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In this paper, a Lagrangian formulation of the Navier–Stokes equations, based on the smoothed particle
hydrodynamics (SPH) approach, was applied to determine how well rheological parameters such as
plastic viscosity can be determined from vane rheometer measurements. First, to validate this approach,
a Bingham/Papanastasiou constitutive model was implemented into the SPH model and tests comparing
simulation results to well established theoretical predictions were conducted. Numerical simulations
for the flow of fluids in vane and coaxial cylinder rheometers were then performed. A comparison to
ane rheometer
moothed particle hydrodynamics (SPH)
ingham fluid
on-Newtonian fluid
apanastasiou model

experimental data was also made to verify the application of the SPH method in realistic flow geometries.
Finally, results are presented from a parametric study of the flow of Bingham fluids with different yield
stresses under various applied angular velocities of the outer cylindrical wall in the vane and coaxial
cylinder rheometers. The stress, strain rate and velocity profiles, especially in the vicinity of the vane
blades, were computed. By comparing the calculated stress and flow fields between the two rheometers,
the validity of the assumption that the vane could be approximated as a cylinder for measuring the

Bingh
rheological properties of

. Introduction

Vane geometries are commonly used to determine the rhe-
logical properties of many non-Newtonian fluids that can be
haracterized as having a shear rate dependent viscosity and so-
alled yield stress. However, due to the complex flow geometry
f the vane, relating the measured quantities (torque and angular
elocity) to the rheological properties (yield stress and viscosity)
epresents a significant challenge, partly because of various arti-
acts of measurement such as slip at fluid/wall boundaries and,
erhaps more importantly, a lack of knowledge of the actual local
ow rates. Indeed, the vane geometry has been primarily used in
ield stress measurements for fluids that possess a yield stress and
how slip at solid walls [1,2]. There are a number of advantages
f the vane method over the use of conventional rheometers for

tructured materials, for example, less disturbance to the sample
eing measured; less susceptibility to artifacts arising from large
article sizes and alleviation of wall-depletion effect [3].

∗ Corresponding author at: Department of Fiber Science and Apparel design, Cor-
ell University, Ithaca, NY 14853 USA.

E-mail address: hz222@cornell.edu (H. Zhu).

377-0257/$ – see front matter © 2010 Elsevier B.V. All rights reserved.
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am fluids at different shear rates was tested.
© 2010 Elsevier B.V. All rights reserved.

Several researchers [4–6] have found that the no-secondary-
flow assumption at relatively low shear rates (∼1 s−1) for the vane is
valid. However, their conclusion cannot be generalized to applica-
tions of rheological property measurements involving higher shear
rates. Barnes and Carnali [3] addressed the suitability of the use
of a vane geometry as a rheometer for shear thinning fluids and
found that for a shear thinning fluid with a shear thinning (power)
index greater than 0.5, the vane represents a good means of mea-
suring the rheological properties of such fluids under steady flow
conditions.

The interpretation of the experimental results is not always easy
due to the lack of an analytical solution to extract shear rates and
shear stresses in fundamental units. Therefore, a numerical sim-
ulation, predicting the bulk and interfacial properties of complex
fluids, has been used to complement and guide experimentation.
Numerical simulations of non-Newtonian flows in complex geome-
tries have often been based on a macroscopic approach where
one numerically solves the conservation laws together with a suit-
able rheological constitutive equation. In this area, many numerical

approaches have been proposed, generally based on finite dif-
ference, finite element (FEM), finite volume (FVM) or boundary
element methods (BEM). All of these numerical methods are, in
essence, Eulerian schemes. As an alternative to classical Eulerian
methods, Lagrangian based approaches avoid the complicated eval-

http://www.sciencedirect.com/science/journal/03770257
http://www.elsevier.com/locate/jnnfm
mailto:hz222@cornell.edu
dx.doi.org/10.1016/j.jnnfm.2010.01.012
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ation of advective terms and allow for tracing the motion of
olid–fluid interfaces and simulating free surface flows without
dditional difficulty. Since our long-term goal is to simulate mul-
iphase complex fluids such as suspensions with a non-Newtonian

atrix, we decide to adopt a Lagrangian approach in the numer-
cal computation. The SPH method [7,8], which is based on a
ully Lagrangian formalism, has been successfully applied to dif-
erent physical situations including multiphase flow [9–12], flow
f geomaterials [13,14], fluid-structure interactions [15] and flow
f visco-elastic fluids [16–18].

In the present study, a SPH numerical simulation for the flow of
ingham fluids in a vane rheometer was performed under relatively
igh shear rates in order to validate the suitability for measuring
eneral rheological properties. The SPH algorithm was first verified
n plane Poiseuille flow and in rotational Couette flow problems by
omparing the simulation results to theoretical predictions. Then,
umerical simulations were performed for the flow of a Newto-
ian fluid in vane and coaxial cylinder rheometers and the ratio of
he shear stresses on the outer walls of the coaxial cylinders and
he vane under different flow conditions was computed. Qualita-
ive good agreement was achieved between the simulation results
nd the experimental data. In addition, a parametric study was
onducted for Bingham fluids with different yield stresses under
arious applied angular velocities of the outer cylindrical wall. The
ffects of the Bingham number and the magnitude of the angular
elocities on the vane-flow properties were investigated and the
alidity of the assumption that the vane could be approximated
s a cylinder for measuring the rheological properties of Bingham
uids at different shear rates was assessed. Results presented in
his paper will be limited to the case of two-dimensional flows.
owever, as outlined in the following sections, a two-dimensional
umerical analysis is sufficient to indicate inherent problems with
he suitability of using the vane rheometer to measure the plastic
iscosity.

. Governing equations

The tensorial continuum and momentum equations have the
orm

d�

dt
= −�∇ · v, (1)

dv
dt

= ∇ · P + b, (2)

here � is the density, v is the velocity, b is the body force, and the
otal stress tensor

= −pI + �, (3)

here p is the hydrostatic pressure at equilibrium and � is the
xtra stress tensor. For an idealized Bingham fluid, the constitutive
quation can be written as:

=
(

� + �0

�̇

)
�̇ for � > �0,

˙ = 0 for � < �0, (4)

here �̇ is the strain rate tensor, � is the plastic vis-
osity, �0 is the yield stress, the effective strain rate and

tress are defined as �̇ =
√

(1/2)�̇ ′ : �̇ ′ =
√

(1/2)�̇ ′
ij
�̇ ′

ij
and � =

′ ′
√

′ ′ ′
(1/2)� : � = (1/2)�
ij
�

ij
. Deviatoric strain rate tensor �̇ and

tress tensor � ′ are defined as �̇ ′ = �̇ − (1/2)(�̇ii) and � ′ = � −
1/2)(�ii), respectively. It is difficult to apply the Bingham model
irectly in numerical simulations, especially in complex geome-
ries. The difficulty is mainly due to the discontinuity in the
d Mech. 165 (2010) 362–375 363

constitutive relations; specifically, as the yield point is approached,
the presence of the shear rate in the denominator of the Bingham
model (Eq. (4)) makes the apparent viscosity diverge. Furthermore,
while calculating the velocity field, the shape and location of the
yield surface are unknown. Papanastasiou [19] proposed a regu-
larized Bingham model to overcome the numerical difficulties. The
regularized model is continuous and applies to both the yielded and
unyielded regions. Alexandrou et al. [20], Burgos et al. [21] and Zhu
and De Kee [22] discussed the validity of the regularized Bingham
model. The regularized Bingham model can be written as:

� =
(

� + �0
[1 − e−m�̇ ]

�̇

)
�̇, (5)

where m is a parameter related to the transition between the solid
and fluid regimes. The higher the value of m, the sharper the shape
of the transition.

To non-dimensionalize the governing and constitutive equa-
tions, the following dimensionless variables are introduced:

y∗ = y

H
, v∗ = v

V
, t∗ = t

�H2/�
, �∗ = �

�V/H
,

�∗ = �

V/H
, p∗ = p

�V/H
, Bn = �0H

�V
,

Re = �VH

�
, M = m

H/V
, b∗ = b

�V/H2
, (6)

where V is the reference velocity, H is the reference length, Re is the
Reynolds number and Bn is the dimensionless Bingham number, a
measurement of the yield stress relative to viscous stress. M is a
dimensionless growth parameter. For convenience, the superscript
star will be dropped in the following text. The non-dimensional
governing and constitutive equations become:

�
dv
dt

= ∇ · (−pI + �) + b, (7)

� =
{

1 + Bn[1 − e−Ṁ� ]
�̇

}
�̇. (8)

3. Numerical method

The SPH method can be viewed as a numerical scheme in which
the fluid flow is decomposed into discrete particles. Each of the
particles has associated mass, density, velocity, and pressure. Using
the information from the particles, the values of these variables at
any location within the fluid can be interpolated. The SPH approach
also removes the difficulties associated with convective terms and
allows one to tackle fluid and solid flow problems involving large
deformation and free surfaces in a relatively natural way.

3.1. Discretized SPH equations

The SPH method is based on the following integral

f (x) ≈
∫

f
(

x′)W
(∣∣x − x′∣∣ , h

)
dx′, (9)

where f(x) is an arbitrary function, W is the weighting function, and
h is a parameter that effectively controls the width of the weighting
function with∫
W
(∣∣x − x′∣∣ , h

)
dx′ = 1 (10)

and the weighting function approaches the delta function as
the parameter h approaches zero. Under such circumstance, the
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pproximate equal sign in Eq. (6) becomes strictly satisfied. The
iscretized SPH approximation can be written as

(x) ∼=
∑

j

mj

�j
fjW
(∣∣x − x′∣∣ , h

)
, (11)

here mj and �j are the mass and density corresponding to particle
, respectively. The discretized momentum equation can be written
s:

dv˛
i

dt
= F˛

i . (12)

˛
i =

∑
j

mj

(
P˛ˇ

i

�2
i

+
P˛ˇ

j

�2
j

)
∇ˇ

i
Wij (13)

here Wij = W
(∣∣xi − xj

∣∣ , h
)

. The subscript Roman indices indi-
ate particles and the superscript Greek indices indicate spatial
oordinates. W is a weight function which has the form:

(r, h) = w0

⎧⎪⎪⎨
⎪⎪⎩

(
3 − r/h

)5 − 6
(

2 − r/h
)5 + 15

(
1 − r/h

)5(
3 − r/h

)5 − 6
(

2 − r/h
)5(

3 − r/h
)5

0

0 ≤ r/h <
1 ≤ r/h <
2 ≤ r/h <
r/h ≥ 3

here r =
∣∣ri − rj

∣∣. When the normalization factor w0 =
/(478�h2), this weight function is quintic spline kernel for
D simulation. The density could be obtained by integrating Eq.
1). However, the total mass is not exactly conserved. In the present
tudy, following Ellero and Tanner [17], the following equation is
btained by replacing fj with �j in Eq. (11):

i =
∑

j

mjW
(∣∣ri − rj

∣∣ , h
)

. (15)

q. (15) conserves the mass exactly. To evaluate the extra stress (Eq.
5)), one needs to define the discretized form of rate of deformation
ensor:

˙ ˛ˇ
i

= k˛ˇ
i

+ kˇ˛
i

(16)

here

˛ˇ
i

= ∇ˇV˛
i

∼=
∑

j

mj

�j

(
V˛

j − V˛
i

)∇ˇW
(∣∣ri − rj

∣∣ , h
)

(17)

.2. Artificial stress

In the SPH numerical simulation, when the material is in a state
f tensile stress, the particle motion becomes unstable, leading to
he so-called tensile instability [23,24]. This instability, which is
trictly related to the interpolation technique of the standard SPH
ethod, is especially noticeable when simulating the stretched

tate of a solid. As a consequence, particles tend to clump together
nd show unrealistic fracture-like behavior. To avoid this behavior,
he artificial stress approach was adopted. The concept of artificial
tress is to use a short-range repulsion force to prevent particles
rom getting too close; specifically, the artificial stress becomes
ffective when particle i is in tension and acts as a repulsion force
voiding particle clumping. Following Gray et al. [23], an additional
rtificial stress term was added in the parentheses of right side of
q. (13):

˛ˇ ˛ˇ ( )( (∣∣ ∣∣ ))q

P

i

�2
i

+
P

j

�2
j

+ R˛ˇ
i

+ R˛ˇ
j

W xi − xj , h

W (d, h)
, (18)

here d is the mean initial distance between two neighboring par-
icles and q is a parameter. The quantities R˛ˇ

i
and R˛ˇ

j
are assumed
d Mech. 165 (2010) 362–375

(14)

coaxial with the stress tensor [24]. The principal components of R˛ˇ
i

and R˛ˇ
j

are related to the principal stress components as follows:

R˛
i

= −ε
P˛

i

�2
i

, if P˛
i

> 0,

R˛
i

= 0, if P˛
i

≤ 0 (19)

where 0 < ε < 1 and P˛
i

is the principal stress component. A similar

equation can be written for quantity R˛
j

. The artificial stresses in
the referenced coordinate system are then obtained by coordinate
transformations. The artificial stress terms were used in the numer-
ical simulations of the flow of Bingham fluids in the vane rheometer.
Parameter d was chosen to be 1.11h. For the weight function used
in the present study (Eq. (14)), the ratio W(0,h)/W(d,h) is 3.18. In
the simulation we took parameter q equal to 4 following Monaghan
[24]. Though Monaghan [24] also suggested that parameter ε takes

a typical value of 0.2, the appropriate value of parameter ε depends
on parameters h, q, and the number of spatial dimensions. By trial
and error we found that ε equal to 0.5 successfully relieved the
tensile instability in the simulation of flow of Bingham fluids in the
vane rheometer.

3.3. Integration scheme

In the present study, a predictor–corrector scheme is used that
offered second order accuracy in time. The particle accelerations Fi
were computed via Eq. (18). The new fluid particle velocities and
positions were found by a two-step integration:

ri(t + �t) = ri(t) + �t vi(t) + 1
2

�t2Fi(t), (20)

vi

(
t + �t

2

)
= vi(t) + �t

2
Fi(t). (21)

Once the predicted values of the independent variables were
obtained for each fluid particle, the function F was evaluated using
the predicted values in order to calculate the final corrected vari-
ables:

vi(t + �t) = vi(t) + �t

2

(
Fi(t) + Fi

(
t + �t

2

))
. (22)

To obtain a stable numerical solution, the time step �t must sat-
isfy the Courant–Friedrichs–Levy (CFL) condition [25], a constraint
due to particle acceleration [26] and a constraint due to the viscous
diffusion [25,27]:

�t ≤ h

3c
, (23)

where c is the speed of sound,

�t ≤ min
i

(
h

3
∣∣ai

∣∣
)

, (24)

where a is the acceleration of particle i, and
i

�t ≤ min
i

(
h2

2	i

)
, (25)

where 
i = �i/�i is the kinematic viscosity of particle i.
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.4. State equation

In most SPH approaches, incompressible fluids are treated as
lightly compressible fluids by employing an equation of state. In
he current study, the following equation of state was adopted:

(�) = c2(� − �0), (26)

here �0 is a reference density and c denotes the sound speed.
he Mach number is defined by V/c, where V is a reference veloc-
ty. The density variation is proportional to the square of the Mach
umber. If a value is chosen corresponding to the real magnitude of
he speed of sound of the fluid, then an extremely small time step
as to be employed according to the Courant–Fredrich–Levy condi-
ion [25]. Monaghan [28] concluded that the sound speed could be
rtifically slowed for fluids without affecting the fluid motion too
uch. However, he also argued that the minimum sound speed

hould be around ten times greater than the maximum expected
ow speeds. To make a proper choice of sound speed c that can
ield the desired density variation (to simulate an ideal incom-
ressible fluid) without losing computational efficiency, the sound
peed was chosen following Monaghan [28] and Fang et al. [18]
uch that the density variation was confined within 1%. Usually
he weak compressible assumption is used for SPH simulations of
ncompressible flows as adopted in the present approach. It is noted
hat new truly incompressible SPH formulations have been recently
eveloped. For example, Cummins and Rudman [29] developed an
PH projection operator based on the solution of a pressure Pois-
on equation to solve a null divergence velocity field. Colin et al.
30] presented an SPH solution of the Helmholtz–Hodge decompo-
ition for a null divergence velocity field in an incompressible fluid
imulation. They also proposed a new version of the Laplacian for-
ula for smoothing kernels. Instead of solving a pressure Poisson

quation in order to get a divergence-free velocity field, Ellero et
l. [31] achieved incompressibility by enforcing a kinematic con-
traint that the volume of the fluid particles is constant. Lagrangian
ultipliers were used to apply this restriction.

.5. Boundary conditions

Throughout this paper, the flow fields considered were con-
ned within solid boundaries over which a non-slip condition
as applied. Numerous approaches have been proposed to han-
le the solid boundary conditions in SPH. In the repellent-particle
pproach [28], fixed boundary particles lie at the wall surfaces and
xert an artificial repulsive force on approaching fluid particles
o prevent them from penetrating the solid walls. The repellent-
article approach has greater flexibility in handling boundary
onditions with complex geometry. However, problems arise if the
article density has to be evaluated near the wall: the density of
hose particles approaching the surface will decrease rapidly to
bout half the value of that in the bulk material. This causes a den-
ity gradient and consequently a substantial pressure gradient in
he momentum equation which forces the particles to accelerate
owards the wall producing loss of homogeneity in the dynamical
rid and artificial layers parallel to the surface.

Another approach is the ghost-particle approach [9]. This con-
iders the contribution of mirror boundary particles, which are
reated outside the domain simply by reflecting fluid particles
cross the boundary with opposite velocities. This approach has
hown smooth behavior in modeling flows in less curved bound-
ries; however, it introduces numerical errors when dealing with

urved solid surfaces.

For this study, Morris et al.’s [27] approach has been adopted.
he solid material forming the boundary is filled with equi-spaced
irtual boundary particles in a range of depth comparable with
he support length scale of the weight function, whose velocity is
Fig. 1. Illustration of the application of periodic boundary conditions in a quadrant
of the 2D vane rheometer.

deduced from those of the physical particles adjacent to the solid
boundary. Boundary particles contribute to the usual SPH expres-
sions for velocity, pressure and stress gradients. In this case, for
every solid boundary particle j, a normal distance dj to the bound-
ary surface is defined. This is used to construct a tangent plane to
the surface, and consequently the normal distance di to this plane
for a selected fluid particle i. Finally, the velocity vj of a solid particle,
extrapolated across the tangent plane takes the form

vj = vi +
(

1 + dj

di

)
(vw − vi) , (27)

where vw is the wall velocity.
This approach allowed for the application of the non-slip bound-

ary condition and resolution of the particle deficiency problem near
the wall. Compared to the ghost-particle approach on curved solid
surfaces, the present approach can handle curved interfaces since it
does not introduce additional errors upon estimating the density of
fluid particles that have neighbor particles within the solid bound-
aries. Specifically, the curved boundaries used in the present study
are cylindrical walls of the vane and cylinder rheometers. In such
cases, the normal of the tangential plane of a specific particle can be
simply obtained by connecting the particle to the origin. For each
boundary particle, the velocities are assigned via Eq. (27). Further,
a new scheme was proposed in locating the fluid particles used in
Eq. (27), that is: use the fluid particles whose distance to the tan-
gential plane is close to that of the solid particle to the same plane.
For example, if the distance from a solid particle to the tangential
plane is within a range of (0,h), then a fluid particle in the same dis-
tance range will be chosen to extrapolate the velocity of that solid
particle. This method improves the accuracy of the computational
results when dealing with curved boundaries.

In the present study, numerical simulations in vane and coaxial
cylinder rheometers were performed. Taking advantage of sym-
metry, a domain which is a quarter of the original one was adopted
for computational efficiency. As a consequence, periodic boundary
conditions have to be applied in the � (rotational) direction. That is
to say, when the computation is carried out for particles situated
within a range of 3 h to the plane � = 0(� = �/2), the particles close to
the plane � = �/2(� = 0) are also considered as potential neighbors.
For example, to compute the properties of a given particle (i, see
Fig. 1) close to the plane � = 0, the coordinates, velocity and stresses
of its neighbor particle j′ close to plane � = �/2 are transformed to

the current reference frame. Specifically,

xj′ = yj, yj′ = −xj, vx
j′ = vy

j
, vy

j′ = −vx
j , �xx

j′ = �yy
j

,

�yy
j′ = −�xx

j , �xy
j′ = �xy

j
. (28)
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4.2. Tangential angular flow of Newtonian fluids
ig. 2. Illustration of the application of boundary conditions at the surface of a vane
lade.

If particle i is originally situated close to plane � = �/2 while its
eighbor is located close to the plane � = 0, the transformation will

nstead take the form

xj′ = −yj, yj′ = xj, vx
j′ = −vy

j
, vy

j′ = vx
j ,

�xx
j′ = −�yy

j
, �yy

j′ = �xx
j , �xy

j′ = �xy
j

. (29)

To assess the flow properties of the fluid particles close to the
ips of the vane blades, additional consideration is needed to deal
ith the geometric singularity. A single solid particle can have fluid
article neighbors across an abruptly changing interface. As shown

n Fig. 2, if a straight line is drawn between the solid particle j and
uid particle i1, this will cross the plane y − y′, while the line con-
ecting particle j to particle i2 will cross the plane x − x′. Under such
ircumstances, we propose the concept of multiple flow properties
or solid boundary particles. Depending on the location of the fluid
article being assessed, different flow properties can be applied
o one specific solid boundary particle. For example, in the case
hown in Fig. 2, when a computation is performed involving fluid
article i1, which is situated in regime I, the reference plane y − y′

s chosen to assess the velocity of the boundary particle j, the x − x′

lane is used as a reference plane when a computation is conducted
nvolving particle i2 located in regime II. Since different reference
lanes are used for these two cases, the flow properties assigned to
he solid particle j can be different. This approach helps resolve the
ingularity problem in applying the boundary conditions at the tips
f the vane blades, and it proves effective in providing smoothed
olutions in the numerical simulation.

.6. Rotating non-inertial reference frame

A two-dimensional vane geometry was used in the present
tudy. To handle the complex boundary condition at the surface
f the vane blades, the flow field was solved in a non-inertial ref-
rence frame, which rotates with the inner cylinder or vane blades
t a angular velocity ω. Assuming a constant angular velocity, the
omentum equation can be rewritten in the rotating non-inertial

eference frame as[
dv
dt

+ 2ω × v + ω × (ω × r)
]

= ∇ · P + b. (30)
On the left side, the terms 2ω × v and ω × (ω × r) correspond to
he Coriolis and centrifugal forces, respectively. Since there are no
erivative terms involved in the Coriolis and centrifugal accelera-
ions, there are no additional difficulties in solving Eq. (30).
d Mech. 165 (2010) 362–375

4. Validation of the numerical scheme

In this section, the SPH algorithm is validated by comparing the
numerical results for the Poiseuille flow of Bingham fluids and the
tangential angular flow of Newtonian fluids with analytical solu-
tions.

4.1. Poiseuille flow

A numerical simulation was performed for the flow in a two-
dimensional channel. In a rectangular simulation box, a total
number of 2500 particles were used. Periodic boundary conditions
were imposed in the x-direction (flow direction) with particles
leaving the right side re-inserted on the left side with the same
velocity and y coordinate. In addition, rigid boundary conditions
are considered at the upper and lower plates, which consist of a
thick region filled with boundary particles entering in the interpo-
lation process and interacting with the fluid particles. The velocities
of the solid boundary particles are extrapolated via Eq. (27).

The non-dimensional governing and constitutive equations for
the Poiseuille flow of Bingham fluids can be written as:

∂vx

∂t
= ∂�yx

∂y
+ b, (31)

�yx =
{

1 + Bn[1 − e−M�̇ ]
�̇

}
∂vx

∂y
. (32)

The exact steady state solution for the Poiseuille flow of Bingham
fluids (non-regularized model) can be solved analytically:

vx = 1
2

b
(

1
4

− y2
)

− Bn
(

1
2

− y
)

1
2

≥ y ≥ y0

vx = 1
2

b
(

1
2

− y0

)2
0 ≤ y < y0, (33)

where y0 = Bn/b and for convenience the non-dimensional pressure
gradient b is assigned to be equal to one. The analytical solution
(Eq. (33)) is valid for 0 ≤ y ≤ 1/2 and is symmetric with respect to
the y-axis. A parametric study was performed by setting Bn = 0
(Newtonian fluid), 0.1, 0.2 and 0.3, and the numerical results are
compared with the analytical solution (Eq. (33)). In the simulation
sound speed c takes a value of 10. That is to say, quantity c2 is equal
to 100. Considering that the reference velocity is equal to 0.125, the
density variation can be well confined within 1%.

Fig. 3 shows the computed velocity profiles for the Poiseuille
flow of Bingham fluids with different Bingham number, i.e. 0 (New-
tonian fluid), 0.1, 0.2 and 0.3, respectively. The simulation results
are in good quantitative agreement with the analytical solutions
(Eq. (33)), which are also presented. The computed stresses are
shown in Fig. 4 along with the analytical values. Actually, the ana-
lytical shear stress is a straight line ranging from −0.5 to 0.5 and
the numerical results compare well with the theoretical values. It
is noted that the dimensionless growth parameter M was chosen to
be 500. As discussed in the work of Chatzimina et al. [32]: beyond a
critical Bn value, further increasing of the growth parameter M will
cause the requirement of much smaller time step and lead to higher
accumulated round-off errors. In the present study we found that a
growth parameter value of 500 gave close results compared to the
exact solution (Fig. 3).
In this section, we report on numerical simulations that were
performed to determine the velocity and stress distributions for
the tangential flow of an incompressible Newtonian fluid between
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ig. 3. Velocity profiles for Poiseuille flow of Bingham fluids with different yield
tress. ( : numerical result, –�–: analytical solution).

wo coaxial cylinders. The outer cylinder was rotating at an angu-
ar velocity ω0 while the inner one was fixed. The end effects were
eglected and the problem was treated as a two-dimensional one.

n steady laminar flow, the fluid moved in a circular pattern and
he only non-trivial component of velocity is the one in the angular
irection. The momentum equation (steady state) and the bound-
ry conditions can be written in cylindrical coordinates [33] as:

= d

dr

(
1
r

d

dr
(rv�)

)
, (34)

� = 0 at r = �R, (35)

� = ω0R at r = R, (36)

here � is equal to 0.512 and parameter � denotes the angular
irection. Solving Eq. (34), combined with boundary conditions

Eqs. (35) and (36)), yields the analytical solution for the velocity:

� = ω0R
((�R/r) − (r/�R))

(� − (1/�))
. (37)

ig. 4. Shear stress profiles for Poiseuille flow of Bingham fluids with different yield
tress. ( : numerical result, –�–: analytical solution).
Fig. 5. Comparison of velocity profiles in the tangential angular flow of Newto-
nian fluids at three different angular velocities ( : numerical result, –�–: analytical
solution).

The shear stress distribution is:

�r � = −�ω0R2
(

1
r2

)(
�2

1 − �2

)
(38)

In the numerical simulation, the radii of the inner and the outer
cylinders were 11 and 21.5 mm, respectively. The plastic viscosity
of the fluid was 27.5 Pa s (the same value is used in the remaining of
the text). Three simulations were performed with different angu-
lar velocities, i.e. 7.5, 13.6 and 24.4 rad/s (1.20, 2.17 and 3.88 rps,
respectively). The dimensions of the cylinder, the viscosity of the
fluid and the angular velocities were chosen according to an actual
experiment, for which the details are presented in the following
section. The computation was performed in a two-dimensional
domain by using 4286 SPH particles. Non-slip boundary conditions
were applied to the outer and inner surfaces. 412 solid boundary
particles filled a region close to the outer surface, while 202 solid
particles filled the region close to the inner surface. At the x − x′

and y − y′ planes, periodic boundary conditions were imposed with
particles leaving the x − x′ plane re-entering the y − y′ plane with
velocities and coordinates computed via Eqs. ((28) and (29)).

Figs. 5 and 6 show the comparison of the numerical results and
analytical solutions for the tangential angular flow of Newtonian
fluids with three different angular velocities. It can be observed
from Fig. 5 that the computed velocities almost coincide with the
theoretical values. Overall, the numerical results for shear stress
are in good agreement with the analytical values except for slightly
lower values of stress close to the inner wall, as seen in Fig. 6. The
maximum relative error at the inner wall is about 1.6%, and about
0.9% at the outer wall, which means the accuracy of the present
approach is acceptable. It is noted that Chatzimina et al. recently
showed that the error in the computed wall shear rate and hence
shear stress depends on the diameter ratio and material parameters
[34].

5. Comparison of numerical predictions and experimental
results
5.1. Experimental set-up and results

The main reason for the experimental measurements was to
provide data to validate the SPH model. A shear rate-controlled
coaxial cylinder and a vane rheometer were used. Both rheometers
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Fig. 6. Comparison of the shear stress in the tangential angular flow of Newtonian
fluids at different angular velocities ( : numerical result, –�–: analytical solution).
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Fig. 8. Illustration of the 2D profile of the vane rheometer (Di: length of the vane
blade 22 mm; De: outer diameter 43 mm; t: thickness of the vane blade 1.1 mm).

Table 1
Experimental data for the measured torques (Newtonian fluids).

Angular velocity rad/s (rps) 7.5 (1.20) 13.6 (2.17) 24.4 (3.88)
Torque for rotor (10−6 Nm) 15,600 27,100 47,900

is that the ratio of the vane torque to the rotor torque increases
with the angular velocity of the tool. If the assumption that the
vane could be approximated by a virtual cylindrical surface is cor-
rect, then the two values should be identical. No slippage at the
surface of the cylindrical rotor is occurring. Actually, the torque
ig. 7. Illustration of the 2D profile of the coaxial cylinder rheometer (Di: inner
iameter 22 mm; De: outer diameter 43 mm).

sed the same outer cylindrical container with a diameter 43 mm.
he torque resulting from the material resistance was measured at
he central rotating tools. Two types of corresponding tools were
sed: (i) a rotor cylinder (Fig. 7) and (ii) a cross vane (Fig. 8). Both
ools had the same length (16 mm) and the same diameter (22 mm).
he rotor had smooth walls as is customary in a coaxial cylinder
heometer.

The fluid used was a standard silicone based oil.1 The nominal
iscosity of the oil was 27.5 Pa·s at room temperature as given by

he manufacturer. To verify the operation of the rheometer, the
iscosity of the oil was measured using a standard coaxial cylinder
heometer with a gap of 2.5 mm (inner cylinder diameter 38 mm
nd container 43 mm) and found to be 26.9 Pa·s. This implies an

1 A standard oil from Cannon named S8000 was used. Commercial equipment,
nstruments, and materials mentioned in this report are identified to foster under-
tanding. Such identification does not imply recommendation or endorsement by
he National Institute of Standards and Technology (NIST), nor does it imply that the

aterials or equipment identified are necessarily the best available for the purpose.
Torque for vane (10−6 Nm) 11,800 20,900 37,600
Ratio of the torque (vane

over rotor data)
0.756 0.771 0.785

error of 2% with the nominal value at the same temperature. The
reproducibility of the measurements was 0.3%. It is noted that for
the experiment with vane and coaxial cylinder rheometers, the
outer walls were fixed, since in the simulations the outer boundary
rotated.

Table 1 shows the experimental data obtained with both tools at
three different angular velocities. Fig. 9 shows more experimental
data under different angular velocities.

From Table 1, the measured torques with the vane were about
0.75–0.79 of those measured via the rotor attachment. The trend
Fig. 9. Experimental data for the torques measured for the vane and rotor rheome-
ters at different angular velocities.
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Table 2
Computational results for the shear stresses on the outer surface of the rheometers
(Newtonian fluids).

Angular velocity rad/s 7.5 13.6 24.4
Stress (Pa)/non-dimensional

stress for cylinder rheometer
149.4/0.724 267.7/0.716 479.0/0.714

Stress (Pa)/non-dimensional
stress for vane rheometer

105.6/0.512 195.3/0.522 351.5/0.524

Ratio of the shear stresses 0.707 0.730 0.734

T
C

Fig. 10. Illustration of a quarter part of the 2D vane rheometer.

alues measured with the rotor are higher than those measured
ith the vane, implying that secondary flow might be occurring
ithin the vane. Atkinson and Sherwood [35] showed that in an
nbounded Newtonian fluid, a n-bladed 2D vane will have a torque
hat is smaller by a factor close to 1 − (1/n) (0.75 when n = 4) than
hat for a coaxial cylinder at zero Reynolds number. Our results are
ithin the range of 75–79%. Considering the fact that in Atkinson

nd Sherwood’s work [35], the flow is Stokes flow without the con-
ideration an inertia terms, the blades used in their study have zero
hickness instead of a finite value, and the media is infinitely large,
e consider this deviation to be acceptable.

.2. Comparison between experimental data and simulation

The computational domain for the 2D coaxial cylinder rheome-
er is the same as that in Section 4.2. For the computations involving
he 2D vane rheometer (see Fig. 10), 5637 fluid SPH particles were
sed. No-slip boundary conditions were applied to the outer wall
urfaces: 412 solid boundary particles filled in a region adjacent
o the outer surface. In addition, the vane blades were represented
y 172 solid particles, and the newly proposed scheme introduced

n Section 3.5 was employed to deal with the boundary conditions
t the tips of the vane blades. In order to study the convergence

roperties, a computation was also carried out with higher density
f particles (22550 fluid SPH particles, 818 solid boundary particles
nd 688 solid particles) for the flow of a Newtonian fluid in the vane
heometer at an angular velocity of 7.5 rad/s. The obtained aver-
ge shear stresses on the surface of the outer cylinder is 105.9 Pa.

able 3
omputational results for the shear stress ratios on the outer surfaces of the rheometers.

Angular velocity (rad/s) Reynolds
number (Re)

Yield stress (Pa) Bingham
number (Bn)

7.5 0.13 0 0
137.5 0.67
275.0 1.33
412.5 2.0

13.6 0.23 0 0
137.5 0.37
275.0 0.74
412.5 1.10
550.0 1.47
687.5 1.84

24.4 0.41 0 0
137.5 0.20
275.0 0.41
412.5 0.61
825.0 1.23

1237.5 1.84
(vane over rotor data)

The relatively error is about 0.28% compared to the 105.6 Pa stress
obtained using 5637 fluid SPH particles. We conclude that using
5637 fluid SPH particles achieves satisfactory results for the present
numerical simulation. It is also noted that to confine the density
variation within a range of 1%, we chose the square of sound speed,
c2, to be 1000 in the simulations of the fluid flow in vane and coaxial
cylinder rheometers.

For both the vane and the coaxial cylinder rheometers, the outer
walls were fixed while the vane and the rotor were rotating with
three different angular velocities. To take into account the complex
boundary conditions at the surface of the vane blades, the numer-
ical simulation was performed in a rotating non-inertial reference
frame. Under such circumstances, the boundary conditions needed
to be modified by fixing the inner vane or cylinder rotors while
rotating the outer cylindrical walls. Table 2 shows the correspond-
ing results from the 2D simulation. The average shear stresses on
the surfaces of the outer cylinders of both the cylinder and vane
rheometers and their ratios are presented in this table. Compared
to the stress ratios from the experimental data, the computed val-
ues are 5.2–6.5% lower. It is noted that a 2D vane is considered
here, and not a 3D one, as is the case associated with the experi-
mental data. The vane was assumed to be long enough so that the
shape and position of the shearing surface was independent of the
shear stress profile near the upper and lower ends. Obviously, the
end effect problem associated with the contributions of the applied
torque on these upper and lower end surfaces cannot be completely
resolved without the help of a 3D numerical simulation. Savamand
et al. studied Bingham fluids in a 3D vane rheometer by means of
finite element simulation [36]. But the applied outer wall angu-
lar velocity in their study is much smaller (1.05 rps) compared to
those in the present study. Nevertheless, the relative error between

the experimental and the present 2D simulation results is about 6%,
which is considered acceptable especially taking into consideration
that the simulation is in 2D.

Non-dimensional shear stress at the
outer surface of vane rheometer

Ratio of the stress at the outer wall
(vane data over cylinder data)

0.512 0.707
0.797 0.766
1.129 0.831
1.427 0.886

0.52 0.730
0.677 0.758
0.841 0.785
1.012 0.809
1.175 0.836
1.348 0.863

0.52 0.734
0.628 0.771
0.722 0.791
0.813 0.803
1.09 0.834
1.333 0.857
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rheometer, which leads to a higher shear stress ratio between the
vane and coaxial cylinder rheometers. In the case where the applied
angular velocity is 7.5 rad/s, the stress ratio increases from about
0.77 for the lower yield stress case (Bn = 0.67) to about 0.89 for the
70 H. Zhu et al. / J. Non-Newtonia

. A parametric study for flow of Bingham-like fluids with
ifferent yield stresses and applied angular velocities

A parametric study for Bingham-like fluids with different yield
tress values was performed. This study allowed for the investiga-
ion of the impact of the yield stress on the flow properties in the 2D
heometers using the two geometries (rotor and vane). The com-
utational domain for the 2D rotor and vane rheometer was the
ame as that in Sections 3 and 4. The Dimensionless Bingham num-
er for different flow cases was computed based on the reference

ength H, the reference velocity V and the viscosity, �. The viscosity
as a value of 27.5 Pa. The reference length H was chosen to be the
adius of the outer cylinder, i.e. 0.0215 m. The reference velocity for
ach case was chosen as the velocity of the rotating outer cylinder.
he yield stresses used to compute the Bingham numbers are listed
n the second column of Table 3. These values were chosen on the
asis of typical yield stress values of concrete and mortar mixtures
37]. The smallest Bingham number is 0.2 for the flow in vane and
ylinder rheometers (Table 3). Chatzimina et al. [32] had a detailed
iscussion on the effect of the growth parameter M (Eq. (8)) on
he flow field of Bingham fluids. They concluded that for moder-
te or high Bingham number the results are not very sensitive to
he growth parameter M. In the present study the dimensionless
rowth parameter M was chosen to be 500 for the simulation of
ow in vane and coaxial cylinder rheometers.

Table 3 shows the computational results of non-dimensional
hear stress on the outer cylinder surface of the vane rheometer for
he flow of Bingham fluids with different yield stress under differ-
nt applied angular velocities. The fourth column of Table 3 shows
he ratios of non-dimensional shear stress on the outer cylinder
urface of the 2D vane rheometer to that from the coaxial cylin-
er rheometer. We observe that the stress ratios between the vane
nd coaxial rheometers are always less than one, since the fluid
etween the vane blades dissipates part of the input energy and
ence decreases the torque transmitted to the outer wall. This effect
ventually causes lower shear stress values (or torques in the exper-
ment) obtained at the outer wall for the vane rheometer compared
o that obtained for the coaxial cylinder rheometer.

The stress ratios versus Bingham numbers under different
pplied angular velocities are illustrated in Fig. 11. It is observed
hat the higher the Bingham number, the larger the ratio of non-
imensional shear stress from the vane rheometer to that from

he coaxial cylinder rheometer, regardless of the magnitude of the
ngular velocity applied to the outer cylinder. On the other hand,
he applied angular velocity also plays a non-negligible role in
etermining the stress ratios between the vane and coaxial cylin-
er rheometers. Specifically, for smaller Bingham numbers (<1), the

ig. 11. Ratio of non-dimensional shear stress on the outer cylinder surface of a
D vane rheometer to that of a coaxial cylinder rheometer for the flow of Bingham
uids with different Bingham numbers at different angular velocities.
d Mech. 165 (2010) 362–375

shear stress ratio is higher at higher magnitudes of applied angular
velocities; for larger Bingham numbers (>1.5), the shear stress ratio
is lower at higher magnitude of applied angular velocities; while
for Bingham numbers within the range of 1–1.5, the shear stress
ratios between the vane and coaxial cylinder rheometers are quite
close. As the magnitude of the applied angular velocity increases,
the inertial force becomes more prominent relative to the viscous
force. As shown in Table 3, the Reynolds number varies from 0.13
to 0.41 for as the applied angular velocity increases from 7.5 to
24.4 rad/s. This possibly contributes to the small variation of stress
ratios under different applied angular velocities.

The Bingham number is a measure of the ratio of the yield stress
to the viscous stress. Note that for a vane rheometer, the size of
the unyielded region in the inner blade region is larger for flow
with higher values of the Bingham number; consequently the flow
field in the vane rheometer is closer to that in a coaxial cylinder
Fig. 12. (a) Non-dimensional velocity profiles for the flow of Bingham fluids with
different Bingham numbers in a 2D coaxial cylinder rheometer (angular velocity:
7.5 rad/s). (b) Non-dimensional shear stress profiles for the flow of Bingham fluids
with different Bingham number in a 2D coaxial cylinder rheometer (angular velocity:
7.5 rad/s).
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arger yield stress case (Bn = 2.0). In addition, the shear stress ratio
s monotonically increased with the Bingham number for different
pplied angular velocities, but the slope of stress ratio versus Bing-
am number curves are slightly different. For smaller magnitude
f applied angular velocity the slope is higher than that for a larger
pplied angular velocity. For the cases with an angular velocity of
.5 or 13.6 rad/s, the curves are close to a straight line; while for
he case with an angular velocity of 24.4 rad/s, the stress ratio ver-
us Bingham number curve tends to flatten out when the Bingham
umber is greater than 0.61.

Figs. 12–14 show the numerical results for the flow of Bing-
am fluids under different applied angular velocities in a 2D
oaxial cylinder rheometer. Specifically, Figs. 12a, 13a and 14a
how the computed non-dimensional velocity profiles under
ifferent applied angular velocities of 7.5, 13.6 and 24.4 rad/s.
igs. 12b, 13b and 14b show the corresponding non-dimensional
ffective shear stress profiles. Note that this effective shear stress is
efined as � = (1/2)

√
� ′ : � ′, where � ′ is the non-dimensional trace-

ess extra stress tensor. The Bingham numbers used in different
ases varied from 0.0 to 2.0. It is observed that at a fixed angular
elocity, higher shear stress is obtained for fluids with higher Bing-

am number. In all cases, the material between the two cylinders
as flowing, i.e. no unyielded areas were observed.

Figs. 15 and 16 present the numerical results for the flow
f Bingham fluids with different Bingham numbers under an

ig. 13. (a) Non-dimensional velocity profiles for the flow of Bingham fluids with
ifferent Bingham numbers in a 2D coaxial cylinder rheometer (angular velocity:
3.6 rad/s). (b) Non-dimensional shear stress profiles for the flow of Bingham flu-

ds with different Bingham numbers in a 2D coaxial cylinder rheometer (angular
elocity: 13.6 rad/s).
d Mech. 165 (2010) 362–375 371

applied angular velocity of 7.5 rad/s in a 2D vane rheometer.
Specifically, Figs. 15a and 16a illustrate the contour plots of the
non-dimensional velocity for Bingham fluids with Bingham num-
bers of 0.67 and 2.0, and Figs. 15b and 16b show the corresponding
streamlines near the vane blade tips. These streamline plots are
drawn in the Eulerian reference frame. It can be observed that the
fluids close to the tip of the vane blade do not move along the con-
centric lines. That is to say, there is no clear circular surface that
can be defined as streamlines for this flow. We can also observe
that streamlines are closer to the concentric lines if they are far-
ther away from the vane blade tip. In addition, for the flow with a
higher Bingham number of 2.0 (Fig. 16b) the streamlines are closer
to the concentric line than those in the flow with a lower Bingham
number of 0.67 (Fig. 15b). This makes sense because in a flow with
a higher Bingham number, there will be larger unyielded zones
between the two vane blades; in other words, larger amount of flu-
ids in the inner blade region tends to move with the blades in a flow
with higher Bingham numbers.

From the contour plots of the normalized non-dimensional
stress distribution (Figs. 15c and 16c), we can observe stress con-
centrates at the tips of the vane blade (Figs. 15d and 16d), as a result

of non-uniform flow around the blade tips. The maximum effective
shear stress is located close to the center of the vane blade tip sur-
face facing to the outer cylinder wall, at which a maximum shear
rate occurs (note that for symmetry we only show half of the vane

Fig. 14. (a) Non-dimensional velocity profiles for the flow of Bingham fluids with
different Bingham numbers in a 2D coaxial cylinder rheometer (angular velocity:
24.4 rad/s). (b) Non-dimensional shear stress profiles for the flow of Bingham flu-
ids with different Bingham numbers in a 2D coaxial cylinder rheometer (angular
velocity: 24.4 rad/s).
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Fig. 15. (a) Contour plot of non-dimensional velocity for a Bingham fluid with a Bingham number of 0.67 in a vane rheometer (angular velocity: 7.5 rad/s). (b) Streamlines
near the vane blade tip for Bingham fluid with a Bingham number of 0.67 in a 2D vane rheometer (angular velocity: 7.5 rad/s). (c) Contour plot of normalized non-dimensional
shear stress for Bingham fluid with a Bingham number of 0.67 in vane rheometer (angular velocity: 7.5 rad/s). (d) Zoomed contour plot of normalized non-dimensional shear
stress (by Bingham number 0.67) near the vane blade tip for Bingham fluid with a Bingham number of 0.67 in a vane rheometer (angular velocity: 7.5 rad/s). (e) Normalized
non-dimensional shear stress (by Bingham number 0.67) profile along the line �/2 in vane rheometer (Bingham number 0.67, angular velocity: 7.5 rad/s).
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Fig. 16. (a) Contour plot of non-dimensional velocity for a Bingham fluid with a Bingham number of 2.0 in vane rheometer (angular velocity: 7.5 rad/s). (b) Streamlines near
the vane blade tip for Bingham fluid with a Bingham number of 2.0 in a 2D vane rheometer (angular velocity: 7.5 rad/s). (c) Contour plot of normalized non-dimensional
shear stress (by Bingham number 2.0) for Bingham fluid with a Bingham number of 2.0 in vane rheometer (angular velocity: 7.5 rad/s). (d) Zoomed contour plot of normalized
non-dimensional shear stress (by Bingham number 2.0) near the vane blade tip for Bingham fluid with a Bingham number of 2.0 in vane rheometer (angular velocity:
7.5 rad/s). (e) Normalized non-dimensional shear stress (by Bingham number 2.0) profile along the line �/2 in a vane rheometer (angular velocity: 7.5 rad/s).
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lade). The non-dimensional stresses shown are normalized by the
ingham number to better reveal which part of the fluid is yielded
r unyielded, since the normalized dimensionless stress is equal to
/�0. The interface between the flow and unyielded areas can be dis-
inguished by the stress lines with a value of �/�0 = 1: the material is
ielded when �/�0 > 1 and it is unyielded when �/�0 < 1. Comparing
he numerical results for flows with different Bingham numbers at
fixed applied angular velocities (Figs. 15c and 16c) we can see

hat a higher Bingham number leads to a larger size of unyielded
egions in the inner vane blades region and in the neighbor area of
he outer cylindrical wall.

Figs. 15c and 16c also show that there are regions close to
he outer cylinder wall that remain unyielded (�/�0 ≤ 1). For the
ower Bingham number case (Bn = 0.67, Fig. 15c), the two unyielded
egions are located close and the x and y axes defined by the hori-
ontal and vertical vane blades. For the case with a larger Bingham
umber of 2.0 (Fig. 16c), the unyielded regions close to the outer
all are connected. This result is in agreement with the observation

f Landry et al.: “for sufficiently large yield stress all basic flows have
nyielded fluid layer attached to the outer wall” [38]. In the region
lose to the x and y axes, the unyielded zones are thicker com-
ared to the regions close to the line of �/2 between the x and y
xes, which is mainly due to the stress concentration at the tips
f the vane blades. Note that the Papanastasiou model is used in
he present study for which the fluids flow at any shear rate. At
ow shear rate the viscosity is significantly higher, in that sense the
uid behaves similar to a shear thinning fluid. Near the vane blade
ip the shear rate is highest therefore the corresponding apparent
iscosity is small. It induces a shear thinning/localization layer in
hich the shear rates and stresses are highest. However, there is
o shear localization in the region close to the line of �/2 between
he two vane blades. As a consequence in the region away from
he shear localization zone towards the outer wall along the x and
axes, the shear stress is lower compared to that in the regions

etween the two vane blades. If the stress is lower than the yield
tress �0, the corresponding region is considered unyielded.

Figs. 15e and 16e show the normalized non-dimensional shear
tress profiles along the line of �/2 between the x and y axes for
ingham fluids with different Bingham numbers under different
pplied angular velocities. The stress patterns for the two cases
re similar: starting from the distance to the origin, r = 0, the shear
tress increases from zero to reach a peak value when r is approx-
mately equal to the vane blade length and then starts to decrease

hen r approaches the outer cylindrical boundary.

. Conclusions

The objective of the present study was to determine the suit-
bility of a vane rheometer for measuring rheological properties. A
econdary objective was to validate the SPH approach for such flow
problem. A 2D SPH simulation was developed, and validated both

heoretically and by comparison with experiment. Numerical tests,
odeling the flow of Newtonian fluids were performed and the

esults were compared with experimental data. It was found that
nly a 6.5% difference existed between the experimental data and
he simulation and this is considered acceptable bearing in mind
hat only a 2D simulation was used. The hypothesis that the vane
cts as a cylinder with a Newtonian fluid is weak because the data
btained with the vane and the rotor differed by up to 29%, which
s mainly due to the development of secondary flows between vane

lades.

A parametric study for the flow of Bingham fluids with differ-
nt Bingham numbers under various applied angular velocities of
he outer cylinder wall was conducted. It was concluded that the
ingham number plays a crucial role in determining the torques
d Mech. 165 (2010) 362–375

transmitted to the outer wall of the vane rheometer. In general,
larger values of Bingham number cause larger sizes of unyielded
materials in the inner blade region and render the flow condition
closer to that in a coaxial cylinder rheometer.

We believe that the Bingham number is not the only non-
dimensional quantity that influences the flow field and hence the
stress field. We therefore also conducted our simulations with rel-
atively larger applied angular velocities. The shear rates considered
in the present study are significantly higher than those published by
other researchers [5,31]. Our numerical simulation shows that the
angular velocity of the outer wall does affect the shear stress ratios
between the vane and coaxial cylinder rheometers. For smaller
Bingham numbers (<1), the shear stress ratio is larger at higher
magnitudes of applied angular velocities; for larger Bingham num-
bers (>1.5), the shear stress ratio is lower at higher magnitude of
applied angular velocities, while for Bingham numbers in the range
of 1–1.5, the shear stress ratio differences between the vane and
coaxial cylinder rheometers are quite small. As the magnitude of the
applied angular velocity increases, the Reynolds number becomes
larger, and hence the inertial force becomes more prominent rela-
tive to the viscous force. This possibly causes the small variation of
stress ratios under different applied angular velocities.

This parametric study shows that the shear stress obtained for
Bingham-like fluids in the vane and rotor geometries differed by up
to 24% (Table 3) with the discrepancy decreasing with increasing
Bingham numbers. This result shows that care should be taken in
the interpretation of experimental data when use the vane rheome-
ter to measure plastic viscosity. Specifically, if the Bingham number
is larger, say greater than 2, the experimental data can be inter-
preted by assuming that there is a virtual cylinder within which the
material moves with the blades. If the Bingham number is smaller,
estimates of viscosity will have a tendency to be low, hence limiting
the reliability of the vane rheometer to measure plastic viscosity.
We also observe that the lower values of applied angular veloc-
ity favor the use of a vane rheometer to measure the rheological
properties of Bingham fluids.

Finally, results from this study have served to further validate
the SPH method for simulating flows of non-Newtonian fluids
in complex geometries. Clearly the SPH method is a promising
approach that can be used to simulate flow in other rheometer
geometries, or include other features such as free surface or mod-
eling rigid body flow in rheometers.
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