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Generation of lattice Wannier functions via maximum localization
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A method is presented for generating approximate lattice Wannier fundtidBs) for lattice dynamics
problems, using the dynamical matrix for a supercell as input. The lattice Wannier functions fit selected phonon
frequencies and eigenvectors exactly, are orthonormal, and are optimized to be maximally localized. The
method easily generalizes to the case where LWF centered on more than one distinct chemical species are
desired, as well as to the case of solid solutions. The method is successfully applied to a one-dimensional toy
model.
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[. INTRODUCTION symmetrization, localizatioh,basis set completeness, and,
most importantly, the band-mixing or “entangled-band”

In many lattice dynamics problems, the temperature, roblem. Souza, Mazari, and Vanderbiltiscussed the

dependent physical properties are dominated by the IoWgntangled—band problem for the case of electronic Wannier

freq“g?”cy phonqns. For exqm'ple, the Ival'ternper""“"“?unctions. Rabe and Caraéadiscussed the entangled-band
c,«T° heat capacity relationship in crystals arises from the

; . - : roblem for lattice Wannier functions and concluded that a
linear dispersion of acoustic phonons near zero wave vectoP. . L . - -
A secondp example is the diglectric constant of dielectricspracncal solution is to impose LWF locality and to fit only

The phonon contribution to the dielectric tensor for a crystalthe relevanti.e., low frequency parts of the phonon barsf

X : exactly.
can be written in the forf In many cases, materials with the most useful properties
1 fwfﬂﬁ are sc_)lid soluti(_)ns. For example, temperature stab_ility in d|
Kap= o m o (1.9 electrics for microwave resonators typically requires solid
0 wi#O u solutions. Ultrahigh piezoelectric constants are found in solid

. . _ solutions of PPMg,Zn];,sNb,;305 with PbTiO;. For such
where V is the unit cell volumes, the permlttLV|ty of free systems, LWFs designed for solid solutions would be useful
spacew, the (angulaj frequency of phonom, Z; the elec-  in elucidating the physics responsible for their properties.
tric polarization induced by phonon mogedivided by the In this paper, an automatic procedure is given for gener-
phonon amplitude, andy, an arbitrary mass that appears in ating LWFs. As in the previous work by Rabe and Cardcas,
the definition szx*v In high-« materials, the dielectric con- the key idea is to impose LWF locality, while fitting only the
stant is typically dominated by the contribution of low- relevant part of the phonon bands exadtjthough it may
frequency zone-center optical phonons. A third example ide desirable to include additional phonprisurthermore, by
ferroelectric phase transitions. Typically in ferroelectrics, theeliminating symmetry as a consideration in generating the
ground state is largely determined by the freezing in of d.WF, and using the principle of maximum localization only,
particular mode which isinstablein the paraelectric phase. the method easily generalizes to solid solutions.

To the extent that the anharmonic coupling of the instabilities

of the paraelectric phase to other modes is small, the thermo- Il. METHOD
dynamics of the ferroelectric phase transition is determined '
by the properties of the unstable modds. all of the above To generate the LWF of a solid, one begins with phonon

cases, the number of degrees of freedom of the lattice dyinformation. Although it is desirable in principle to know the
namics problem, as it affects the temperature-dependeffiall phonon dispersior(including eigenvectops this is not
physical properties, can be greatly reduced by including onlysually possible in practice. Instead, the method presented
those degrees of freedom corresponding to the relevartere gives an approximate LWF based on phonon results for
phonons’. Furthermore, as shown by Rabe and Waghrare finite supercells. The required input is the eigenvalues and
these degrees of freedom can be spanned by a localized “lagigenmodes of a supercell dynamical matrix, as might be
tice Wannier function(LWF) basis set. The projection of the determined from first-principle@P) calculations on the su-
original Hamiltonian onto the LWF yields the harmonic lat- percell, FP linear response calculations on a primitive cell, or
tice dynamical part of an “effective Hamiltonian” in a form “interpolated” results for a larger supercell using FP inter-
amenable to Monte Carlo and molecular dynamics simulaatomic forces obtained for smallésupejcells?
tions. For a supercell wittN atoms, leti label theDN atomic
Despite their usefulness, the generation of LWF to dateoordinates(where D is the dimensionality of the system,
has been largely done on a case-by-case basis. Difficulties and, for simplicity, the positiorr; and Cartesian direction
making the generation of LWFs more automatic includecoordinateq; are folded into a single labebnd j the DN
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normal modes. Leb; be thej'th dynamical matrix eigen- O O o O

value (proportional to the squared frequen@nde;; be the AA] c B8] c

i'th component of thénormalized dynamical matrix eigen- ’ ’

vector for modej. L ) . FIG. 1. Primitive cell of a one-dimensional toy model for lattice
The LWF determination problem is to fit the ande;; for dynamics.

a chosen subset of modfs} C {v;}, using a set of supercell-

periodic functionsw,;, wherew,; is the displacement of co-

ordinatei in basis functionw,. The w, become the exact F=1+2 (aflowg)?+ 2 (oflday)? + 2 (9flaN;)?
lattice Wannier functions in the limit of an infinite supercell. ki lk l

There is no absolute criteria for which modgshould be + M) + M)
included, but, for problems where the physics is dominated gm( 24 E;,( an)”
by the low-frequency modes, it is necessary to include those i . ) )
modes for whichy; is less than some cutoff valuéAs dis- By construction,F is minimized to 1 if and only if all

cussed in Sec. IV, it may be desirable to include some addiartial derivatives off are zero. There may, however, be
tional modes. Note that the supercell approach, in effect, more than one solut|_on. A hypoth_e5|s for a re-AasopabIe start-
replaces continuous phonon dispersion branches with infol'g guess for the variables vg;=1 if r,=r; anda=a;, else
mation on a discrete grid ig-space. In fact, it is this focus Wii=0; aK=C&; for i such thaﬁk”izand a=a;, with nor-
on individual phonons rather than phonon branches thaialization constants, such that,aj, =1, and all Lagrange
makes it so easy to generalize to solid solutions, etc. multipliers set to zero. _ _ _
There are also no absolute criteria for the set of positions After the above results are obtained, the dynamical matrix
{ri} on which to center thgwg. In many cases, certain D can be replaced bp’, a reduced dynamical matrix over
atomic species displaced in certain Cartesian direction§WF variables. The components bf' are, in bra-ket nota-

dominate the eigenvectors of the included modes. In sucHoM

cases, it is natural to have the LWF set comprise each site ro_
’ . . . : Dym= (WD . 2.2
{rJ on which an atom of the given species sits and each km = (Wi D[ Wi (2.2
important direction of displacemeny,. It is straightforward to show that
To fit the selected eigenfunctions of the original matrix e _ )
exactly, one seek&inknowr coordinatesa, and w,; such (@|D’lay) = (@|Dlew = dnv; (2.3

thatX,awi;=e;. There is no unique solution fov,; because that is, the selected eigenvalues of the original dynamical
different choices offay} lead to differentw;. To find the  matrices are also eigenvalues Df, and the corresponding
“optimal” set of wy;, a “localization criterion” is applied, eigenvectors are related to the origin dynamical matrix

namely, to minimize eigenvectors through the LWR' also gives the harmonic
5 lattice terms of an effective Hamiltonian for Monte Carlo or
> widg. (2.1 molecular dynamics simulations.
ki
The distance metricdy; here is chosen to bed: ll. MODEL

=min[(r=r;+Rgypercel’]. Other metrics may be considered,

for example, “anisotropic” metrics wherﬁi is a function of for the lattice dynamics of a one-dimensional chéire1).

@ anda; as well as the distance between the LWF CeNterSc; ure 1 shows the toy linear chain model, created so that the
Additional constraints are imposed to keep the functions

) .~ phonon dispersion would be qualitatively similar to that of-
w,, orthonormal and the coordinate setg orthonormal: . : X
_ N _ i _. _—. ten observed in ferroelectric perovskites such as Bg{O
ZWWini=1, k=m; Zwiwp,=0, k#m; Zapay=1, I=n;

S.a,a,=0, 1£n. The problem is then set up as a Con_The chain has four atoms per primitive cell: an “A” or "A

! AP . . .~ _cation at eachx=integer n, a “B” or “B'” cation at
\?\}crea\l/cr?tde minimization problem. Using Lagrange muIt|pI|ers,X:n+0.5’ and “C” anions ax=n+0.25 andx=n+0.75. Eor

simplicity, all ions have mas®=1, and the length of the unit
_ 2 ' A cell is set toa=1. Defect and solid solution phenomena are
f= 2 widyi+ % M“(% Wi a') incorporated into the model through the distribution of
[A,A’] and[B,B’] ions on the corresponding sublattices.

The methods of this paper will be applied to a toy model

ki

+ > )\2kk(2 WiWij — 1) + > )\ka(E Wkini> The intersite force constants are given in Table I. The
k i k<m i force constants involving Aand B are set to mimic certain
common characteristics of perovskite solid solution.i8
+ -1)+ X - o
2,: )\3”(2;‘ B l) Z‘;M'”(E‘:‘ a*ka”k)' designed to be chemically very similar to B and to create

relatively minor perturbations of the phonon dispersion, as
One then needs to solv#/ow,;=0; df/ day =0; df/oN;=0;  might occur for the substitution of one similarly sized isova-
If I N ogem=0; 9f N3 <,=0. lent ion for another. Ais designed so that instabilities in-
Since the above partial derivatives are nonlinear, an anarolving A’ offcentering(but not A offcentering will occur,
lytic solution does not exist in general. To extract a solutionas happens when Li substitutes for K on the perovskite A site
numerically, it is simpler instead to minimize the function, of [K,Li]TaOs.
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TABLE I. Interatomic force constants in model. FoQC in-
teractions at distance 0.504) and (B) indicate which ion is be-
tween the two “C” ions.

1 2 dio FC 1 2 d-, FC
0ooz(dimensioﬁle(.l.s unﬁs? 600 mz(dimensiorglegs unﬁs;)
AA" AA’ 100 =375 B,B C 0.25 25.0 AB, 8", ., Jauasirandom AL A" BC
A,A’ B,B’ 050 -150 B,B C 075 25.0 VeTETE el
A C 0.25 -15.0 C C 05®) -140.0
A’ C 0.25 70.0 C C 0.5B) 40.0
AA’ C 0.75 -15.0 C C 1.00 -55.0 200 , 200 400 o 200 400
B.B' B.B' 1.00 -1075 o°(dimensionless units) w°(dimensionless units)
B B,B"” 200 28.75 FIG. 3. Density of states ab? for the configurations studied.
B’ B’ 2.00 375

we compare instead the density of staf@®©S) in each case,
as shown in Fig. 3.

Figure 2 shows the dynamical matrix eigenvalue disper- Relative to the DOS in the ABCstructure, the replace-
sion for the “ideal” ABG, chain. There is a single unstable ment of B with B’ in ABl/ZBll2C2 -ordered leads to a gap in
mode atq=0, dominated by B participation. The instability the DOS just below»?=0, a typical phenomenon in period-
only extends through part of the Brillouin zoriBZ). The  doubling perturbations. While the DOS in the quasirandom
mode with largest B participation gt=m/a is not the lowest  AB1/,B;,,C; structure is similar, there is only a pseudogap,
one, but rather the second-highest of@égenvalue 360  and the structure of the DOS is more complicated. The re-
Note the following analogies with the case of BaTid®In  placement of Awith A in the AzgA1,BC, structure gives an
BaTiO,, there are instability branches dominated by Ti mo-additional instability branch which is nearly dispersionless.
tion that do not extend throughout the entire BZ. Ti- Because of coupling of Ato the other ions, the DOS is
dominated zone-boundary modes, where they occur, are nsétrongly perturbed over the whole frequency range, with
always the lowest-frequency modes at these points. many more singularities.

LWFs were then generated for each structure. In each
case, asupeicell of length & containing 32 ions was suf-
IV. RESULTS ficient to generate LWFs that reproduced very well the pho-

The procedure for generating LWFs was applied to fouon DOS in the low-frequency bands. Each structure had a
structures within the toy modef1) the ideal ABG cell, (2) similar set of optlcal low-frequency modes dominated by B,
a doubled cell with composition AleB” C, B’ and withw?< 10. Based on the analogy of the toy model

1/2

(“AB ;B! C,ordered), (3) an octupled cell  with to lattice dynamics for ferroelectric transitions, where the
1/2 , ; ;
composition AB,B;,,C,, and the B and Bcations arranged modes of |nte(est are .the low frequency .opt|cal moda.s
in the quasirandoM arrangement BBBEB'B'BB’ particular, the instabilities all supercell optical modes with
> . ) . :
(“AB 1,,B},,C,-quasirandony, and (4) an octupled cell with <10 were included in the LWF _f|ts. Th_|s freq_u_ency range
the composition AgABC.. _encompass,es the additional-Aominated msltablllty branch
For a one-dimensional supercell of peridth, the BZ M the Az;gA1,sBC, structure. Based on the ions whose mo-

goes from -/(Na) to #/(Na). It is possible to plot the tion dom'”ﬁtes the Iov_v-frequen_cy modes, LWFs cente_r_ed on
) . S . .~ B and B sites were included in all cases. One additional
dispersions of all the examples studied in this work in a

common zone from 7/(8a) to 7/ (8a), but that yields com- LWF, centered on the A site, was included for the

plicated diagrams with 32 bands in each case. For S|mpI|C|tysla’gﬁlléﬁ;:zlnSt:Egtuprﬁor:gneaDCgscﬁg tggge a{is?ngi?oriove

g=m/a-type B-dominated modes. Based on the principle that
the singularities in the phonon DOS of the LWF model
should match the singularities in the original DOS as much
as possible, the corresponding mode was included in each fit.
Note that there is no absolute criterion requiring that these
modes should be included. As long as the number of modes
fit per supercell is less than or equal to the number of LWF
centers, the procedure will generate LWFs that reproduce
these modes, and as long as the phonon DOS in the region
that affects the physical properties is correctly reproduced, it
does not matter which higher-frequency modes are included.
In each case, the functidhconverges to 1. UsinB’ and

600

400

o

///
\\\\

[N
=]

-1 0 1 ) 4 ) )
q (w/a) setting the interactions to zero for distances larger than the
maximum distance iD’ allows phonon DOS and disper-
FIG. 2. Phonon dispersion for the ideal AB6tructure. sions to be calculated from the effective Hamiltonian gener-
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TABLE Il. Lattice Wannier functions generated from each struc-
ture. Although the LWFs extend over the unit cells only the com-
ponents for ions within distance 0.25 from the central ion are
shown. Structures:(1) ABC,; (2) ABy,B},Co-ordered; (3)

0, 0 200 ado edo 200, 0 200 a4do edo AB/,B1,,Co-quasirandom(4) AygA;gBC,.
o°(dimensionless units) w“(dimensionless units)
AB115B'112C;-quasirandom AzgP'15BC2 structure  ion  position  Wgos Wy Wye0.25
1 B (all) -0.233 0.860 -0.233
2 B (all) -0.232 0.860 -0.232
2 sz(dimensior%egsun“s)o 600 -2 mz(dimensioﬁlegs unﬁs)o 600 2 B’ (all) -0.206 0.898 -0.206
3 B 0.5 -0.231 0.859 -0.234
FIG. 4. Density of states ob? for the effective Hamiltonians 3 B 15 -0.237 0.860 -0.238
generated from the LWF for each configuration studied. 3 B 25 -0.234  0.859 -0.231
3 B’ 3.5 -0.211 0.880 -0.226
ated for each structure. For each case, the calculated DOS are 3 B’ 45 —0.235 0860 -0.232
shown_ in Fig. 4._Thg dispersion generateq from thg ITWFs for 3 B’ 55 ~0.201 0.899 ~0.201
ABC, is shown in Fig. 5 and compared with the original full

. . 3 B 6.5 -0.232 0.860 -0.235

phonon dispersion. It reproduces the unstable part of the
original model extremely well and rises smoothly to match 3 B’ [ PO2268 0. 660 U2 T
the A-dominated mode aj=/a. The values for the LWF 4 A’ 0.0 -0.491  0.706  -0.491
displacement of the central cations and their nearest- 4 B 0.5 -0.068  0.916 -0.234
neighbor C anions are given in Table II. 4 B 1.5 -0.249  0.854 -0.231
4 B 2.5 -0.236 0.861 -0.211
V. DISCUSSION 4 B 3.5 -0.246  0.832  -0.263
The procedure for generating LWFs succeeds in reproduc- 4 B 4.5 -0.263 0832 —0.246
ing the low-frequency phonon DOS for all of the one- 4 B 5.5 -0.211 0861  -0.236
dimensional model test cases. The phonon dispersion in the 4 B 6.5 -0.231  0.854  -0.249
Brillouin zone or reduced Brillouin zone is also reproduced 4 B 7.5 -0.234 0.916 -0.068

in each case. The results provide strong evidence that LWFs
can be generated for arbitrary cation orderings in solid solu-

tions.

In principle, the method should work in three dimensions
Polarization of phonon eigenvectors in dimensidns 1,
and the corresponding possibility for multiple LWF compo-
nents centered on the same ion, are technical issues to

resolved. Also, the method requires minimization of a func-

tion of (2DNn,+n,n,+n;+n,/2+n2+n,/2) dimensions,

wheren,, is the number of modes to be fit amy, is the

600

400

o

o?(dimensionless units)
8
%//

-200

1 0
q (n/a)

-

FIG. 5. (Left side Dispersion inw? of ABC,. (Right sidé Same
as left side, with the effective Hamiltonian dispersion addied
gray).

number of LWF centers chosen. This gives a practical limit
to how large a supercell can be chosen for the fit.

" In the case of the ABgand AB,,,B;,,C,-ordered struc-

tures, the LWFs haveu” symmetry under reflection, and the
WFs for the same species with different centers are related
?/translational symmetry. While these reflect the symmetry
of the lattice, symmetry was not imposed by design. Rather,
symmetry resulted from maximum localization. In fact, in
the AB;/,B;,,Co-quasirandom and AgA71,sBC, structures,
LWFs centered on ions that are not on sites with reflection
symmetry do not have reflection symmetry, and LWFs on
sites that are not symmetry-related are not translationally
identical (see Table . Remarkably, even though all the
phonons selected for the fit preserve the center of mass of the
crystal, the individual LWFs do not, in general, conserve the
center of mass. The fact that LWFs centered on the same
species are not in general related by symmetry means that, in
the effective Hamiltonian for a solid solution, the interac-
tions involving these LWF centers will be environment-
dependent.

Tests where the centers of the LWFs were inappropriately
chosen gave interesting results. For thggA;,sBC, struc-
ture, if A’ centers were not included in the LWF fits, neither
the density of the low-frequency states nor the phonon dis-
persion were correctly reproduced. For the ABSEructure,
if the LWF centers were initially put on the A sites, the final
solution had LWFs centered on the B sites. In all the struc-
tures investigated here, various different combinations of
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species on which to center the LWFs were tested. In eachamical part of the corresponding effective Hamiltonians,
case, the choice described in Sec. IV had a combination dfased on constrained LWF localization. The method requires
small n, and small localization function2.1) that was only that the user choose the sites on which to localize the
clearly superior to the other choices. Complete automation of WFs and which eigenmodes of a supercell to exactly fit.
the LWF procedure will require algorithms to decide whichWhen applied to various configurations of a toy one-
low-frequency modes are essential to the fit, where to centatimensional model, the method reproduces the desired fea-
the LWFs, and, perhaps, which higher-frequency modes ttures of the full lattice dynamics problem in each case. The
include in order to fit singularities in the phonon DOS asprocedure works equally well for simple compounds, or-
much as possible. dered solid solutions, and disordered solid solutions.

VI. CONCLUSIONS
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