,...Ch '¢)=J (fv(é,cl, Co)+ =|Ve?

components consisting of cations, anions, and electrons. We % 2
will refer to the metallic conducting electrode phasevaand
the ionic conducting electrolyte phase AslIn this diffuse }
- - - t5pg|dV, )
interface model, the concentrations of the components will 2
vary smoothly through the interfacial region. The electrode

will be considered a phase of pri!’narily+tr\nNO componentsiintegrated over the volumé, wheref, is the Helmholtz free
electronse™ (component 1 and cationsM™™ (component  energy per unit volumet is the phase field variable is the

2). The electrolyte will be considered a phase of primarily ejectrostatic potentiali, is the gradient energy coefficient
three components; more noble catidis ™ (component 2 for the phase field,

less noble cationdN™" (component 3 and anionsA~2

(component 4 A model aqueous electrolyte can be consid- n
ered as a spgcial case by sett'rmg 0. The primary charge pE}—E 7,C; (6)
transfer reaction for this system is =1

+m - N
MT(B)+me (a)=M(a). @ is the charge density, is the valence of componeptequiv/

) o . o _mol or charge units per ionand F is Faraday's constant.
All'ions are treated as substitutional species with identicalrne first term in the integral of Eq5) represents the energy
partial molar volumed/s. Electrons are treated as an inter- density of a system without gradients and with no charge
stitial species with zero partial molar volume. The interstitialinteractions, the second represents the gradient energy with-
nature is necessary to recover Ohmic behavior in the elemut electrostatic effects, and the third represents the electro-

trode phase. In reality, the partial molar volumes of the substatic energy.

stitutional components should depend at least on the species There are three constraints on the field variables of this
and phase, but this variation leads to deformation and flowsystem. The total number of moles;j of each specie$
which are not the focus of this work. We employ mole frac- must be conserved over the volunde

tions X; of each componerjtthat have the conventional defi-
nition, such that _

n
Zl X;=1, ®) B
= whereC; is the average concentration of spegieb addi-

) _ tion, Eq.(4) and Poisson’s equation
wheren=4 for the four-component system we consider in

this paper. The molar volume varies because the mole frac-

tions of the components vary from one phase, through the V- [e(§)Vo]+p=0 ®
interface, and into the other phase. At each point it is given
by must be satisfied at every point in the systeit¥) is the

electrical permittivity, whose value we take to explicitly de-
pend on the phase. Since the phase field is coupled to the
V= 2 _.X:VSZ X ©) other variables, there is also an implicit dependence on the
j=1 =2 concentrations of different species in the electrolyte.

We note that by invoking Poisson’s equati@), the elec-
whereV; is the partial molar volume of each compongnt trostatic energy term in Eq(5), given by (1/2)p¢, could
>7_, is the sum over all components, abdl_, is the sum equivalently be represented as (D2, one-half the scalar
over all substitutional components. The mole per volumeProduct of the displacement and the electric field of electro-

concentrations are defined @s=X;/V,,, such that magnetic theory, or as(2)| V 4|2 In this third form, we see
that the electrostatic energy density is completely analogous

n to the phase field gradient energy density.
> V.ic.=V.> Ci=1. (4) We perform a variational analysis on the resulting La-
=1 =2 grangian
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Z such that Eq(129 becomes
ViCi—1

L=F— fxv(x) dv— Z xf(c C)dv

VY
,u-——,un const. (15

- fvx¢<x>{V-[e<§>V¢]+p}dv, © Vs

. o In Appendix A we show that, in one dimension,
where we have introduced the Lagrange multiplie(gx),

\j, and\ 4(x) for the constraintg4), (7), and(8) [note that e(g)
the requirement that Eq&4) and(8) be satisfied everywhere = M, §x ¢x
in the system means that, and A, must be fields At

equilibrium, each of the variations of must be indepen- wherex;" is the electrochemical potential far from the inter-

. j=1,.n, (16

dently zero, face. First, we note that far from the interface, wh&té
=V ¢=0, the values of the electrochemical potentials for
b ofy 1 alues or the e :
="+ 7:21¢ Nj—FZN g~ )\vV,, (109  each componerjtare identical in each phase, in agreement
6C; acy with Gibbsean thermodynami¢s4],
j=1..n, pi=ul, j=1..n. (17
oL afy 2 Second, the electrochemical potential ef is uniform
5_5_0_ Fr KVEETE(VAV &, (10b) throughout the system. For the substitutional components,

the electrochemical potential varies through the interface,
oL 1 even though the values in the bulk phases are equal. Because
%:0: EP_V'[G(@VM]- (100 V=0 is far from the interface, in the absence of external
charges, Eq(120 requires that charge is zero in the bulk
Using Poisson’s equation to eliminatein Eq. (100, we  phases, such that
determine that ,=— ¢/2. Here we have assumed that the

natural boundary conditions =99&/an=d¢/dn= X 4/on " L~ 5
hold on the boundary of. Substituting this result into Eq. ]2::1 ZjX; =j§=:l z; Xy =0. (18
(10a,

o= IIl. INTERFACIAL PROPERTIES

i ﬁC +.7:ZJ¢ )\V(X)V j=1,.n. (11

From electrocapillary theory2], we know that surface
free energyy, excess charge on the electragi® and differ-

SinceVe-=0 andV; =V for all substitutional species, we ential capacitanc€, are related by

can eliminate\ y(X).

We thus can summarize the equilibrium governing equa- ay
tions as o¥=— —) (19
B A ¢ u
B i | dfy V| afy
)\jn_)\j__)\n_ c +.7:Zj _v— E-F]:ans c (0-)0_11) ( (92,)/ ) (20)
s i s n = =7\ A 2]
. IA @ " JA ¢ B
=const, j=1,..n—1, (12a

where Ad):(j)“—?: is the applied potential difference
across the interfaceThe potential in the electrolyte far from
0= € ~KeV 5_—(V¢)2 12D the interface isp? and that in the electrode i$*. In a
perfect conductorp® is uniform throughout the phase. The
0=V [e({§)Vo]+p. (1209  variation at constant chemical potentigbnstant concentra-
tion) is difficult to perform with physical electrode/
It is convenient to identify the classical chemical poten-electrolyte systems. In general, this variation can only be

<5'fv €'(§)

tials performed experimentally for an inert system such as a mer-
‘ cury electrode against an aqueous electrolyte. We seek to
:ﬂ - determine whether these relationships hold for our phase
M , i=1,..n (13 :
dC;i field model.

and the classical electrochemical potentials

Un classical electrochemistry, the actual differences in electro-
W= ic, —+Fzj$, j=1,.n, (14) stat!c potenFlaI across the interface is called the “inner” or “Gal-
vani” potential difference.

afy
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In Appendix B, we derive the expression for the surface A. Choice of form of the thermodynamic function

free energy, For simplicity, we assume that the chemical part of the

Helmholtz free energy per unit volume is described by an
o ) ) interpolation of two ideal solutions of the components for the
Y= f_w["fgx_ €(£) pxldx. (21)  electrode and electrolyte.

1 n
The first term in the integrand represents the contributions of fv(£,Ca.....Cn) = 5= Tm(&, Xy, Xn) = Zl Ci{ui“p(&)
the nonelectrified interface. The second term is the contribu- m :

tion of electrostatics, such that the presence of electric fields + M;B[l— p(&)]+RTInCVy,
always reduces the surface free energy from its charge-free
value. In Appendix C we obtain the relationship +W;g(é)}, (29

where,u}’” and ,u]-’ﬁ are the chemical potentials of pure com-
(ra:_( Jy ) 22 ponentj in the electrodeglmeta) phase and the electrolyte
dA ¢’ " phase, respectivelR is the molar gas constant, aiids the
! temperature. Following many phase field models of solidifi-
_ _ _ cation[16], we use an interpolating functiop(¢) = £3(6£2
if o is defined by —15¢+10) to bridge between the descriptions of the two
bulk phases and a double-well functig(¢)=&?(1—£)?
o with a barrier height ofV; for each componerjtto establish
U“Ef p(&)pdX, (23)  the metallelectrolyte interface. The barrier heightspenal-
o ize interfaces which are too broad and the gradient energy
coefficientx, penalizes interfaces which are too narrow. The
which is a completely reasonable definition of the surfacepolynomials are chosen to have the properties hl)
charge on the electrodp(¢) is an interpolation function that =0, p(1)=1, p’(0)=p’(1)=0, and g’'(0)=g’(1)=0.
will be described in Sec. IV A; in shorp(£)=1 in the elec- Other functions could be used.

trode andp(£)=0 in the electrolyte. The notatio ¢° dif- For use in Eq(12b), this free energy leads to

fers from that in Eqs(19) and(20). A ¢° refers to a materials

property of the electrode-electrolyte system, as we will dis- afy . ., .

cuss in Sec. IV B(The superscript degree symbol denotes a a_gz P (g)gl CjAui*g (f);l Cjwj, (26)

guantity evaluated in its standard state. TAug' is the Gal-

vani potential difference across the interface when botmhereAM}’EM}’a_M}’ﬁ,

phases are in their standard stat&ecause we consider a  The quantitydf, /JC; is also computed to give the elec-
noninert electrode, we cannot vary the applied potentiatrochemical potentials,

without affecting the concentration in the electrolyte. The

variation considered in Eq22) is actually a variation with I =,u]?3+ Apip(§)+RTINCVy+z;Fp+Wig(§),
respect to a changing material property, rather than an ap-

plied potential. The differential capacitance is then defined i=1..n. (27
to be

We note that the.; depend on all the; through the molar
volumeV,,.

do”

Co (Cm ¢o) . 29 B. Standard chemical potentials

We require values for the parametefsc]? for each of the

We note that a curved interface exhibits an additional relan species in our model in order to perform numerical calcu-

tionship between surface free energy, surface concentratiotgtions with the ideal solution thermodynamic model em-

and the interfacial potential drop, consistent with the Gibbsployed here. Given these numbers, we will know how the

Thomson effecf15]. bulk electrode and electrolyte concentrations vary with the
potential difference across the interface. From the equality of
the bulk electrochemical potentidlEq. (17)] and the ideal

IV. THERMODYNAMIC FUNCTIONS AND MATERIAL solution form of the electrochemical potent&g. (27)],
PARAMETERS
Ap; RT X§
To make the results of the phase field model more con- Ad=- 2 F + Zj—}_lnx—? J=1..n, (28)

crete and to permit numerical calculations, we must choose a

particular form of the thermodynamic function and the ma-where the mole fractions are constrained by charge neutrality
terial parameters, at which point the model will be fully of the bulk phase$Eqg. (18)] and the ordinary definition of
specified. the mole fraction$Eq. (2)].
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One procedure to obtain information about thﬁ]’ is to TABLE |. Numerical values of the potential-independent por-
specify one set of concentrations that are at equilibrii(fi, ~ tion of the chemical potential differencesu; .
ande’°. With such a set we can only determine three linear

b . . . In(XE°Ixe%)
combinations ofAu;. Given these three linear combina- 1
tions, we cannot determine the potential difference across the e -13.41
interface, but we can calculate how the bulk electrode and M*2 —2.919
electrolyte concentrations vary with changes in the potential A2 9.798
difference across the interface. In other words, the potential N 13.78

difference can only be described with respect to a reference
electrode. Although knowledge of the potential difference
between the phases is not necessary to describe the bulikdA~2 in aN solvent. We take the partial molar volume of
equilibrium, it is necessary if one is interested in modelingine “supstitutional” components\ *2, A~2, andN) as that
the charge distribution between the electrode and electrolyte. v -

9 Y or pure water; i.e.V,=0.018 L/mol or 1¥/;=55.6 mol/L.

We will designated 4" as the potential difference across the The voltage-independent portion of the chemical potential

interface for the mole fractionx;’ andxf » Such that differences are given in Table I. The values for the electroin-
NG active species are chosen to limit the corresponding standard
Ap;=RTIn X'ao—zj]:A(ﬁ’, ji=1,..n. (29)  state mole fractions &2 =X3",=X'=10"°.
i Bulk charge neutrality can be invoked to transform the

. .. four mole fraction variableX.-, Xy+2, Xa-2, andXy into
Thus all four values oft | can be computed. The quantity | " o o cﬁarge’\ilneutrgl compognm

A ¢° is a material property that is fixed for a given choice of _ 2 _ P
=3/2Xe-, Xya=2Xa- nd Xy . We plot th ilibrium
electrode and electrolyte system. 312X, Xua=2Xa-2, andXy. We plot the equilibriu

e ) hase diagram in terms of these transformed mole fraction
In traditional electrochemistry, one takes the referencnltJ g

mole fractions of the electroinactive species to be zero in Oneoordinates In Fig. 1. Equilibrium states exist only between
s out =0.0898 \ A p<+0.0427 V. It can be seen that the elec-
phase or the other, e.g(e’i =X,-=0. One would then only ¢

_ ) rode remains essentially purel (X7,.,=1/3X_=2/3)
equate the electrochemical potentials between the bul : M e .

. . ver the entire vol range. At the lowAk) limit, th
phases of the electroactive specds ™ andN™". In this er the entire voltage range. At the lowab limi, the

case it can be shown that gleptrolyte is essent!ally purd (Xg 1). At t?e upperA ¢
limit, the electrolyte is purdlA (X +2=1/2X,->=1/2).

A/-L;\/|+m A/-L?\l+n

R e ey nF

, (30 C. Other parameters

A simplification, which should be eliminated in future
where the standard potentiad§, . are & .n are obtained work, is employed for the barrier heigh; . We set equal
from a table of electromotive series. Equati@) would be  values for the substitutional speci®¥¢;_, ,=W, and the
adequate to describe the concentration variations between thalue for the electrondj/e- =0. This makes the last term in
bulk phases. Eqg. (26) independent ofC; and eliminates th&V; depen-

For numerical purposes, we must assume small but nordence in Eq(123.
zero values for the reference concentrations of the electroin- In phase field models of solidification, where electrostatic
active species, equivalent to assuming lakgesitive or effects are not included, the surface free eneygyand the
negative, but finite, values for their standard potentials. Ininterfacial thicknessj; (of the ¢ field) are given[19] by
reality these concentrations are not zero, as might be indi-

cated by an electrolyte with electronic conductivity or an K¢

electrode with some anion solubilif2,17,14. Ye= — (32)
In the remainder of the paper, we perform a detailed equi- 18V

librium analysis for an electrolyte where the componiint -

has no charge, like an aqueous systé&n-H,0) where dis- /Kng

sociation of HO is neglected.The lower density of charged £~ oW’ (32)

species in an unsupported “aqueous” electrolyte allows us to

resolve the equilibrium interface more accurately than in aVe include the subscrigtwith the realization that there will

system where all species can carry charge. Our paper on the an electrostatic contribution to the surface free energy

dynamic behavior of the electrochemical phase field modelsee Eq.21)] and an independent electrostatic length scale.

[11] will treat the case o with charge. The bulk standard For numerical calculations, we choose the approximate val-

state mole fractions are chosen for an electrodMahetal  ues of y,=0.2 J/nf and §,=3x10 ' m, which give W

and an electrolyte of a solution containing 1 mol/LMf'? ~ =3.6x10° J/mol and x,=3.6x10 ** J/m. In reality, we
would not expect a metallic electrode to have the same per-
mittivity as an aqueous electrolyte. Moreover, the permittiv-

°The dissociation of KO could be handled by the addition of ity of the electrolyte is known to be lower near the interface
another component. than in the bulk as a result of the polarization in the double
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layer [4,6]. While the variation in the permittivity undoubt- electrode
edly affects the structure of the interface, our goal in this M
paper is to show the richness obtained from a phase fielc \
model with even the simplest assumptions. We defer exami-
nation of phase and concentration dependence of the permir
tivity to future work, and takes(¢)=78.4%,, wheree, is

the permittivity of free space. This is the value typically cited
for an aqueous electroly{@].

V. NUMERICAL METHODS

Qv
l\“‘

Numerical solutions to the governing equati¢gs|. (12)]
were obtained by both a relaxation method and a pseu:
dospectral technique on a one-dimensional domain of lengtt
L. The relaxation method had the advantages that it was
simple to code and would eventually converge to a solution
even from a step-function initial condition. The main disad-
vantage of the technique is that it is very slow. Run times of
several hours to several days were needed to reach conve
gence on a 1.6-GHz AMD Athlon running Debian GNU/ N MA
Linux v3.0 with a 2.4 kernel and using the Portland Group electrolyte
pgcc compilef In contrast, the pseudospectral technique can

produce solutions in a few m|nutesi but Only from a Very FIG. 1. Potential-composition phase diagram for the parameters
good initial guess. in Table I, illustrating the bulk equilibrium betweenM electrode

and aN electrolyte with dissolved/A salt. Tie lines denote differ-

ent values of the quantity\¢— A ¢°). The inset shows the position

of this charge neutral phase diagram within the quaternary domain
Relaxation solution$20] to Eq. (12) were obtained by of the charged species.

casting the equilibrium ordinary differential equatiofi2a

and (12b) as the time dependent partial differential equa-order on a uniform mesh. Solutions were integrated to equi-

tions, librium with an adaptive, fifth-order Runge-Kutta time step-

per [20]. We defined equilibrium as the point when Egs.

30 mV-

A. Relaxation

dC; oL _ Vi_ (129 and(A6) were satisfied to within 0.1%.
I =V MV % =V MVl p— V_/"n ' Simulations were started with an abrupt interface between
! n (339 the bulk electrode and electrolyte phases, such ¢hatl
and £°=0. After choosing a value foE% . , the remaining
ji=1,..n—-1 bulk C; were determined from Fig. 1. Because O for the
bulk concentrations, Eq120) givesV ¢=0 throughout the
and domain for the initial data. The boundary conditions are
listed in Table II.
23 oL afy ,, €& )
E__Mfa‘_g__Mg 0—§—K§V &~ — (V)7
(33b) B. Adaptive pseudospectral discretization

o . . . ) In order to increase the numerical resolution of the inter-
wheret is time, M is the mobility of component andM i t4cial region, we have also employed an adaptive solution
the mobility of the phase field. We defer discussion of thetechnique based on a spectral approximafzH to the gov-
mobilities M and M to our paper on kineticl1] as their  gring equationél2). To reduce the number of unknowns in
values are not important to the present analysis of electrone system, we eliminate the solute variables by solving the
chemical equilibrium. Equatione33) are the simplest ex-  governing equation€l2a), together with the constraint equa-
pressions that guarantee a decrease in total free energy Wlﬂan (4). Given values of and ¢ at a point, this provides an

time. Poisson’s equatiofl2c) must still be satisfied every- algebraic form for the solute field€; at this point. The
where. Equationg12¢ and (33) were solved with explicit

finite differences. Spatial derivatives were taken to second TABLE II. Boundary conditions.

Electrode &=0) Electrolyte &=L)
3Certain commercial products are identified in this paper in order
to adequately specify procedures being described. In no case does n-Vé=0 n-vg=0
such identification imply recommendation or endorsement by the $=0 n-Ve¢=0
National Institute of Standards and Technology, nor does it imply C; specified C; specified

the material identified is necessarily the best for the purpose.
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R TR T
1.0 — sh

0.8 —
0.6 —

§ 04 electrode \ electrolyte
0.2 4
0.0 -
(a) _ _
T ——— FIG. 2. Profiles through the interface )
.............................................. A°F/RT = —3.89 the phase field variabléb) the normalized elec-
OF 27 * A¢°F/RT =0 trostatic potential, andc) the normalized charge
RT o 4/\ distribution forA¢°=—-0.1V, 0V, and+0.1 V.
| A A F/RT — 3.89 g(¢) is mapped onto the background in gray to

—————————— indicate the location of the phase field interface.

The tick marks at the top afa) indicate the po-
(b) sitions of the mesh points for the two different
solution methods.

>
‘ﬁL |

nN

|

remaining equationg§l2h) and (12¢) are discretized using a tick marks at the top of Fig.(2) indicate the positions of the
pseudospectral formulation of a spectral element representasesh points used in the two different solution methods. The
tion of the second derivativi22]. It is convenient to fix the fields calculated by the relaxation and the pseudospectral
interface location by specifying(x,;)=1/2 at a given grid methods are indistinguishable on the scale of these graphs,
pointx, . The discretization procedure then provides a set oko we apply a linear correlation function to compare the cal-
nonlinear equations with an equal number of unknowns. Theylation methods. The two methods have a linear correlation
nonlinear equations are solved using the quasi-Newton sofgf 0.9992 for the most sensitive fiefd the other fields have
ware packagesnsQ[23]. Starting estimates for the solution 4 |inear correlation of 0.9999 or better. The difference be-
procedure are generally obtained by continuation from thgyeen the two methods for the most sensitive field is thus of
finite difference procedure described above, or from previoug,o same order as the criterion for stopping the relaxation

pseudospectral solutions. ; 0 ; .

An adaptive procedure is obtained by bisecting the eleﬁg:gzlztrlgnni[;%tlg’szrrr?c: ?oi?jr(gl leal)and(AG)], all-other
ments for which an error estimate indicates that additionaf Figure 2 focuses on the interface re. ion of this computa-
refinement is necessary. The error estimate is based on ttﬁ%na?domain The bulk concentration ugﬁ and A~ in thg
rate of decay of a Chebyshev expansion of the solution com- '

ponents; a simple criterion is based on requiring the magni(?lec”myte is 0.25 mol/L. The variation of between the

tude of the last two coefficients of the charge density in eacf§!ectrode on the left and the electrolyte on the right for the
panel to lie below a given threshold. If a refinement is necthree cases is virtually |dent|caI: A fit of all three curves to
essary, the element is bisected and the previous solution &X) fl{ll—tanf[(x—xo)/26§]}/2 gives J,=(2.480+0.009)
interpolated to the nodes of the new panels. The nonlineat 10 =~ M, which compares well with the value we assumed
equations are then solved on the new nodes, and the procl- Sec. IV C.& changes from 0.9 to 0.1 over a distance of
dure is repeated until each Chebyshev expansion has rapfPProximately 0.1 nm or &;. This represents the thickness
decay, indicating that the solution is well resolved on eactPf the electrode-electrolyte interface. The voltagehanges
panel. Since the previous solution provides a good startin§Moothly between a value of zero in the electrels as-
guess, the successive solutions converge quickly, and thwmed to an asymptotic value in the electrolyte far from the
overall run time is a small multiple of the time required for a interface equal to  RT/27)In[(1 mol/L)/(0.25 mol/L)]

single solution step on a grid with equal pseudospectral ele= A#°. The chargep, while zero far from the interfacial
ments. region exhibits a distinct charge separation within the inter-

facial region. The charge distribution is quite different for the
three cases. Fa&k¢°=—0.1V and 0.0 V, a negative charge
is present to the left. Fak ¢° = +0.1V, the negative charge
Figure 2 shows plots of phase field, voltage, and chargés to the right. Figure 3 shows the variation in the concentra-
across the interface foA¢$°=(—0.1,0;+0.1) V obtained tions from the electrode to the electrolyte. The values at the
using the relaxation method in one dimensid®D) over a  ends of the full computational domain correspond to a bulk
domain 3.2 nm long and containing 1200 mesh points. Thé/ electrode, a 0.25 mol/MA in N electrolyte, with impu-

VI. NUMERICAL RESULTS
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FIG. 3. Normalized concentration profiles
through the interface for different values &°.
g(¢) is mapped onto the background in gray to
indicate the location of the phase field interface.

rities as allowed by Table I. The abrupt change in concentraelectrostatic potential, but rather, the integrated charge is
tions through the distance whefés changing is followed by zero in each phase and there is some potential step between
a more gradual change in the electrolyte. The gradual corthem. We note that Grahame described exactly this condition
centration decay length in the electrolyte is the same as that his seminal paper on the electrochemical double 1&%r

of the voltage. One could define the surface excess as thene presence of dipoles at the interface guarantees that the
difference between the actual concentration and some intefotential will not be uniform. The surface charge curve
polation between the bulk values, and see that there is aghows a slight deviation from linearity away from the point
adsorption of the different species at the interface which depf ,er0 charge. This dome shaped curve in Fi@) has a
pends on the value af¢°. maximum surface free energy of approximately 0.225 #m

In Appendix D we summarize the Gouy-Chapman-Sterny yajue ofA ¢°= +0.005 V, the point of zero charge. This
model of the double layer. That treatment predicts an eXpomaximum surface free energy value is very closeya
nential decay of the potential in the electrolyte away from\ynich was used to establish numerical valuesviband Ke.
the electrode, with a decay length 8§°. Figure 4 shows a Figures %a) and §b) obey Eq.(19) very closely. The nega-
fit of the ¢ vs distance plots from Fig.(B) to ¢=¢..  tive surface free energies obtained for large positive values
+(Po— d=)exp(=x/5y). The fit is excellent. The decay of A¢° indicate that a planar interface will become unstable
length 64 of ¢ to its asymptotic value is very close to the to perturbations which increase surface area. Such perturba-
predicted value 0BS°. This length is over ten times larger tions are not possible given the symmetry constraints of our
than 6, and approximately three times the apparent interface@ D solutions, but attention will need to be paid to this when
thickness. higher-dimensional calculations are performed.

Figure a) shows the surface free enerdyom Eq.(21)] From Eg.(20), the differential capacitance is obtained as
vs A¢° and Fig. §b) shows a plot ofo® vs A¢°, both ob-  the derivative of Fig. &) with respect toA¢°. The relax-
tained by the two numerical methods. The point of zeroation method used to produce the open square points in Fig.
charge (PZO), defined by oc®=0c?=0, occurs atA¢°= 5(b) is not fast enough to allow calculating a numeric deriva-
+0.005 V for 1 mol/L andA ¢° = +0.035 V for 0.25 mol/L. tive of sufficient resolution. We thus use the results of the
At the point of zero chargep is not constant, nor is the spectral method, which can compute with a much greater

AQ°F/RT — —3.89
55 = 0.994 65°

oF 85 = 1.003 65° A¢°F/RT =0

QS FIG. 4. Exponential fitgheavy dashed lings
RT

to potential curves of Fig.(®) (light solid lines.
g(&) is mapped onto the background in gray to
indicate the location of the phase field interface.

g5 = 0.99265°

A¢°F/RT = +3.89
1

I ! I
0.4 0.6 0.8 1.0

xz/L
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resolution and over a wider range Ag°, to calculate Fig.
5(c).

Our calculated differential capacitance curve, replotted in
Fig. 6(a), does not resemble the hyperbolic cosine predicted
by the Gouy-Chapman theofx,=0 in Eqg.(D5)], shown in
Fig. 6(b); neither does it resemble the truncated hyperbolic
cosine predicted by the Gouy-Chapman-Stern theoty
#0 in Eg. (D5)], shown in Fig. €c) (we take e/x,
=5 F/n? for illustration only. On the other hand, it does
bear a striking resemblance to experimental differential ca-
pacitance curve$2,12,13, such as Valette and Hamelin's
measurements of Ag electrodes in NaF aqueous solutions,
shown in Fig. 6d). The density functional calculations of
Tang, Scriven, and Dav{¥] also exhibit differential capaci-
tance curves with multiple inflection points.

VIl. DISCUSSION AND CONCLUSIONS

This paper has explored the equilibrium structure of an
electrified interface between two phases consisting of
charged components, as described by a phase field model.
Such a model, being a continuum description, adds only the
bare essentials of the physics and chemistry of electrochemi-
cal interfaces: mass and volume constraints, Poisson’s equa-
tion, ideal solution thermodynamics in the bulk, and a simple
description of the competing energies in the interface. De-
spite this simple description, the model realizes the often
described behavior of the double layer; namely, the charge
separation at the interface and its dependence on voltage
drop (Galvani or inner potentialacross the interface. As the
Galvani potential is varied at constant compositions of the

of normalizedA¢°. Open symbols show calculations by the relax- €lectrode and electrolyteonstant Chemiica| potentig/she
ation method of Sec. VA. Lines show calculations by the pseumodel reproduces the well-known maximum of the surface

dospectral method of Sec. VB.

Cy (F/m?%)

Cyq (F/m?)

free energy curve at the PZC. High precision pseudospectral

FIG. 6. Comparison of the dif-
v ferential capacitance results @)

this model with the predictions of

Ca (F/m?)

Ag® (V)

T T T T T
0.0 0.1 02 03 04

(b) the Gouy-Chapman andc)
Gouy-Chapman-Stern sharp inter-
face theories outlined in Appendix
D and (d) the experimental mea-
surements of AQLOO) electrodes
in agueous solutions of NaRe-
printed from G. Valette, J. Elec-
troanal. Chem.138 37 (1982,
with permission from Elsevigr

Ag® (V)

()

0.1 00 01
Ag® (V)

0.0
-15

-1.0 —0.5

Ag¢ (V) vs. Standard Calomel Electrode
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solutions of the governing equations also deliver differentialPart of this research was supported by the Microgravity Re-

capacitance variations with Galvani potential, which exhibitsearch Division of NASA.

much more complex and realistic behavior than do the

simple Gouy-Chapman-Stern models. The full range of be- APPENDIX A: FIRST INTEGRAL

havior encompassed by the model must await further re- ) o

search. For example, the effect of unequal and/or nonzero Here we characterize a first integral of the steady-state

barrier heightsw; for the components will surely affect the one-d|men§|onal equilibrium equations, and use it to obtain

adsorption and, in turn, the surface free energy and capacin expression for the surface free enefgy _

tance curves. It is convenient to introduce the electrochemical free en-
A recent lattice-gas model of an electrochemical systen£rdy density

[24,25 exhibits interfacial structures very similar to those n

found in this paper. The model also demonstrates simple den- ¢ _ —

drites during plating, but those lattice-gas papers do not ex- W(ECr Cnod) j§=:1 Cipy(€:Care e Ca ).

plore the electrocapillary behavior discussed in this paper. (A1)

The similarities of the predictions between that discrete _ —

model and our continuum approach may permit a bridge beHereu;= u;+2;F7¢=df\ /dC; is the electrochemical poten-

tween atomistic treatments of the electrochemical interfacéial of speciesj, and the charge density is given Qy

and macroscopic descriptions of electroplating. =9dfy/dd. The steady-state one-dimensional equilibrium
To model a real electrochemical system with this methodeqyations can then be written compactly in terméof and

one needs to match the parameters of the phase flel_d modgdsume the form

to the experimentally determingdr the normally applied

understanding of the particular electrochemical system. In V2

addition to kinetic parameters described in Héfl], equi- i :JﬁnZ)\jn, i=1,.n—1, (A2a)

librium solutions require several pieces of information. At a

minimum one require¢l) a description of the bulk thermo-

dynamics of the electrode and electrolyt®) the dielectric aEV €& ,

constant of the electrolyte and electrod®), an estimate for E Kebyx— - $5=0, (A2b)

the physical thickness of the electrode/electrolyte phase in-

terface,(4) the actualGalvanj potential across the interface Pra

for some concentration of coexisting electrolyte and elec- — i [e(&)¢,],=0. (A20)

trode phases, an) the surface free energy the capaci- do

tance of the interface for these concentrations. Although we . . . .

currently lack an analytical expression for the relation be- If we dlf_fgrgnUate th‘? elec_trochem|cal free energy density

tween the phase field parametegsandW, and the informa- of the eqU|.I|br|um solution with respect #(x), C;(x), and

tion in points(3) and (5) above, the numerical results of the #(X), we find

paper show that they are connected. In the future, an

asymptotic analysis of the governing equations may reveap—Tv[g(x),Cl(x),...,Cn(x),¢(x)]

these relationships directly. Finally, the nonideal solution be-dx

havior of the electrolyte, which may involve complexing of o o

ions, should be addressed. Concentration would be replaced  sf,, " ofy oty

by presumably known activity coefficients. =—&Mx)+ Z —C{(X)+—¢'(x)
Solution of the governing equations has proved difficult. 171 9C, I

The resolution of the charge through the interfacial region

requires many more mesh points than typical of phase field = £'(x)

models of solidification of binary alloys. This is due to the

more intricate structure of the charge distribution in the in-

terface as compared to the structure of the phase and concen-  — ¢’ (x)[ €(&) by« (A3)

tration fields. An adaptive solution method, which concen-

trates mesh points in this interfacial region, permitswhere we have used the volume constrgid. (4)] and the

Significanﬂy improved calculation Speed_ goierning equation(sAZ) to eliminate the partial derivatives

of fy,. This expression can be simplified to give

S

’ n-1 7
€ (é) d)i +j21

Kebxxt —0—— Cj,(x)

v
Mj— — Mn
\J

S

n—-1
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n—1 s
TUE(X),Ce(X),...Cn d(X)]= 2, | &j— = &n |Cj+ Fn
J=l S VS
n—-1 —
-3 AnCi+ 22 (aB)
P

S

we may write the first integral represented by E&) in the
form

Q—ﬁg (Tg)@—const:—

(AB)
Ve 2 Ve

where we have evaluated the mtegratlon constant in the f

field whereé&,= ¢,=0 andu,= u, . In view of Eq.(A2a),

we therefore find that the electrochemical potentials of the

substitutional species vary through the interface, with

€(§)

Ly —¢X), j=1,..n. (16

EJ:/?I-+V

The interstitial species, Witﬁjzo, thus have uniform elec-

trochemical potentials.

An alternative form of the free energy functional of Eq.

(5) takes the forrh

(£,Cq,... |V &|2

— K§
F(f.cl,...,cn,d)):fv fu Coi)t =

Y |V¢>I2} (A7)

APPENDIX B: SURFACE FREE ENERGY

A conventional definition of the surface free energgf a

planar interface at equilibrium between two isothermal, mul-
ticomponent, fluid phases, with no electrical effects or vol-

ume constraints, is to writg27]

—P*V+ yA, (B1)

n
FZZ Min
=1

whereP” is the far field value of the pressuRe The inter-
face is located in the interior of the regionL/2<x<L/2
and the free energy is

L/2
F=Af fvdx=AJ
—L/2 L/2

2 1;Cj— P) dx. (B2)

PHYSICAL REVIEW E69, 021603 (2004

field on charged components. The appropriate definitiop of
is analogous to EqB1), with

n

2 n+7A

(B3)

andn; is defined by Eq(7). The surface free energy arises
from the variation in the substitutional electrochemical po-
tentials across the interface. From E47)

L/2
|
—L/r2

On substitution of EqstAl) and (16) into Eq. (B4) we ob-

-2 ﬁfcj+§gz—ﬂ¢x dx. (B4)

&ain

L2 , i
)’ZJ [ke&y— €(€) Py ldx. (21
~L12

APPENDIX C: SURFACE CHARGE AND CAPACITANCE

Here we derive the expressidh9) for the variation in
surface free energy associated with changes in the Galvani
potentialA ¢° under the assumption of ideal solution thermo-
dynamics[Eq. (25)]. The derivation can be generalized to
nonideal solution behavior if activity coefficients are intro-
duced. The variation is computed for fixed values of the
far-field mole fractionsxj* and X'B, so that from Eqs(27)
and (29) we see that the varlatloﬁA ¢° then induces corre-
sponding variation$A u; = —z;F5A ¢° and the related ex-
pression&ﬁ;‘& —Zz;F6A¢°. The variation inA ¢° also leads
to variationsé¢(x), 6Ci(x), and 6¢(x) in the equilibrium
profiles of the field variables as well. We compute the result-
ing variation of the surface free energyy.

From Eg.(B4) we have

Li2
o= f—L/Z
’(§)

— (&) Oy~ —— 3¢ |d

n n
5fv—j21 1 6C; —le CiOmy + Kby Oy
(Cy

In computing the variatiorﬁf_\,, we must consider not only
the explicit variations arising froms¢(x), 6Ci(x), and
0&(x), but also take into account the implicit variation asso-
ciated with the dependence b§ on A ;. We then find

- Sty :—gag(x)+2 —5(: + (;’5¢(x)
In our model of the electrolyte-electrode equilibrium, we o
are neglecting the pressure term in E(&1) and(B2), and " &fv "
including a volume constraint and the effects of an electric 21 (9A,u, Mi (€2
j
“Here we have used the identify ¢dx= [ e(&) p2dx, which fol- 5§(x)+ 2 1 6C;+ — Ity Sd(X)— p(&)p(X) SA ¢°
lows from the Poisson equation with appropriate boundary condi- 195 ' do ’
tions. (C3
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where we have usedify/dAu;=C;p(¢) and SAu;=
—z;F6A¢°. Inserting this expression into E¢C1) and in-
tegrating by parts, we find

(L ﬂ_\’_ €@, ! _
oy= J—L/2| Y- Kggxx 2 o 5§+121 (:“j
—0 : 0 af_\/
~H7)0C;= 2 Gy +| SoHLe() i 0

—p(&)p(x) oA ¢°] dx. (C4

Using the equilibrium equationgA2), Eq. (16), 5ﬁf

=2, F8A¢", and =_,V;5C;=0 [which follows from Eq.

(4)], to simplify the results, we obtain

L/2

dy=6A¢’ 7“2[1— p(&)]p(x)dx.

(CH
If we define the surface charge of the electrode as

L/2
o= f p(£)pdx 23
L/2

and the surface charge of the electrolyte as

Li2
(T'BEJ [1-p(&)]pdx, (Co
—L12

PHYSICAL REVIEW E 69, 021603 (2004

the model are the difference between the voltage of the elec-
trolyte at the metal ¢,) and the voltage far from the inter-
face (¢..), the dielectric constant, and the cation concentra-
tion of the electrolyte far from the interface. The Stern
modification to the Gouy-Chapman model requires an addi-
tional parametek,, the location of the plane of closest ap-
proach to the electrode of ions with a finite radius. The
model assumes a Boltzmann distribution in the electrolyte
and requires that Poisson’s equation be satisfied, giving the
voltage as a function of distance from the metal into the
electrolyte,

tani zy F(p— ¢.,)[ART] B
tan zy F(po— ¢ ) [ART]

0<:X2<:X<:W.

exr] — (x—x,)/ 55°],

(D1)

¢ is linear for 0<x<x, and ¢, is the potential ax, ob-
tained by requiring continuity oty and of V¢ at x,. The
Debye length of the system is

5%C= —z—fRT 1/2 D2
¢ \acyz P (b2
From Gauss’ law
do
O'a:—O'ﬁ:—E(—) (D3)
dx X=X

2

and Eq.(D1), the surface charge in the metal as a function of

OPES

Eqg. (C5) recovers the classical electrochemical adsorption

formula of Eq.(19). Note that because the total charge is

zero,c%= — oP.

APPENDIX D: GOUY-CHAPMAN-STERN

It is useful to perform a detailed comparison to the stan-
dard Gouy-Chapman model of the double layer. This model 1
only treats variations in the electrolyte and the electrode-
electrolyte interface is considered to be sharp. The inputs to

Hpo— =)

o m . Zm
o= (8eCy,RT)Y2sinh SRT , (D4)

and from Eq.(20), the differential capacitance as a function
of ¢, is

zzfnfzfcfﬂ vz ZyFH o= ¢a) _1_|_ X2
=M 272 Pl =y
Cq RT OSMTTORT p
(D5)
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