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Since the Guide to the Expression of Uncertainty in Measurement (GUM) was published 
in 1993 it has changed the evaluation of physical and chemical measurements. Nowadays 
almost all high level measurements include a detailed evaluation of uncertainty. This 
allows the scientific community to do the next step and evaluate uncertainty for derived 
evaluations like parameter fittings. The evaluation of the uncertainty for complicated 
parameters like the results from non-linear fitting procedures can be carried out in two 
steps. The first step is a sensitivity analysis of the evaluation algorithm and a test of 
mutual independence of the parameters. If the fitting algorithm is sufficiently robust a 
linear model is derived from the fitting algorithm which is then used in a second step to 
evaluate the uncertainty of the fitting parameters. This paper discusses the sensitivity 
analysis in detail with the emphasis on possibilities to check for robustness and linearity. 
An efficient method based on covering arrays is presented to test for hidden couplings 
between the input parameters inside the evaluation model. 

1.   Introduction 

In science and metrology results are often calculated based on different data and 
given values. A wide variety of techniques and procedures are employed 
including linear and non-linear fitting, optimization and simulation. 
Traditionally these techniques provide little support for calculating and 
propagating uncertainty. Also the calculations may require complicated 
computer calculations which may be expensive to execute. The approach which 
we propose here is to treat the existing algorithms and calculation schemes as 
black boxes, where the relation between input and output is defined by some 
unknown or partly unknowable function. For the calculation of the uncertainty 
associated with the results we follow the Guide to the Expression of Uncertainty 
in Measurement (GUM) [1]. The GUM propagates estimates and standard 
uncertainties for the input quantities using a linear approximation of the 
measurement function. Figure 1 illustrates a general measurement function from 
the GUM [1]. The GUM approach does not require complete knowledge of 
probability density functions (pdfs) for the input quantities. Generally, the 
estimates and uncertainties for the input quantities can be more reliably 
determined than complete pdfs. Therefore the GUM approach is more widely 
applicable than other approaches such as the Monte Carlo Simulation [2] which 
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require knowledge of pdfs. In the discussion of the efficiency of the different 
computational approaches it is generally assumed that the evaluation of the 
black box model consumes by far the most resources. 

 
Figure 1. General measurement function 

The GUM method can be applied to any kind of calculation scheme where 
we assume that we calculate some number m of results Yk based on n input 
quantities Xi and therefore m functions fk exist which link the input to the output 
(see Figure 1). Fortunately we do not need to know the functions in detail. To 
employ the GUM method it is enough if we know a linear equivalent of the 
functions around the value of the input quantities. 

If the partial derivatives of the functions fk are known, the linear equivalent 
of the functions can be calculated by a first order Taylor series expansion as 
described in the GUM. A numerical alternative to use the GUM approach which 
does not require evaluation of partial derivatives is described in [3]. This 
numerical approach, often referred to as spread-sheet method is popular among 
chemists. 

The mainstream GUM method works well only if the unknown functions do 
not deviate too much from their linear approximations. Therefore we describe 
methods to evaluate the difference between the black box model and the linear 
approximation to test whether the linearized model is adequate. We have 
implemented the methods described here in a Python [4] script. In the last 
section we discuss some aspects of the implementation. 

2.   Calculation Of The Linear Model 

The propagation of uncertainty according to the GUM is based on an equivalent 
linear model for the measurement function. The GUM proposes a first order 
Taylor series expansion to calculate the linear model. Alternatively numerical 
methods can be used. We use here the spread-sheet method [3]. 
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Figure 2. Linearization of function fk(…, xi, …) with 5-point linearity test 

The idea is simply to substitute the partial derivative in the Taylor expansion 
by the quotient of differences 
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assuming a function yk = fk(x1, x2, …, xn) is given and the relation between the 
result yk and an input xi is similar to the illustration in Figure 2. P0 is given by 
the value of xi and result of fk(…, xi, …). Now we choose another point with 
coordinates P1 : [xi + Δxi, fk(…, xi + Δxi, …)]. We can estimate the sensitivity by 
the slope of a straight line through P0 and P1. If we would be interested in the 
best estimate of the slope in P0 we would decrease Δxi to some minimal value 
based on the numerical resolution of the computer calculation. Since we are not 
interested in the slope at the exact point P0 but rather in an uncertainty interval 
around P0 we can choose Δxi to be equal to the given (or assumed) uncertainty 
u(xi). The number of model evaluations to calculate the linear model is n + 1, so 
the method scales with n. 

In practice it is useful to calculate not only the sensitivities (Eq. 1) but also 
the relative sensitivities 
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With the relative sensitivities it is possible to judge if the sensitivity analysis is 
reasonable. The relative uncertainty multiplied by the relative sensitivity leads to 
the relative uncertainty contribution. A value for the relative sensitivity greater 
than one indicates that the black box model magnifies the uncertainty of the 
particular input quantity and further if the value is much larger than one it 
indicates that the black box model may not be numerically robust. 
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3.   Linearity Checks 

In the preceding section we presented the well-known spread-sheet approach to 
extract a linear model from a given model which may be non-linear. Now we 
discuss several possible linearity checks. All linearity checks calculate quotients 
of differences similar to Eq. 1 and compare the result with some combination of 
the sensitivities found in the previous section. The model will be considered 
sufficiently linear if the sensitivities agree within 5%. 

3.1.   Three And Five Point Calculation 

The calculation of the linear model can be extended by choosing additional 
points and calculating the slope of the straight lines through them. Figure 2 
illustrates this for 5 points. With P0, P1 and P2 we can calculate two slopes for 
plus and minus u(xi). By comparing the two slopes we can detect whether P0 is 
close to a local extreme, or whether fk(…, xi, …) has a significant curvature 
around xi. By adding two more points with a significantly smaller Δxi we can test 
whether the curvature is significantly changing in an interval around xi. In 
general the sensitivity can be calculated for the different points with the 
following equation: 
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The parameter w determines Δxi expressed as a fraction of u(xi). Useful values 
for w are 1, −1, 10 and −10. This leads to the criteria for sufficient linearity 
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with εlin being the selected linearity limit of 0.05. The number of model evalua-
tions to calculate the linearity check is (p−1)·n +1 with p being the number of 
points used for the check, so the method scales with n. 

3.2.   All Pairs Coupling Test 

The linearity check discussed in the last section is a robust method to check for 
sufficient linearity within one input parameter but it does not check for any 
coupling between parameters (input quantities). An example of such coupling is 
the product of two input quantities Y = X1·X2. This example is of some relevance 
in metrology. A significant deviation from the linear model can be observed if 
the value of one or both of the quantities is small compared to the uncertainty of 
the value. The three and five point linearity check will not detect this situation. 
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Figure 3. Evaluation of the function fk(…,xi,xj,…) around P0

If we want to check for this kind of non-linearity in the black box model, we 
need to calculate additional points. We choose a pair of input quantities xi and xj 
for which we want to analyze the model. Figure 3 illustrates the method. During 
the three point linearity check we have already calculated P0, P1, P2, P3 and P4. 
So we know the linear sensitivity in xi and xj to be ck,i(1) and ck,j(1). 
Now we can evaluate the model at P5, P6, P7 and P8 and calculate the difference 
from the center point P0: 
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with wi and wj being either plus or minus one. Table 1 shows the relation 
between the points and the wi and wj values. 

Table 1. Combinations of wi and wj

Point wi wj
P5

 

−1 −1 
P6 +1 −1 
P7 +1 +1 
P8 −1 +1 

A similar difference can be calculated for the linear model 
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The coupling can be checked by evaluating the following condition: 
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Since it is not known in advance which of the input quantities might be coupled 
we need to repeat the check for all pairs. The number of model evaluations to 
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calculate the all-pairs coupling check is (n2−n)/2, so this method scales as n2 if n 
is large. 

3.3.   Covering Array Based Coupling Test 

The all pairs coupling test discussed in the previous section is a useful method to 
judge whether a black box model has some significant pair-wise coupling 
between the input parameters. Unfortunately the evaluation may be costly 
because it scales with n2. Especially for complicated data fitting and expensive 
simulation runs when the number of input parameters is large (greater 20) this 
analysis is expensive. Much more resources are needed for the coupling test than 
for the extraction of the linear model. 

To overcome this problem we look for couplings between several pairs in 
one run. Instead of varying just one pair of input parameters we vary several 
pairs in one run and check for significant differences. With all runs we have to 
ensure that all combinations of input pair variations appear in the runs. This is 
an application of so called covering arrays [5]. Covering arrays are used in 
software testing as optimized test patterns for finding parameter interaction 
faults which are hidden couplings in software programs. So a covering array is 
an optimized test pattern for a coupling check. The covering are constructed in 
such a way that all necessary patterns are covered by the arrays. The covering 
arrays have as many columns as the black box model has input parameters. 
Every row is a separate test case. The number of rows depends on the number of 
parameters, the number of discrete values for each parameter and the strength of 
the array. The strength is a measure of the complexity of the interactions that can 
be detected. For the application of the coupling test we need a binary array with 
strength of two. A number of different algorithms exist to generate covering 
arrays in an efficient way [6]. 

The covering array (for an example see Table 2) contains a row with n 
values which are either −1 or +1. For every row of the covering array the 
difference 
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is calculated from one extra black box model evaluation. The w1 … wn are the 
pattern values from the rows of the covering array. We also need a similar value 
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based on the assumption that the model is perfectly linear. In Eq. 9 the w1 … wn 
are the same pattern values as in Eq. 8. Under the condition that 
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we can judge whether or not any coupling is observable with this test pattern. If 
no significant coupling shows up during any of the model evaluations we can 
conclude that the linear model is representing the behavior of the black box 
model for small changes in the input values. It is possible that a coupling in one 
pair of parameters may be compensated by another coupling in another 
parameter and we are not observing the coupling with the combinatorial pattern. 
This can only be detected with the all pairs approach with a much higher cost. 

Table 2. Example of a binary covering array of strength 2 for 10 parameters 
w1 w2 w3 w4 w5 w6 w7 w8 w9 w10run 

1. −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 
+1 +1 +1 +1 +1 +1 +1 +1 +1 −1 2. 

3. +1 +1 +1 +1 +1 −1 −1 −1 −1 −1 
4. +1 +1 +1 −1 +1 −1 +1 +1 −1 −1 

+1 +1 −1 −1 −1 5. −1 −1 +1 +1 −1 
6. −1 −1 −1 +1 +1 +1 +1 −1 −1 +1 
7. −1 +1 +1 +1 +1 −1 −1 −1 −1 −1 
6. −1 −1 −1 −1 −1 +1 +1 +1 +1 +1 
9. +1 −1 +1 −1 −1 +1 +1 +1 −1 −1 
10. +1 −1 −1 +1 +1 

 
−1 −1 −1 −1 +1  

The number of model evaluations to calculate the combinatorial coupling check 
is dependent on the number of rows in the covering array. For a large number of 
parameters the upper bound scales with log2(n). 

4.   Implementation  

The linear model approximation and the different linearity checks were 
implemented in a Python script [4], which can call an arbitrary command line 
program to execute the black box model calculations.  

 
Figure 4: Flow chart of the linear model generation  
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The basic flow chart is shown in Figure 4. Based on the original data file a 
number of modified test data files are generated to calculate the linear model and 
to perform the linearity checks. All data is stored in text files (csv). The 
necessary covering arrays are generated with the command line version of the 
software tool FireEye [6]. 

The test data files are used by the black box model which generates the result 
files. Since the model calculations are independent from each other it is possible 
to execute several runs of the model in parallel. After all runs of the model are 
completed the linear model is generated and the linearity checks are run. For test 
purposes the black box model can be replaced by a white box model with a 
known algebraic equation system. This allows verifying the script by testing that 
the correct linear system is determined for well defined equations. 

5.   Conclusions 

It is well-known that the standard GUM method can be applied to any kind of 
result evaluation if the evaluation model is sufficiently linear. The so-called 
spread-sheet method can be efficiently used to calculate the sensitivities of an 
equivalent linear model for the measurement. If the result evaluation is available 
in the form of a command line program which can be called by a script language 
it is possible to generate automatically an equivalent linear model which can 
then be used to propagate the uncertainty. In this way the propagation of 
uncertainty can be added to virtually any kind of computerized result evaluation 
without any change to the existing code. 

Additionally we propose some useful linearity and coupling tests to verify 
that the basic assumption about the sufficient linearity of the model can be 
justified. We introduce covering arrays as a way to find efficient test cases. The 
combination of linear model generation, three-point linearity test and coupling 
test based on covering arrays is an efficient way to establish a linear model 
which allows us to use mainstream GUM uncertainty propagation. The proposed 
approach is not a mathematical proof of linearity; however, it is of practical use 
especially useful in cases when the calculation of the result evaluation requires a 
lot of computing resources. 
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