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Abstract
This paper reports an experimental and theoretical investigation of the
indentation of a layered elastic solid, with special reference to the surface
force apparatus (SFA). The contacting surfaces of the SFA comprise a
3-layer material: a thin mica surface layer on a thicker epoxy layer
supported by a thick silica substrate. An existing finite element analysis of
the deformation of ideal mica/epoxy/silica surfaces used in the SFA is
adapted to compare with the experimental measurements of the variation of
contact size with load, both with and without adhesion at the interface. This
is in marked difference to the Johnson, Kendall and Roberts (JKR) theory
for homogeneous solids. Experiments and finite element calculations were
also carried out on the elastic indentation of a thin (5.5 µm) layer of mica on
a very thick layer of epoxy (>100 µm). As input data for the calculations,
the elastic moduli of the mica and epoxy were measured in separate
indentation experiments. The stiffness of a layered solid can be expressed
by an ‘effective modulus’ E∗

e , which has been deduced from the
experimental measurements and compared with the theoretical values with
fair success. The work of adhesion is commonly measured in the SFA by
observing the ‘pull-off force’ to separate the surfaces. The theory shows
that, for a layered solid, the pull-force can vary significantly from the JKR
value for a homogeneous solid. In particular, it was found that the mica
surface energy, γsv, measured by SFA experiments using crossed cylinders
of mean radius R, where the materials are layered and the mica/mica
adhesion is high, can vary with the pull-off force Fp according to
Fp/4πR < γsv < Fp/2πR, and for this particular experiment was given as
γsv = Fp/3.5πR as compared with γsv = Fp/3πR for homogeneous
materials.

1. Introduction

Understanding the mechanical properties of materials often
requires knowledge of the contact deformation mechanisms

6 Official contribution of the National Institute of Standards and Technology;
not subject to copyright in the United States.

of that material. The deformation of a solid is a function
of the applied force, elastic and plastic properties of the
solid, surface roughness and surface energy [1–3]. The
degree of deformation leads to information about the strength,
compliance, and adhesion of materials [3]. For example, the
bulk properties of ceramic materials depend upon the nature
of the solid/solid interaction of the grains within the ceramic
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Figure 1. Schematic diagram of the layered mica/epoxy/silica
system. The two mica surfaces were brought into contact and the
contact radius was measured. The epoxy thicknesses were measured
from the secondary interference fringe pattern obtained from light
reflected from the 10 and 50 nm silver layers. The mica thickness
and contact radius were measured from light reflected from the two
50 nm silver layers.

and the resulting deformations [3]. The multilayer structure
of these experiments is similar to many biomaterials such as
teeth that consist of a top enamel coating layer and a compliant
tooth dentin layer underneath. Understanding the mechanics
of model systems such as that described here could aid in the
development of superior prosthetic devices.

Hertz first proposed the theory of contact between two
elastic solids in 1881 [1, 4]. No interaction was assumed to
occur between the solids except a hard core wall repulsion at
contact. Hence, the surfaces would separate at zero force.
Johnson, Kendall and Roberts (JKR) modified the Hertz
interaction energy to include surface energy in the interaction
and predicted a greater contact size at a fixed force than that
found from Hertz theory due to the contributions of surface and
interface energies [5]. JKR theory assumes the material to be
homogeneous, isotropic and perfectly elastic and is applicable
when the elastic deformation caused by the surface forces is
large compared with the range of the surface forces.

JKR theory has been successfully used to model the
adhesion between rubber elastomeric hemispheres [6]. In these
experiments, an optical microscope measured the flattened
contact radius as a function of the applied force as two
spherical elastomeric hemispheres contact. More recently,
polymers and self-assembled monolayers have been attached
to polydimethylsiloxane (PDMS) hemispheres to allow the
interaction of a variety of materials to be measured [7]. The
low bulk modulus of the PDMS hemisphere is expected to
dominate the mechanical response of the system whereas the
thin coating would determine the surface properties.

Another technique used to directly measure the properties
of surfaces is the surface forces apparatus (SFA) [8]. Typically,
two thin molecularly smooth mica sheets are bonded via an
epoxy layer to cylindrical silica lenses and are brought into
contact with the cylinder axes perpendicular to one another
(figure 1). This geometrical configuration is equivalent to
contact of a sphere on a flat. Optical interference fringes
are used to measure the amount of surface deformation at
the point of contact and the contact radius as a function of

the applied force. Previous measurements of the deformation
of the surfaces showed a trend consistent with JKR theory,
but JKR theory underestimated the measured contact radius
by as much as 30% [9]. A more recent measurement under
sliding conditions showed better agreement [10]. However,
JKR theory assumes homogeneous, isotropic surfaces, which
is not the case for the layered materials of the SFA experiments.

A finite element analysis (FEA) of the SFA geometry
on which this paper is based was presented by Sridhar et al
[11]. In that paper the concept of an effective modulus of
elasticity, E∗

e was introduced. It is defined as the modulus of a
homogeneous solid which has the same contact stiffness as the
layered solid. Clearly, the value of E∗

e depends on the thickness
and moduli of the individual layers. When normalized by the
modulus of, say, the surface layer, E1, the ratio E∗

e /E1 provides
a meaningful non-dimensional measure of the variation in
contact stiffness with depth of deformation. In the case of the
SFA for very small forces, the deformation will be contained
in the mica layer and will be approximated by the mica
modulus, E1. As the contact size increases with increasing
force, E∗

e of the system will be increasingly influenced by the
epoxy layer and eventually the silica substrate. The extended
theory predicts that the contact radius–force dependence for
a layered system has the same general JKR curve shape as
that found in a homogeneous isotropic sample. The adhesion
characteristics, including the pull-off force, are found to
depend upon an adhesion parameter, α, as well as on the mica
and epoxy layer thicknesses and their elastic moduli. However,
because the layer thicknesses and moduli were not measured in
previous SFA experiments, a direct comparison of the theory
to experiments for layered materials was not obtained.

In the present experiments, the elastic moduli of mica and
epoxy are measured by nanoindentation and microindentation,
respectively, using spherical indenters. Nanoindentation
is also used to obtain the effective modulus of a layered
mica/epoxy material. The SFA is then used to measure the
adhesion and deformation of two thin mica sheets which are
attached to cylindrical silica supports with an epoxy layer.
The mica thickness, h1, epoxy thicknesses, h2 and h3, as
well as the contact radius, a, as a function of applied force
in adhesive and non-adhesive contact, are also measured by
optical interferometry at the point of contact. By measuring all
the experimental parameters, the validity of using the modified
JKR theory for a layered structure is experimentally examined.

2. Theory

For homogeneous materials, a number of theories have been
derived to investigate the indentation and adhesion between
two surfaces [5, 12–15]. The theories generally apply only
within certain limits. As previously mentioned, JKR theory is
applicable when the elastic deformation caused by the surface
forces is large compared with the range of the surface forces.
This condition is satisfied when the Tabor parameter µ is
greater than 5 and is given by [16]

µ ≡
(

Rw2

E∗2
e z3

o

)1/3

, (1)

where R is the mean radius of the crossed cylinders, E∗
e is the

effective elastic modulus, zo is the equilibrium separation of
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the surfaces and w is the work of adhesion. For the layered
mica surfaces used in the SFA measurements reported here,
R = 2.64 cm, w = 120–200 mJ m−2, E∗

e ≈ 30 × 109 Pa and
zo ≈ 0.3 nm, giving µ ≈ 35; the JKR theory can be applied to
these measurements.

For layered materials, there have been many treatments
of the contact and indentation of an elastic layered solid,
both with and without adhesion between the surfaces [17–25].
We shall make use of the numerical finite element approach
developed for the specific purpose of analysing the SFA system
described above [11]. The principal features of the theory will
be outlined here.

According to the JKR theory, the relationship between the
net contact force, F , and the contact radius, a, between two
elastic homogeneous spheres of radiusR1 andR2 is given by [5]

F = Fo − Fa = 4E∗
e a3

3R
−

√
8πa3wE∗

e , (2)

where 1/R = 1/R1 + 1/R2, E∗
e is the effective modulus of the

two spheres and is given by 1/E∗
e = (1−ν2

1 )/E1 +(1−ν2
2 )/E2,

where E1 and E2 are the modulus of each sphere and v1 and
v2 are their respective Poisson’s ratio and w is the work of
adhesion which, for identical surfaces is twice the surface
energy, 2γsv. Fo and Fa correspond to the applied Hertz force
(no adhesion) and the adhesive (flat punch) force, respectively.
In the absence of adhesion, the force reduces to Fo, the Hertz
value. It follows from equation (2) that for adhesive contact
when F = 0, the contact radius is given by

a3
0 = 9πR2w

2E∗
e

(3)

and the surfaces separate at the ‘pull-off’ force, Fp, where
∂F/∂a = 0 and is given by

Fp = −3πRw

2
. (4)

Rearranging equation (4) shows that the normalized pull-off
force, Fp/3πRw, is a constant −0.5 for a homogeneous system
obeying JKR mechanics. The JKR theory as detailed can be
considered locally as a rigid sphere of radius R indenting an
elastic half-space.

This homogeneous JKR theory has been extended for
a surface consisting of two layers on a substrate indented
by a rigid sphere using FEA. The Hertz force and adhesive
force terms in equation (2) are evaluated separately. The
contribution of the normalized Hertz force Fo may be written
in a generalized non-dimensional form as

FoR

E′
1a

3
= f

{
a

h1
,
h2

h1
,
E′

2

E′
1

,
E′

3

E′
1

}
(5)

and the normalized adhesion (flat punch) term Fa may be
written in a generalized non-dimensional form as

Fa√
2E′

1wa3
= g

{
a

h1
,
h2

h1
,
E′

2

E′
1

,
E′

3

E′
1

}
, (6)

where h1 and h2 are the thicknesses of the mica and epoxy
layers and E′

1, E′
2, E′

3 the plane-strain elastic moduli of the
mica and epoxy layers and the glass substrate, respectively.

The plane-strain modulus E′
i is defined as Ei/(1 − υ2

i ), where
υi is the Poisson’s ratio of the respective layers. Knowing the
values of the thicknesses and moduli, f and g are computed
as functions of the normalized contact radius, (a/h1) [11,26].
Substituting equations (5) and (6) into (2) and rearranging gives

FR

E′
1a

3
= FoR

E′
1a

3
−

(
2wR2

E′
1h

3
1

)1/2 (
h1

a

)3/2
FaR

E′
1a

3

= f

(
a

h1

)
− α

(
h1

a

)3/2

g

(
a

h1

)
,

(7)

where the quantity FR/E′
1a

3 is termed the normalized force
and α is the adhesion parameter which can be considered as
a non-dimensional measure of the work of adhesion and is
defined by

α ≡
(

2wR2

E′
1h

3
1

)1/2

. (8)

The general shape of the interaction curve for layered materials
obtained from equation (7) is similar to that of the JKR curve
for homogeneous materials [11]. The pull-off force Fp is
the minimum (maximum negative) value of F expressed in
equation (7) and is dependent on the adhesion parameter, α.

The non-adhesive Hertz deformation for a layered system
can be measured by indentation. In most indentation
experiments it is difficult to measure the contact radius,
whereas indentation depth can be easily monitored with
displacement measuring transducers. The indentation depth
do can be written in a generalized non-dimensional form as

doR

a2
= B

{
a

h1
,
h2

h1
,
E′

2

E′
1

,
E′

3

E′
1

}
. (9)

The function B has the value unity for Hertz deformation in a
homogeneous material and in a layered material, its values are
obtained from FEA. The function B can be used to determine
the contact radius for a particular indentation depth. In order
to calculate the contact radius, the function B = doR/a2 is
converted to B∗ = doR/h2

1 by multiplying B by (a/h1)2. At
a specific indentation depth, B∗ is determined and a(do) is
obtained from a graph of B∗ versus a/h1. Hence, a ‘true’
value of a can be found from the values of B∗ (a/h1). It is
to be noted that, for the case of a single layer, h2 = 0 and
E′

3 = E′
2 in equations (5), (6) and (9).

The ‘effective modulus’, E∗
e , of a layered solid is defined

as the modulus which would give rise to the same stiffness, S,
as a homogeneous solid. Thus

E∗
e (a) ≡ S(a)/2a, (10)

where S = ∂Fo/∂do. The stiffness S is determined
experimentally by the derivative of the force-depth indentation
data or theoretically from the finite element computations of
indentation of a layered solid.

3. Experimental details

The SFA uses two molecularly smooth mica sheets bonded
to silica cylindrical lenses with Epon™ 1004 epoxy
(Shell Chemical Company, Houston, TX). In both the SFA
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Table 1. The parameter values used in FEA calculations.

Young’s Layer Indenter
Layer modulus Poisson’s thickness radius
material (GPa) ratio (µm) (cm)

Mica 62 0.21 5.5 2.6
Epoxy 3.4 0.495 20
Silica 72 0.25 —

and indentation experiments, the Epon 1004 was heated above
the melting point to allow spreading. In the melt state, Epon
is viscous and readily wets both the glass and silvered mica
surface. On cooling, the Epon 1004 acts to hold the mica
onto the glass. Since we are only heating the Epon 1004
above the melting point during the preparation and no chemical
crosslinkers are added, we assume that the measurements made
at 23 ◦C are independent of the initial heating.

A 10 nm thick silver film was first sputtered onto the silica
cylinders and the hot melt epoxy was spread onto the silvered
cylinders. Mica sheets with 50 nm silver films on the back
(epoxy) side were bonded with the epoxy to each lens. The
cylindrical lenses are mounted in the SFA with their cylinder
axes at right angles, producing a contact that is geometrically
equivalent to a sphere on a flat. Figure 1 shows the geometry
of the layered surfaces used in the SFA experiments.

The mica thickness, h1, epoxy thicknesses, h2 and
h3, contact radius, a, and cylinder radius, R, were
all measured using multiple beam optical interferometry.
Optical interference between the two 50 nm silver layers
produced primary fringes of equal chromatic order allowing
measurement of the mica thickness, h1. In these experiments,
the mica thickness was the same for each surface and
was measured to be h1 = 5.5 ± 0.1 µm. Interference
between the 10 nm silver layer and the 50 nm silver layer
produced secondary fringes, allowing measurement of the
epoxy thickness, h2 and h3, at the point of contact. For
this particular experiment, h2 and h3 were measured to be
25.5±1.5 µm and 16±1 µm, respectively. All measurements
are summarized in table 1.

The radii of curvature of the mica surfaces, measured
when the cylinders were not in contact, were determined from
the shape of the primary interference fringes. For crossed
cylinders, the radius is calculated from the geometric mean
of the two cylinder radii, given by R = (R1R2)

1/2 = 26 ±
1.5 mm [2]. The contact radius, a, was measured directly from
the amount of flattening of the deformed primary fringes. The
measured contact radii a were such that 5 � a/h1 � 15. Prior
to each measurement, the contact is scanned and the maximum
flattening (deformation) is recorded as the contact radius.

The lower cylinder was mounted on a double-cantilever
spring which was used to apply a force to the crossed cylinders.
The force was determined by measuring the deflection of
the spring, which had a spring constant of (1.2 × 105) ±
(0.2 × 105) N m−1. Unless otherwise noted, the ± refers to
the standard uncertainty in the measurements and is taken
as one standard deviation of the observed values. Testing
was performed in the closed chamber of the SFA which was
purged with dry N2 for at least 20 min prior to beginning the
measurements. Solid P2O5 was placed in the chamber to ensure
a dry atmosphere.

The SFA experiments were performed by bringing the
mica surfaces into van der Waals contact at zero applied
force. The force was increased in a step-wise fashion and the
contact radius was measured. The measurements continued
until an applied compressive force of approximately 500 mN
was reached. The force was then decreased in a step-wise
fashion with contact diameters being measured at each force
until the surfaces spontaneously separated (‘pull-off’) at a
negative (tensile) force, Fp. The time between loading steps
was approximately 1 min, for a total loading/unloading time of
approximately 40 min with 6–12 h between subsequent runs.
All measurements were made at 23 ◦C.

Experimental details of the indentation experiments are
given in the results section.

4. Results

4.1. Indentation of bulk materials

4.1.1. Mica. The bulk elastic properties of the mica
used in the experiment were measured by instrumented
nanoindentation tests that were performed on a rigidly
supported 500 µm thick piece of mica. A commercial
nanoindenter (Nano Indenter II, Nano Instruments, Inc.)
was used to record force and displacement as a 21 µm
radius spherically tipped diamond indenter was loaded onto
the mica surface. A range of forces from 1 to 90 mN
resulted in indentation depths from <20 nm to approximately
350 nm. All displacement was elastic; the mica did not
deform permanently even at the highest forces and no residual
impressions were observed. A Hertzian analysis of this elastic
sphere-on-flat contact permits the determination of the quantity
E′

1 = E1/(1 − ν2
1 ), where ν1 is the Poisson’s ratio for mica,

assuming that the material is elastically isotropic. Although the
isotropic assumption is not likely to be true for a material with
mica’s layered structure, the indentation experiment applies
force along the same axis (perpendicular to the planes of the
layers) as in the surface force experiments, and thus can be
considered valid. The value obtained for E1/(1−ν2

1 ) for mica
by this technique was 65 ± 1 GPa. Although ν1 could not
be independently determined, it is likely to fall in the range
0.15 � ν1 � 0.25 for a covalently bonded oxide, giving a value
of E1 = Emica = 62 ± 2 GPa. The value of Emica is consistent
with previous Brillouin scattering measurements [27].

4.1.2. Epoxy. The bulk elastic properties of the
epoxy (E2 = Eepoxy) were measured using an instrumented
microindenter. Epon 1004 epoxy was preheated in a vacuum
oven overnight to remove residual air bubbles and a thick
epoxy layer (>2 mm) was directly applied onto a solid sample
stub. The Epon 1004 was cooled to room temperature
before the measurement. The epoxy was indented with a
2.38 mm diameter tungsten carbide sphere with a loading rate
of approximately 0.5 N s−1 to a maximum force of 5 N, a 5 s
hold at peak force and an unloading rate of approximately
1 N s−1. The indentation is assumed to follow Hertz theory
and the elastic modulus was calculated from the force—depth
data using a linear least squares fit of the F 2/3 − do data [28]
(approximately 200 points) assuming ν2 = 0.5. The force–
depth curve of the epoxy closely followed Hertz contact theory
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Figure 2. Non-adhesive Hertz contact for a two layer material:
Nanoindentation measurements of the indentation depth do with
applied force F during indentation of a 5.5 µm layer of mica on a
thick epoxy substrate by a 21 µm radius diamond sphere. The solid
circles represent load measurements whereas the open circles
represent unload measurements. The solid line shows finite element
calculations for layered surfaces.

and a negligible loading/unloading hysteresis was present.
The maximum indentation depth was 8.4 µm for a 5 N force.
Twenty five repeat measurements at different contact positions
gave E2 = Eepoxy = 3.4 ± 0.04 GPa.

4.1.3. Silica. The Young’s modulus, E3 = Esilica, for the
cylindrical silica supports is taken from the literature to be
72 ± 1 GPa [28].

4.2. Measurements of layered materials

4.2.1. Nanoindentation of a mica layer on a thick epoxy
substrate: non-adhesive contact. Nanoindentation was used
to measure the effective modulus of a mica layer on a thick
epoxy substrate. Mica of the same thickness used in the
SFA (h1 = 5.5 µm) was bonded to a silica substrate using
a thick layer of the epoxy (h2 > 100 µm) and the system was
indented with a 21 µm radius diamond sphere. At indentation
forces <20 mN, the indentation process was entirely elastic;
neither the mica nor the epoxy underwent any permanent
deformation, as evidenced by the absence of hysteresis in the
loading/unloading cycle. At a maximum force of 90 mN, a
small amount of hysteresis was present, as shown by the slight
difference between the load/unload curves in figure 2. The
solid line in figure 2 is the prediction from FEA and will be
discussed later.

4.2.2. SFA measurements: non-adhesive contact. In order
to determine the contact behaviour of the mica surfaces
when adhesive forces were absent, a droplet of 10−3 mol L−1

KCl solution was placed between the mica surfaces. The
interaction between mica surfaces immersed in an aqueous
10−3 mol L−1 KCl solution is repulsive due to a short range
hydration force, thus the interaction is expected to follow Hertz
contact mechanics, as opposed to JKR contact mechanics [29].
No adhesion was measured between the surfaces in the
10−3 mol L−1 KCl solution, i.e. the surfaces separated when
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Figure 3. Non-adhesive Hertz contact for a three layer material:
SFA measurements of applied force F versus a3/R for one
unloading run in 10−3 mol L−1 KCl solution (non-adhesive Hertz
contact). The dashed line is a least squares fit to the data and is
expected from homogeneous Hertz theory. The solid curve is the
FEA of the Hertz contact predicted for a 3-layer system.

a3 /R (µm2)
10 15 20 25

A
pp

lie
d 

Fo
rc

e,
 F

 (
N

)

0.0
0 5

0.1

0.2

0.3

0.4

0.5

h1 = 5.5 µm

h2 = 26 µm

h3 = 16 µm

h1 = 4.1 µm
h2 = 27 µm
h3 = 39 µm

Figure 4. Comparison of the (non-adhesive) Hertz contact between
mica surfaces interacting in 10−3 mol L−1 KCl solution for two SFA
experiments. The epoxy and mica thicknesses were different for
each experiment and are given on the graph. The triangles and
circles represent measurements for an average epoxy thickness of
33 µm and 20 µm, respectively. The filled and open symbols
represent load and unload measurements, respectively.

the applied force was reduced to zero, as expected from Hertz
contact theory.

Figure 3 shows the results of applied force F versus a3/R

for one unloading run in 10−3 mol L−1 KCl solution. If each
of the contacting solids was homogeneous with an effective
modulus E∗

e , Hertz theory predicts a linear relationship with
slope of 4E∗

e /3 as shown by the dashed line in figure 3. The
upward curvature of the experimental data shows that E∗

e is not
constant, but increases with depth of indentation as the stiffness
of the silica substrate is increasingly felt. The solid line is the
FEA for 3-layer surfaces and predicts the increase of E∗

e as
measured. The shape of the contact zone under compressive
force in non-adhesive contact is more rounded (less defined)
at the edges than in adhesive contact. As a result, the radius of
contact is less distinct in non-adhesive contact and could only
be measured to within ±10%, with even more uncertainty at
small contact radii.

Repeat measurements of the variation of the contact
radius with force in 10−3 mol L−1 KCl solution are shown
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Figure 5. SFA measurements of the contact radius versus applied
force for mica surfaces interacting in air (adhesive contact, filled
circle symbols) and 10−3 mol L−1 KCl solution (non-adhesive
contact, open circle symbols). The data were taken from unloading
measurements. Note the larger contact diameter at a given force for
the adhesive contact than for the non-adhesive contact. The same
contact position was used for both sets of measurements. The
contact radius is measured to ±5%.

in figure 4. The filled/open circles represent load/unload
measurements for the conditions previously described (h1 =
5.5 µm, h2 = 25.5 µm and h3 = 16 µm). The filled/open
triangles represent load/unload measurements from another
experiment where the epoxy thickness was greater (h1 =
4.1 µm, h2 = 27 µm and h3 = 39 µm). Clearly, a larger
contact radius is measured for the experiment with the larger
epoxy thickness, as expected.

4.2.3. SFA measurements: adhesive contact. Figure 5
compares the measured contact radius, a, versus applied force,
F , on loading for mica surfaces in dry N2 (solid circles)
and 10−3 mol L−1 KCl solution (open circles). The data
represent measurements for the adhesive and non-adhesive
cases, respectively, for the same experimental contact position
where the mica and glue thicknesses are the same. As expected
for the low forces used in these SFA experiments, the non-
adhesive contacts have smaller radii at a given force than
adhesive contacts.

Figure 6 shows measurements of the contact radius versus
force in dry N2 for loading (filled symbols) and unloading
(open symbols). As seen in the figure, significant hysteresis
is observed with a of the unloading curve greater than or
equal to a of the loading curve. For the experimental
force run shown in figure 6, the pull-off force on unloading
gave γsv = 100 mJ m−2 using equation (4). The solid lines
are the theoretical calculations for a 3-layer material given
by equation (7) for various adhesion parameters and will be
discussed later.

Repeat measurements of the contact radius during loading
(filled circles) and unloading (open circles) at the same
contact position are shown in figure 7. The solid lines are
the theoretical calculations for a 3-layer material given by
equation (7) for various adhesion parameters. The amount
of hysteresis varied from run to run, indicating that the
viscoelastic effects of the epoxy may be influencing the
measured contact radius. The value of the zero force contact
radius ao taken on unloading had an 8% variation for different
runs. However, there was less than 1% variation in the value
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Figure 6. Adhesive contact: SFA measurements of the contact
radius a as a function of applied force F for mica surfaces
interacting in dry air. The filled circles are for loading measurements
whereas the open circles are for unloading measurements. The
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2/E1h
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Figure 7. Adhesive contact: repeat SFA measurements of the
contact radius a as a function of applied force F for mica surfaces
interacting in dry air. The solid lines are the FEA calculations of the
3-layer analysis for a range of values of the non-dimensional
adhesion parameter α = (4γsvR

2/E1h
3
1)

1/2. The filled and open
symbols represent load and unload measurements, respectively.

of ao measured on each subsequent loading curve after leaving
the sample unloaded for 6 h or more. Since ao on loading was
similar for each run, no permanent gross plastic deformation
of the epoxy occurred.

The range of pull-off force, Fp, for different runs was
measured to be between −15 and −25 mN, corresponding to an
interfacial energy, 60 mJ m−2 � γsv � 100 mJ m−2, calculated
using equation (4). For adhesive contact in a layered solid, the
theoretical relationship between applied force F and contact
radius a is given by equation (7) and depends on the adhesion
parameter α (equation (8)). The values of γsv calculated from
the pull-off experiments give 4 � α � 5.

5. Numerical results

The theory outlined above has been used to analyse the
three experimental situations described in this paper: a thin
(5.5 µm) mica layer bonded to a thick (>100 µm) layer of

5989



P M McGuiggan et al

Adhesion parameter, α
10-2 10-1 100 101 102 103

F
P

/ 6
π 

R
γ s

v

-0.70

-0.65

-0.60

-0.55

-0.50

-0.45

-0.40

-0.35

-0.30

homogeneous JKR

Figure 8. Adhesive contact: the solid curve shows results of finite
element calculations of the non-dimensional pull-off force
Fp/6πRγsv as a function of the adhesion parameter
α = (4γsvR

2/E1h
3
1)

1/2, for the three layered SFA configuration
shown in figure 1 as predicted by the FEA analysis for layered
materials. The dashed line at Fp/6πRγsv = −0.5 represents the
analysis for a homogeneous material.

epoxy, and the SFA arrangement of layers of mica (5.5 µm),
epoxy (20 µm) and silica, both with and without adhesion
at the interface. The bulk material properties obtained from
indentation and SFA measurements are summarized in table 1
and used as input values to the finite element simulation
of the SFA and indentation experiments. The commercial
finite element program ABAQUS was used to evaluate the
functions f , g and B given by equations (5), (6) and (9).
The calculation procedure is explained briefly in appendix A.
Once the functions f and g were evaluated, the net force as a
function of contact radius can be found for a given adhesion
parameter using equation (7). A direct comparison of the
theoretical calculations to experimental SFA measurements
in adhesive contact is shown in figures 6 and 7. Using the
thicknesses measured in the SFA experiments and the moduli
measured by indentation, the computed values of the contact
radius (equation (7)) are shown by the solid curves in figure 6
for a series of values of the adhesion parameter α (equation (8))
along with the experimental measurements (circles). The
experimental measurements lie between 2 � α � 7, but the
data do not follow the shape of the layered JKR predictions.

Repeat measurements of the adhesive contact radius
during loading and unloading at the same contact position,
including those shown in figure 6, are shown in figure 7. The
solid lines are the theoretical calculations given by equation (7)
for various adhesion parameters. All the experimental force
curves in figure 7 lie between 2 � α � 7. However,
the experimental data are not a good fit to the shape of
the curve and fail to follow the expected increase in E∗

e at
higher forces. It is noteworthy that the comparison shown in
figures 6 and 7 does not involve any disposable parameters;
the experiment is directly compared with theory. All the
experimental runs showed a significant and variable amount of
hysteresis, presumably due to viscoelastic effects in the epoxy
layer at large contact indentations. In these circumstances, a
close fit with a perfectly elastic theory would not be expected.

Computed values of the normalized pull-off force,
Fp/6πRγsv, as a function of the adhesive parameter α are
presented in figure 8. It can be seen that for a range of adhesion

a/h1
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B
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3.5
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Figure 9. Non-adhesive Hertz contact: the computed relationship
between contact radius a and indentation depth do expressed by the
function B (a/h1) = (doR/a2). The solid curve represents
calculations for a 5.5 µm mica film on a thick epoxy substrate
(2 layers) whereas the dashed curve represents calculations for the
SFA system shown in figure 1 (3 layers). The dashed straight line at
B = 1.0 corresponds to calculations for a homogeneous material
(1-layer).

parameter values, for the current film thicknesses and moduli
used in the measurements, the normalized pull-off force value
can differ from the homogeneous JKR value of −0.5 by as
much as 30%. For example, a value of α between 4 and 5 was
calculated using equation (8) and the experimental pull-off
force measurements. At 4 < α < 5, the computations suggest
that Fp/6πRγsv = −0.58 as compared with Fp/6πRγsv =
−0.50 in the homogeneous case (equation (4)). This important
result will be discussed further in the discussion.

In non-adhesive contact, a direct comparison of finite
element computations to indentation measurements is shown
in figure 2. The computations predict a stiffer response than
measured by indentation. The variation of the computed
normalized indentation depth (without adhesion), described
by the function B, with normalized contact radius (a/h1)
given by equation (9) is plotted in figure 9 for a mica layer
on a thick epoxy substrate (solid curve), corresponding to a
2-layer nanoindentation configuration, and for mica and epoxy
layers on a silica substrate (dashed curve) for the 3-layer SFA
configuration. For reference, the computed values of the
function B are listed in table 2. For small contact radius
(a/h‘1 � 0.005) and large contact radius (a/h1 � 50) the
value of function B is equal to 1. For intermediate values of the
contact radius, 0.005 < a/h1 < 50, 1 < B < 3.2 for the two
layer case. In the 2-layer case (curved solid line in figure 9),
for a/h1 = 1, B = 3.2, a = ((doR)/3.2)1/2, the ‘true’ contact
radius is 56% smaller than the homogeneous Hertz radius.
Note that in the homogeneous Hertzian case, a = √

doR, thus
B = doR/a2 = doR/((doR)1/2)2 = 1. This is shown by the
straight dashed line at B = 1 in figure 9. Similar indentation
analysis for coated materials has been previously reported [17].

For the SFA (3-layer) geometry (dashed curve, figure 9),
in the practical range of normalized contact radii of 10−3 <

a/h1 < 500, the function B varies from 0.6 to 2.1.
The theoretical variations of the effective modulus E∗

e
versus normalized contact radius (a/h1) are shown by the
solid line in figure 10 for the nanoindentation configuration
of a mica layer on a thick epoxy substrate (2 layers) and in
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Table 2. The computed values for function B(a/h1) = doR/a2

from FEA.

B(a/h1) = doR/a2 B(a/h1) = doR/a2

a/h1 for two layers for three layers

0.001 1 1
0.01 1.048 0295 1.039 1843
0.02 1.099 8835 1.059 6785
0.05 1.260 099 1.142 6278
0.07 1.366 0897 1.197 4301
0.1 1.527 2775 1.281 557
0.2 2.030 2227 1.539 4609
0.4 2.830 7013 1.921 5777
0.7 3.218 5252 2.029 7194
1 3.004 7525 1.825 6835
1.4 2.582 3243 1.515 158
1.75 2.290 3748 1.308 304
2.5 1.903 009 1.032 6499
3.25 1.688 2351 0.879 166 96
5 1.439 0059 0.708 871 94
7 1.308 9621 0.637 525 16

10 1.213 2741 0.614 241 48
15 1.140 0252 0.642 955 98
20 1.104 089 0.687 268 42
40 1.050 9653 0.811 880 64
60 1.033 0039 0.866 762 91
80 1.022 6873 0.901 991 25

100 1.018 8411 0.921 834 29
200 1.008 6244 0.961 212 22
400 1.001 8156 0.978 250 96

a/h1
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Figure 10. Variation of the effective modulus E∗
e of a solid

comprising a 5.5 µm mica layer on a thick epoxy substrate as a
function of the contact radius, a/h1. The solid line is the finite
element calculation for a 2-layer material and the circles represent
measured values extracted from nanoindentation tests with a 21 µm
radius diamond sphere (figure 2).

figure 11 for the SFA configuration (3 layers). As shown
in figure 10, the calculated effective modulus, E∗

e , of the
2-layered system decreases steadily from the modulus of
the mica (62 GPa) to that of the epoxy (3.4 GPa) as the
size of the contact increases relative to the thickness of the
mica layer (5.5 µm). Equation (10) can be used to directly
compare the theoretical computations to the experimental
indentation measurements. The indentation stiffness S(do) is
obtained from the differentiation of the indentation curve in
figure 2. However, the variation of the radius of contact a with
indentation depth is required to obtain the effective modulus
E∗

e from equation (10). Since a cannot be directly measured
in nanoindentation experiments, a(do) is obtained from the

a / h1
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Figure 11. Variation of the effective modulus E∗
e of the layered

solids in the SFA as a function of a/h1. The solid line is the finite
element calculation of the 3-layer material (5.5 µm mica layer,
20 µm epoxy layer, and infinite silica layer) and the circles represent
measured values extracted from the SFA tests in the absence of
adhesion (figure 3).

computed function B(a/h1) (equation (9) and figure 9). By
converting the function B = doR/a2 to B∗ = doR/h2

1
(by multiplying B by (a/h1)

2), a ‘true’ value of a can be
found from the values of B∗(a/h1). The values of B(a/h1)

are given in the appendix. Values of E∗
e so found are added

to figure 10 (open circles), where they are compared with the
computed results (solid curve). There is a discrepancy between
the measured and theoretical absolute values of E∗

e , but the
trend clearly shows the increasing effect of the epoxy as the
depth and area of the indentation increases. The discrepancy
suggests that the value of the modulus of the mica or the epoxy
is too low. Using the function B(a/h1), the contact radius
and modulus for a particular indentation depth can also be
calculated. At an indentation depth of 30 nm on a 5.5 µm
mica layer, the calculations show that a/h1 = 0.115. From
figure 10, at a/h1 = 0.115, E∗

e ∼ 36 GPa compared with the
mica modulus of Emica = 62 GPa. The indentation is sensing
the epoxy layer at nearly 200 times the indentation depth and
nearly 9 times the contact radius.

The calculated effective modulus of the SFA configuration
consisting of a 5.5 µm mica layer and a 20 µm epoxy layer on
a silica substrate, shown in figure 11, is more complex. For
contact radii much smaller than the thickness of the mica layer,
the effective modulus falls with increasing contact radii from
the modulus of the mica, as seen in figure 10. For values of
a/h1 greater than about unity, the effective modulus increases
due to the stiffening effect of the silica substrate. For values
of a/h1 ≈ 1, the effective modulus is approximately constant
with E∗

e ≈ 15 GPa, and the system should behave according
to the homogeneous JKR equation. Note that these results
are only valid for the particular geometry and elastic constants
(table 1) used in this experiment.

Experimentally, E∗
e for the layered SFA configuration can

be determined from the non-adhesive force measurements and
compared with theoretical calculations. The experimental
values of E∗

e are found by converting the variation of force
with a to variations with displacement do and hence the
stiffness of the layered surface. It can be shown that E∗

e =
(3/4B)(∂F/∂(a3/R)). These experimental values of the
effective modulus, shown by the circles in figure 11, compare
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well with the theory. In addition, for the experimental contact
radii 5 � a/h1 � 15, E∗

e increases with increasing force
demonstrating the influence of the underlying silica surface.
The increase in stiffness with increasing force is also noticed
in figures 6 and 7 at larger contact radii.

6. Discussion

We shall consider first the indentation of layered solids without
adhesion: (a) 5.5 µm mica layer on a thick epoxy substrate
indented by a 21 µm radius diamond sphere and (b) a SFA
configuration comprising a 5.5 µm mica and 20 µm epoxy
layers on a glass substrate.

For the indentation of the two layer mica/epoxy by the
diamond sphere, the variation of indentation depth with force
was measured (figure 2) and the stiffness of the contact
obtained from the derivative of this curve. The theoretical
prediction is compared directly by the line in figure 2. It
reveals an under-estimate of the contact stiffness by about
25%. The effective modulus E∗

e of the two layered solid was
then obtained using the relation between contact radius and
indentation depth shown in figure 9. These experimental values
of E∗

e are compared with the numerical theory in figure 10.
They follow the theoretical predictions of E∗

e with contact size
and clearly show the increasing effect of the epoxy relative
to the mica as the indentation depth increases. However, as
expected from figure 2, the comparison between theory and
experiment reveals a discrepancy in absolute value of about
25%. The SFA experiments without adhesion clearly show the
increase in effective modulus E∗

e (figure 11) with increasing
contact radius due to the effect of the silica substrate, in good
agreement with the theory for layered materials.

However, the SFA experiments with adhesion shown in
figures 6 and 7 are not so satisfactory. Loading/unloading
tests show a significant and variable amount of hysteresis,
presumably arising from viscoelastic effects in the epoxy
layer. It is known that, with viscoelastic solids, adhesion
on unloading is enhanced by the concentration of adhesive
stress at the edge of the contact [24, 30]. Repeated
SFA measurements showed that no permanent gross plastic
deformation of the epoxy had occurred. The time scale
between measurement runs was 6–12 h, and the epoxy
appeared to relax within that time. However, during the
time scale of one measurement load/unload curve (∼45 min),
hysteresis was observed. The microindentation experiments
that were used to determine the elastic modulus of the epoxy
were much faster (20–30 s), and showed minimal hysteresis or
plasticity. It has been assumed that we are at equilibrium at
each step during the SFA loading and unloading cycles, which
may not necessarily be the case if the relaxation time is longer
than the time scale of the experiments [12].

Some points of practical importance arise from this work.
Firstly, it is common in JKR adhesion tests to extract a
value for the surface energy from the measured pull-off force
by equation (4) where γsv = −Fp/3πR. Note that in
this equation the pull-off force depends solely on the mica
surface energy and is independent of the contact dimension
or modulus. But it is clear from figure 8 that, with a
layered solid, using equation (4) can involve a significant error,
and for this specific configuration, the surface energy varied

according to 2πRγsv < Fp < 4πRγsv, giving a variation
of ±30%. The exact value of the pull-off force depends on
the adhesion parameter α. For α = 5, Fp ≈ −0.58. Thus,
γsv ≈ −Fp/3.5πR. This result was found to be relatively
independent of the layer thickness ratio h2/h1 [11]. It should
also be noted that in a study of viscoelastic contact, it has been
shown that the pull-off force can be significantly greater than
the elastic JKR value [30].

Secondly, it is evident from figure 11 that when the scaled
radius of contact, a/h1, is near unity, the effective modulus is
close to that of the epoxy. In the SFA case shown in figure 11,
a minimum stiffness is found at a/h1 ≈ 2, after which it
increases due to the stiffening effect of the silica substrate.
In the region close to the minimum, E∗

e is approximately
constant, independent of contact size, so that the JKR equation
(equation (1)) could be applied to a good approximation. In
the present SFA experiments with adhesion, shown in figures 6
and 7, the values of a/h1 varied between 4.5 and 14. This is
well outside the range of where E∗

e is approximately constant.
However this is partly due to the use of a very high spring
stiffness in the SFA used in these experiments.

Due to the large cylinder radius (R ≈ 2 cm) and the thin
mica sheets (h1 < 6 µm) typically used in SFA experiments,
combined with the soft epoxy under-layer, the contact radius
in air at zero force is generally 5 times greater than the mica
layer thickness. Hence, the mica plays a minimal role in the
overall measured mechanical properties of the SFA system; the
mechanical properties are mostly dictated by the epoxy and the
underlying silica surface, depending on the applied force.

It is often difficult to completely match theoretical and
experimental conditions. This difference can allow the
theoretical and experimental measurements to differ. For
example, the experimental SFA measurements consist of two
deforming surfaces (sphere-on-flat geometry) having epoxy
thicknesses of 16 and 25 µm. The theoretical calculations
model this contact as a rigid probe pressed onto a 3-layer
material having an epoxy thickness of 20 µm, the average value
of the two epoxy thicknesses. This averaging may lead to the
slight differences between the experimental and theoretical
values. In addition, the experimental measurement of the
contact radius assumes the contact radius to be spherical, as
is expected for crossed cylinders. However, if the cylinders
were not at 90◦, an elliptical contact would occur, and an
error would exist in the measurements of the contact radius.
Also, if the contact radii were not measured on a major axis,
the measurements would further deviate from the theoretical
predictions.

The results have implications for other experimental tech-
niques, such as atomic force microscopy and nanoindentation,
where the contact radius can vary from 5 to 1000 nm. Com-
parison of figures 10 and 11 show that even at very low con-
tact radii (10−2 < a/h1 < 1), the silica substrate is signifi-
cantly influencing the measured modulus. For a/h1 = 0.01
where there begins to be a difference between the response of
a 20 µm epoxy layer thickness and an infinite epoxy thickness,
a = 0.55 µm. Hence, the silica is influencing the mechanical
properties through 5.5 µm mica and 20 µm epoxy (26 µm of
material), a distance that is approximately 25 times the contact
diameter. These results show that even minute indentations
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Figure A1. Finite element mesh for three layer SFA.

(a/h1 > 10−2) can be influenced by the underlying materi-
als and the measured effective modulus will be a composite
response.

7. Conclusions

This paper reports an experimental investigation of the micro-
and nanoindentation of layered surfaces. In particular, it
investigates the contact mechanics of the SFA, both with and
without adhesion. Almost all the parameters of the apparatus,
the thickness and elastic modulus of the layers, are found by
direct independent measurement. The experimental results are
compared with a FEA of layered solids.

Nanoindentation of bulk mica gave the elastic modulus of
mica: E = 62 ± 2 GPa. Microindentation of bulk epoxy gave
the modulus of epoxy: E = 3.4 ± 0.04 GPa.

Indentation of a thin mica layer on an epoxy substrate gave
values for the effective modulus E∗

e of a two layered solid. The
variation of the effective modulus with depth of indentation
agreed well with the layered Hertz theory, but the absolute
magnitude was about 25% high. No satisfactory explanation
has been found for this discrepancy.

SFA measurements in the absence of adhesion gave values
for the effective modulus of the three layer configuration (mica
and epoxy layers on a silica substrate) that were in good
agreement with layered Hertz predictions, both in variation
with depth and in absolute value.

In the presence of adhesion, SFA measurements of the
contacting mica surfaces gave contact radius–force curves
which were in reasonable agreement with the theory extended
to layered materials. However, the loading and unloading
curves showed appreciable adhesion hysteresis presumably
due to viscoelasticity of the epoxy adhesive layer which
prejudices comparison with an elastic theory. The FEA
further showed that the pull-off force with a layered solid can
vary significantly from the JKR value given by equation (3).
Specifically, the analysis showed that 2πRγsv < Fp < 4πRγsv

and for the experimental geometry of the SFA at the conditions
of this experiment, γsv ≈ Fp/3.5πR.
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Appendix A. Numerical analysis

The function f and g are computed using commercial finite
element (FE) package ABAQUS for a range of values of a/h1.
The finite element mesh for three layer SFA is shown in
figure A1. All the layers are assumed to be perfectly bonded
to each other. A large domain, 100–150 times the contact
radius, is discretized using axi-symmetric 8-noded quadratic
and 6-noded triangular elements. The hybrid elements are
used to model the incompressible nature of the epoxy layer.
A particularly fine mesh is required in the region close to the
edge of contact radius r = a in order to obtain reliable values
of the stress intensity factor KI. To simulate the spherical tip
indentation, the normal displacement uz is separated into two
terms as

Ruz

a2
= Rd0

a2
− 1

2

( r

a

)2
≡ Ru′

z

a2
− Ru

′′
z

a2
. (A1)

The stress arising from each displacement component are
computed separately, and they give rise to stress intensity
factors, K ′

I and KI
′′ at r = a. Summation of the nodal reaction

forces on the surfaces gives the corresponding forces F ′ and
F ′′. The adhesive force Fa is given directly by F ′. In the
absence of adhesion, the deformation is smooth at r = a,
so that F0 is given by the combination of F ′ and F ′′, which
satisfies the condition K ′

I + KI
′′ = 0.
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