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We are developing a procedure for the quick identification of structural phases in thin film
composition spread experiments which map large fractions of compositional phase diagrams of
ternary metallic alloy systems. An in-house scanning x-ray microdiffractometer is used to obtain
x-ray spectra from 273 different compositions on a single composition spread library. A cluster
analysis software is then used to sort the spectra into groups in order to rapidly discover the
distribution of phases on the ternary diagram. The most representative pattern of each group is then
compared to a database of known structures to identify known phases. Using this method, the
arduous analysis and classification of hundreds of spectra is reduced to a much shorter analysis of
only a few spectra. © 2007 American Institute of Physics. �DOI: 10.1063/1.2755487�

INTRODUCTION

The combinatorial approach has been used to discover
new materials phases as well as perform rapid mapping of
composition-structure-property relationships in complex ma-
terials systems.1–3 Using thin film composition spread librar-
ies, large fractions of compositional phase diagrams can be
mapped out with a high density of data points on a single
wafer.4–7 Mapping phase diagrams is central to obtaining
comprehensive pictures of materials systems, and mapping
active physical properties as a function of composition is an
integral part of understanding the underlying physical
mechanism of the properties.7–9 Thin film materials can often
display properties with deviation from bulk samples, but it
has been shown in many systems that one can indeed obtain
compositional trends which closely resemble or mirror those
of bulk counterparts.7,10

We are in the process of developing techniques to ana-
lyze a large number of x-ray spectra from thin film compo-
sition spreads in order to map out structural phase diagrams.
Previously, we have discussed techniques for rapidly manag-
ing and visualizing the spectrum data taken from composi-
tion spread wafers using software written in MATLAB.11 We
showed that effective visualization techniques can be used to
rapidly capture the essential features of structural variation
across composition spreads.11 In particular, we have demon-
strated that, in the Ni–Mn–Al system, one can obtain insight
about physical properties by combining visualization tech-
niques and simple linear correlation analysis of the diffrac-
tion peak information and the physical properties.11 We have
used these techniques for an in-house Bruker tool �D8 DIS-
COVER� as well as for synchrotron microdiffraction.12 The
careful analysis platform provided by the visualization al-
lowed us to prove the geometric nonlinear theory of marten-
site for the first time as well as to discover novel composi-

tions of shape memory alloys.12 This software has been made
available to the community and is beginning to enjoy wide-
spread use.13 This work was largely motivated by the fact
that there had been no existing software which allowed us to
readily handle and analyze large volumes of diffraction data
in an efficient way, a situation which is beginning to change.

In the present work, we focus on integrating cluster
analysis using the POLYSNAP software14 into our rapid analy-
sis platform. POLYSNAP was developed primarily for use in
the pharmaceutical industry. To the best of our knowledge, it
has never been used in an attempt to map structures across
compositional phase diagrams of complex inorganic com-
pounds. The ultimate goal of this effort is to develop a rapid
method for obtaining a comprehensive and accurate mapping
of the phase and structure distribution across composition
spreads of rich and complex materials systems containing
previously unknown materials phases.

The present work is also part of our effort to interface
and integrate data analysis of combinatorial experimental
data with the crystallographic databases available at the Na-
tional Institute of Standards and Technology �NIST�. As an
example system, we looked at a region of the Fe–Ga–Pd
ternary system.

EXPERIMENT

Our interest in the Fe–Ga–Pd ternary system stems from
the fact that the Fe–Ga and Fe–Pd binary phase diagrams
contain compositions with unusual magnetic actuator prop-
erties. Fe–Ga is a well known material system exhibiting
large magnetostriction for Ga content between 20 and
30 at. %. The origin of this property is attributed to the com-
plexity of the Fe–Ga binary phase diagram in this region.15

Fe70Pd30 is a ferromagnetic shape memory alloy16 �FSMA�
whose martensitic transition is associated with a magnetic
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field induced strain of about 10 000 ppm.17 As interesting as
these two systems are, no work has yet been done in alloying
them. Fortunately, Ga and Pd both form disordered crystals
when they are substituted into the Fe lattice. This means that
they could possibly be substituted into the Fe lattice without
disturbing the original crystal structure.

Natural thin film composition spreads of the Fe–Ga–Pd
system were deposited at room temperature using an
ultrahigh-vacuum three gun magnetron cosputtering system
with a base pressure of 10−9 Torr �10−7 Pa� on 3 in.
�76.2 mm� diameter �100� oriented Si wafers. The details of
the synthesis procedure can be found in Refs. 7 and 12. The
samples were then postannealed at 650 °C for 2 h in our
sputtering chamber. The base pressure during annealing was
10−8 Torr. The total processing time �i.e., deposition and heat
treatment� of a composition spread library is roughly 3 h
before it is ready for rapid characterization. After the depo-
sition, the composition of the wafer spread is immediately
determined via wavelength dispersive spectroscopy �WDS�
in at. %. This measurement can determine the percentage
element contained at each point on the wafer accurately. Fig-
ure 1 shows the schematic procedure for the synthesis of a
ternary composition spread which covers the relevant part of
the phase diagram.

X-ray microdiffraction �XRD� of the fabricated films
was performed using the �-scan mode of a D8 DISCOVER
for combinatorial screening �Bruker-AXS�. It is equipped
with a GADD two dimensional detector which captures data
for a fixed range of 2� and � at once. The composition
spread wafer contained 535 individual 1.75�1.75 mm2

squares with continuously changing composition. However,
XRD was performed on only 273 of the 535 squares due to
time constraints. In order to scan the 2� range of interest
�20°–90°�, microdiffraction was performed in three frames
for each square. We use an x-ray beam spot size of 1 mm
diameter. Because we must scan the entire library for the
same frame before moving to the next frame, the entire
spread library must be scanned three times to cover the 2�
range. Once this is accomplished, the microdiffraction data
are in the form of two-dimensional �2D� detector images.
The raw detector images are then compiled and integrated to
obtain the 2� angles and peak intensities using the D8
GADDS program and a script to automate the process.

Since there is some extraneous information in the XRD
spectra �e.g., substrate peaks and background signal� some
preprocessing was done on the data before they were ana-
lyzed. In particular, background subtraction, cropping, and
normalization were performed. Background subtraction was
done by fitting and subtracting a piecewise polynomial from
the data on a spectrum by spectrum basis �i.e., the back-
ground determination of one spectrum is not affected by that
of any other�. After background subtraction, the full mea-
sured 2� range was cropped down to the minimum range
such that all of the detected XRD peaks from all the samples
�but not from the substrate� were contained in the spectra.
For the Fe–Ga–Pd system, we found that this range was from
25° to 55°. The spectra were then imported into the POLYS-

NAP program for clustering analysis. When the spectra are
imported into the program, they are normalized such that the
largest intensity in each spectrum is unity.

CLUSTERING ANALYSIS

The process of sorting the spectra into discrete groups
consists of deciding on a similarity metric, calculating and
visualizing the similarity among all of the spectra, and then,
based on the clustering of the spectra in the visualization
scheme, assigning them into some number of distinct groups
using a dendrogram. This clustering process was performed
exclusively in the POLYSNAP software. Once the groups are
decided upon, we then export the information about which
spectra fall into which groups from POLYSNAP into MATLAB

and, using the composition information obtained via WDS,
draw a ternary diagram. Looking at the distribution of groups
on the ternary diagram is akin to looking at a phase diagram,
since the groups are based entirely on structure information.

There are many choices one must make along the way to
creating this phase diagram. First, one must choose the met-
ric by which the similarity between two spectra is deter-
mined. For our case, we chose to use the Pearson correlation
coefficient. For two spectra, x and y, with means x̄ and ȳ, the
Pearson correlation coefficient takes the form

Cxy =

�
i=1

n

�xi − x̄��yi − ȳ�

��
i=1

n

�xi − x̄�2�
i=1

n

�yi − ȳ�2�1/2 .

The values of C can range from −1 to 1, with a value of 1
indicating identical spectra, a value of 0 indicating spectra
which have no correlation, and a value of −1 implying that
the spectra are anticorrelated. Anticorrelation means that
where one spectrum has large values, the other has small
values. In the context of comparing spectra produced by
XRD, existence/absence of a diffraction peak is indicated by
the high/low value of the diffraction intensity. Therefore,
when one spectrum has a perfect match of every diffraction
peak with another spectrum, that would give the highest cor-
relation coefficient of 1; the more different the peak positions
and/or intensities are, the less the correlation coefficient
would be. This interpretation motivates the definition of a
distance matrix D= �1−C� /2. This matrix represents the dis-

FIG. 1. �Color online� Schematic of a thin film composition library made
using a three gun cosputtering system. The three targets used in the deposi-
tion were Fe, Pd, and Fe2Ga3. At left a schematic of the deposition profile is
displayed and at right the region of the phase diagram for which XRD
information was obtained from the composition spread library is displayed.
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similarity among the spectra. A distance of zero between two
spectra implies that they are identical, while a distance of 1
implies spectra which are completely different. As long as
our choice of similarity metric is a good one, the distance
matrix should contain all of the information needed to group
the spectra.

The difficulty now lies in trying to understand the rela-
tionships among all of the spectra, embodied by the distance
matrix D. To visualize D, each matrix element is interpreted
as the distance between two spectra in some Euclidian space.
The problem is that this space may have dimensionality as
large as n−1, where n is the number of spectra. To see this,
first take two points, Si and Sj, each representing a spectrum.
Place them into a Euclidian space such that they are the
distance Dij apart. This is a one dimensional space. Now take
a third spectrum, Sk and place it however far it is from the
first two �Dki and Dkj, respectively�. The three points form a
triangle in two dimensional space. Repeating this process
again with another spectrum produces a triangular pyramid
in three space. At this point, we cannot necessarily fit another
point into this space and satisfy the demands that it be the
appropriate distance from each other point and that we only
use three dimensions. However, we could try to put it in the
best possible location such that its distance from each of the
other points is the best possible approximation to the actual
distances listed in the matrix D. This discards some of the
similarity information. However, it gives us a way to visual-
ize the correlation matrix in ordinary three dimensional
space. The question now is how, using three dimensions, can
one come up with the best possible approximation of the
distribution of these points? This is a classic problem in re-
ducing the dimensionality of a data set. To reduce the dimen-
sionality of a distribution of points in a many dimensional
space, we can use principal component analysis �PCA� or we
can use metric multidimensional data scaling �MMDS�. The
mechanics of how to perform these techniques are well
documented18,19 and we will not discuss them here. In this
article, we use MMDS to find the best possible �three dimen-
sional� approximation to the �n−1 dimensional� distribution
of points embodied by the distance matrix. For the Fe–
Ga–Pd system, a plot of the distribution of points, embodied
by the distance matrix and approximated using MMDS, ap-
pears in Fig. 2�a�. A three dimensional �3D� animation of the
plot is also available at Ref. 20.

Looking at the distribution of points in the MMDS plot,
one could start to visually divide the spectra into discrete
groups. However, this process would be somewhat subjec-
tive. A more rigorous mathematical method for deciding
which spectra to group together is to use a dendrogram.21 An
example of a dendrogram for the Fe–Ga–Pd system is shown
in Fig. 2�b�. Along the x axis, each discrete point represents
a spectrum. From each spectrum leads a vertical line. At
some height, these lines all connect. The height at which they
connect is determined by the similarity between the spectra.
If some numbers of spectra are already connected, then the
height represents the similarity between groups of spectra. To
get an intuitive idea of how this dendrogram is made, first
take the two most similar spectra and put them in a group
together. This is done by connecting them on the dendrogram

with a horizontal line at a height corresponding to the dis-
tance between them, as described in the distance matrix. In
order to proceed further, we next determine the similarity
between this group of spectra and all of the other spectra.
The way in which this similarity is defined is called the
linkage method. One of the ways to decide the similarity
between a group of spectra and another spectrum �or be-
tween two groups of spectra� is to compare the average spec-
trum of all the members of the group to the other spectrum.
This is called the group average linkage method, and it was
the method used to produce the dendrograms in Fig. 2 and
Fig. 3. The process of grouping together the most similar
spectra �or groups of spectra� is then repeated, each time
linking less and less similar spectra at higher and higher
levels on the dendrogram and each time reducing the number
of groups by 1. Eventually, at the top of the dendrogram,
there is only one vertical line. If one were to stop making
groups at some threshold similarity level, then one would be
left with some number of groups. When talking about a den-
drogram, this threshold is called the cut level. By adjusting
the cut level, one can adjust the number of groups. If each of
these groups is assigned a color, then it is possible to look
again at the MMDS plot, with the points colored as they fall
into the different groups. All of this color coding is handled
automatically by POLYSNAP. Fig. 2 and Fig. 3 are color coded
in this way.

If the data fall into well separated clusters in the MMDS
plot, then there should be some level in the dendrogram
where there is a big step in the linkage height. That is, at
some point, there will be a link whose height is clearly larger
than all of the links below it. In Fig. 2, we see just such a

FIG. 2. �Color online� �a� Two different views of a 3D approximation of the
distribution of points defined by the distance matrix, as approximated using
metric multidimensional data scaling �MMDS�. For this system, the MMDS
plot is a very good approximation to the distance matrix, accounting for
about 93% of the information in the matrix. Each point in the MMDS plots
corresponds to a spectrum. Points which are close together correspond to
spectra which are similar to each other, as measured using the Pearson
correlation coefficient. Color is used to identify groups, and groups are
defined using the dendrogram. �b� A dendrogram based on the distance
matrix. Points on the x axis correspond to spectra. The height at which the
lines leading from the spectra are connected indicates their similarity. In this
dendrogram, the cut level is set at 0.6, creating five groups.
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step. This is where we place our cut level. This creates three
more or less spherical clusters �red, yellow, and cyan� and
two “boomerang” shaped clusters. Let us first discuss the
spherical clusters. Since points which are close together on
the MMDS plot correspond to similar spectra, a spherical
group should correspond to a single phase. This simple logic
is the reason that we chose the group average linkage
method, which prefers to create spherical clusters. However,
not all of the groups in the MMDS plot are spherical; it also
contains some arclike distributions of points. An arc of
points represents spectra which are all related to each other,
but which are undergoing some systematic change as a func-
tion of position along the arc. For example, this may corre-
spond to a set of samples across which a peak slowly shifts
�i.e., a change in a lattice angle� or it may correspond to a set
of samples with a slowly varying mixture of phases. The
presence of these nonspherical clusters implies that the group
average linkage method may not be the best choice. There
does exist a linkage method which is less sensitive to the
shape of the group, called the single link method. In this
linkage method, when creating the dendrogram, the distance
between two groups of spectra is defined to be the distance
between the two spectra �one from each group� with the
minimum distance between them. This method preserves the
arc as a single group. Unfortunately, this linkage method is
also very sensitive to variations in the signal to noise level
among the spectra. This sensitivity to the noise level results
in many small groups being formed, which makes this
method less fit from a clustering standpoint. We have also
tried several other linkage methods, namely, the weighted
group average method �a.k.a. weighted pair-group method
with averaging, or WPGMA�, the centroid method �a.k.a un-
weighted pair-group method using centroids, or UPGMC�,
the median method �a.k.a weighted pair-group method using
centroids, or WPGMC�, the complete link method �farthest
neighbor�, and the ward method �minimum total pairwise
squared distance�, all of which gave similar results to the
group average linkage method. A new linkage method which
is a combination of the group average and single link meth-
ods would be ideal. However, given the software at our dis-
posal, we were not able to find a linkage method which
would allow for nonspherical clusters and also allow for
variations in the signal to noise ratio. As an alternative to
developing a new linkage method, we have modified our
dendrogram by hand to create three arclike groups out of the
two boomeranglike groups in Fig. 2. The new dendrogram
and the resulting distribution of groups in the MMDS plot
are shown in Figs. 3�a� and 3�b�, respectively. To see if our
clustering technique is reasonable, we follow a path along
the distribution �see the blue line in Fig. 3�b�� and plot the
XRD data as a function of position along this line �Fig. 3�c��.
This allows us to see the relationship between the groups
which we have created and the actual XRD data. It is clear
when looking at the XRD data that the yellow, red, cyan, and
magenta groups correspond to unique patterns, while the
green and blue groups correspond to transitions from one
pattern to another. Furthermore, the cyan group in Fig. 3
corresponds to spectra which are all of the same phase, but
with a peak which is continuously shifting.

From this analysis, we can conclude that using the Pear-
son correlation coefficient as our similarity metric to create a
distance matrix and visualizing that matrix using MMDS, we
can identify clusters of spectra which correspond to unique
patterns. In particular, spherical clusters in the MMDS plot
correspond to a single pattern while an arc in the MMDS plot
may correspond to a transition between two patterns or to a
single pattern where one of the peaks is continuously shift-
ing. Once the clustering analysis is completed, we can move
on to trying to identify the actual phases represented by the
clusters.

PHASE IDENTIFICATION

Identification of known phases was done by comparing
the XRD spectrum of the most representative member �i.e.,
the member with the smallest distance to all other members�
of a group of spectra to a set of reference spectra from the
crystallographic databases available at NIST. In particular,
we used the FIZ/NIST Inorganic Crystal Structure Database
�ICSD�22 which contains more than 90 000 entries and the
NIST Structural Database �NSD�23 which contains more than
60 000 entries.23 For the ternary systems we are investigat-
ing, we have found that there is significantly more informa-
tion available for our purposes in these databases as com-
pared to other data sources. The matching conditions we
used were as follows: if the composition of the reference
pattern was within �or very near� the composition space
spanned by the group of XRD spectra produced by POLYS-

NAP and the peaks were separated by less than 0.4°, then we
considered this to be a match.

FIG. 3. �Color online� �a� A modified dendrogram where the “arms” of the
arc are separated into separate groups. �b� Two views of a 3D MMDS plots
showing the distribution of the groups created using the modified dendro-
gram. �c� The XRD data as a function of position along the blue line.
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Figure 4 shows a plot of the most representative mem-
bers of the yellow, red, cyan, and magenta groups. The iden-
tified structures denote the basic crystal structures of each
region. The green and blue groups are not displayed since
they represent mixtures of the phases present in the other
groups. We would like to note that in some cases, there was
no match identified from the database.

Putting the clustering, phase identification, and compo-
sition information together yields a map of the distribution of
phases for the explored region of the phase diagram �Fig. 5�.
We also note that the blue and green groups, which we in-
terpreted as transitions from one phase to another based on
the plots in Fig. 3 do indeed fall along the borders of the
other phases. Although the full ternary phase diagram of this
system is not available for comparison, the projection of the
identified distributions to the two binary �Fe–Ga and Fe–Pd�
systems matches the known phase diagrams reasonably well.
According to the published equilibrium phase diagrams, in
the Fe–Ga system,24 starting from the pure Fe end, the �-Fe
phase persists up to about 80% Fe, beyond which various
mixture regions containing the Fe–Ga L12 phase stretches up
to about 50% Fe. The L12 phase has an fcc structure, which
in our study was correctly identified as being isostructural to
fcc Fe. In the Fe–Pd system,25 a mixture of �-Fe and

Fe0.5Pd0.5 �fct� is known to extend from 100% Fe to about
50% Fe. It is expected that this region would predominantly
“appear” as mainly �-Fe. In our study, we find that at ap-
proximately Fe0.65Pd0.35, the dominant phase switches from
�-Fe to fcc Fe0.65Pd0.35 which stretches beyond 50% Fe. Our
analysis has identified this region �starting at the correct
composition� as the fcc Fe0.65Pd0.35, which we believe is a
quenched phase.

EXISTING PROBLEMS AND FUTURE WORK

The ultimate goal of our efforts is to reach a point where
the analysis of hundreds of spectra automatically identifies
all of the pure phases present in a system and quantifies the
percent of each phase present in each sample. The work pre-
sented here represents only a first step towards this goal, as
there are still several problems left to overcome. Some of
these problems are inherent in the use of thin films, while
others are a result of the analysis techniques.

One of the problems one faces when attempting to do
structure identification of thin films is that it may simply not
be possible to precisely identify all the lattice parameters,
and thus, the exact structure of the material. In principle, in
order to completely determine the lattice parameters, one
must measure the intensity of all x-ray reflections, as in pow-
der diffraction. The films under study here are often at least
textured, if not sometimes even epitaxially grown, reducing
the number of reflections to only the ones from the preferred
orientations. It is also possible that the film may exhibit dif-
ferent preferred orientations at different sites, resulting in
different sets of reflections for the same structure. As a par-
tial solution to the problem of textured films, it is sometimes
possible to obtain some additional information about tex-
tured samples by tilting the wafer. Other problems include
the formation of “spurious” phases such as silicides, as ob-
served here. There could also be formation of metastable
phases which are unique to the film structures and not
present in bulk form.

In addition to the difficulties of working with thin films,
there are also weaknesses in the clustering techniques. One
of the major problems with dividing spectra into discrete
groups is that the groups do not always represent pure
phases. This is certainly the case when there are mixtures of
phases present. The classification of spectra into “transition
groups” such as the blue and green groups in Fig. 3 is help-

FIG. 4. �Color online� The most rep-
resentative patterns in the yellow, red,
cyan, and magenta groups from Fig. 3.
The clustering approach reduces the
problem of going through hundreds of
spectra and identifying every peak in
every pattern to just deciphering the
meaning of these few patterns. The
peaks are labeled if a possible match
to known samples from the NIST crys-
tallographic database was found.

FIG. 5. �Color online� The distribution of diffraction patterns as produced
using the groups of spectra produced by clustering analysis and comparison
of most representative patterns from the clusters with a database of reference
patterns.
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ful, but if all of the samples were mixtures, then all groups
would be transition groups, and no pure phases would be
identified. It might also be the case that different patterns
which correspond to different preferred orientations of the
same structure might be identified as different structures. Of-
ten, these problems could be partially solved by manually
scrutinizing individual peaks and/or by applying prior
knowledge about the materials.

It is worth noting that POLYSNAP does have features to
identify mixtures quantitatively given a database of pure
phase patterns.26,27 We are currently working on integrating
these procedures into our data analysis procedures. However,
the problems of noisy spectra, preferred orientations, peak
shifts within a single phase, and the limited number of
known pure phases in the systems we are studying present
problems which we are yet to overcome. Future work will
also be focused on composition spread samples of other ter-
nary systems.
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