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Topics 

• Multimode squeezing problem 

– temporal/spectral modes (not transverse spatial modes) 

• Photon subtraction experiment 

• Multimode Gaussian tomography 



Pulsed squeezing 
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• If the squeezing is degenerate, Ψ(ω,ω′) is symmetric, and 
we use orthonormal decomposition into characteristic 
modes ψn(ω) : 

 

 

 

 

• Each mode ψn(ω) is squeezed independently by ζn. 

• For weak squeezing ψn(ω) are approximately Gaussian-
Hermite polynomials, 

 

 

 but for strong squeezing they are not. 
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• To create single-mode squeezing we need 

Single Mode Squeezing 
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•  May be possible by engineering crystal 
dispersion and phase-matching 
properties. 

 
•  Grice, U’Ren, and Walmsley recommend 

degenerate, type-II, down-conversion in 
BBO with an 800 nm pump. [PRA 64, 
063815] 



Homodyne Detection 

• Local oscillator (LO) is in mode Φ(ω). 

• The mode overlap is 

 

 

• The homodyne signal and its variance are 
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• Because each mode has different levels of squeezing, the 
state observed by homodyne detection cannot be a pure 
state of minimum uncertainty, unless the LO shape 
matches one mode. 

• Try to shape LO to match one of the squeezed modes. 
– Shape is not necessarily Gaussian 

 
 

Φ(ω) 

x 

Homodyne Detection 



Multimode Problems for QIP 

• We have unwanted photons in extra modes. 

• They cause no problems for linear optics and homodyne 
detection. 

• They will interact with nonlinearities such as Kerr effect 
or atoms. 

• They are observable by eavesdroppers. 

• Extra photons make photon detectors click. 

 



Photon Subtraction 
• A method to make superpositions of coherent (“cat”) 

states: ||-. click 

ideal photon 
subtracted state 

perfect “cat” state 
||2=0.8, n=1.2 

Φ(ω) 
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Photon Subtraction 
• Demonstrated by Ourjoumtsev, Tualle-Brouri, Laurat, 

Grangier [Science 312, 83 (2006)] 

Fidelity=70% 
||2=0.79 
n=1.2 

“modal purity” = 
probability that a click 
was caused by a photon 
from the mode 
matching the local 
oscillator = 0.82 

click 
filters 



Our Photon Subtraction 
• Subtract two or more photons 

•  Using superconducting transition edge sensitive photon 
number resolving detectors. 

 - efficiency ~ 90% 
 - dark counts limited by black-body radiation 
•  Subtracting more photons makes a higher fidelity, larger 

cat, using less squeezing. 

n=2 

Φ(ω) 
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Preliminary Results 

• Fidelity is low (~6040%) because 

– purity of our squeezed state is too low 

– too many photons that are not matched to the LO. 

• verified by comparison of homodyne signal and photon 
counting rate 

• We want to measure the contents and shapes of the extra 
modes produced in the squeezing. 

 

Single photon 
subtracted Wigner 

function 



Multimode Gaussian Tomography 

• We want a method to measure the characteristic mode 
shapes n() and the squeezing n for (n = 1 to N) 

• Full quantum state tomography for ~50 harmonic 
oscillators is impractical. 

• We will limit to Gaussian states. 
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Covariance Matrix Properties 
• Real 

• Symmetric 

• Positive-definite  positive eigenvalues 

• Obey uncertainty principle: 

 

 

 

• All Gaussian state transformation makes Sp(2N,R). 

• Passive linear optical transformations are 
SO(2N)Sp(2N,R). 

• Diagonalization of  requires SO(2N). 
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• We choose a set of modes n(). 

• These overlap with the characteristic modes 

 

 

• The covariance matrices are related by 

 

 

 

 

• First find  using n(). Then diagonalize  to find 
characteristic modes. 
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Measurement Scheme 

• Shorten LO pulse 

• Add large adjustable delay.  At each delay measure x(i). 

• The overlap between each LO and our chosen modes is 

 

• For each i, x(i) is a Gaussian random variable with variance 

Φ(i)(ω) 
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• Probability to measure data 

 

 

 

• which is like the single variable normal distribution, 
except the variance changes. 

• This gives Log-Likelihood function 

 

 

 

• Maybe to maximize this to estimate ? How? 

• Maybe use some other method?  What? 
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• Given an estimate of , we want to find the set of 
characteristic modes. 

• The characteristic modes have a diagonal covariance 
matrix V. 

• We need the similarity transform 

 

 where B can be done with linear optics. 

• With B, we can transform our modes to characteristic 
modes. 

 

• How to find B? 
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Concluding Remarks 

• Pulsed squeezing makes many temporal modes. 

• Extra modes are troublesome for photon subtraction and 
other QIP applications. 

• We want to use homodyne system for multimode 
Gaussian tomography. 

 Extra credit → design temporal mode filter. 



The following slides contain supplementary information 
not covered in the live talk. 



Experiment set-up details 

• Ti: Sapphire laser 150 fs pulses 

• 860 nm 

• 150m thick KNbO3 crystal 



Correlation Measurement 
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Multimode Gaussian Tomography 

• We want a method to measure the characteristic mode 
shapes n() and the squeezing n for n=1 to N. 

• Full quantum state tomography for ~50 harmonic 
oscillators is impractical. 

• We will limit to Gaussian states. 
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• We choose a set of modes n(). 

• These overlap with the characteristic modes 

 

 

• The covariance matrices and means are related by 

 

 

 

 

 

 

• First find  using n(). Then diagonalize  to find 
characteristic modes. 
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Measurement Scheme 

• Shorten LO pulse 

• Add large adjustable delay.  At each delay measure x(i). 

• The overlap is between each LO and our chosen modes is 

 

• For each i, x(i) is a Gaussian random variable with 
variance 

 

• and mean 
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• Probability to measure data 

 

 

 

• This gives Log-Likelihood function 

 

 

 

• Maybe to maximize this to estimate ? How? 

• Maybe use some other method?  What? 
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• Given an estimate of , we want to find the set of 
characteristic modes. 

• The characteristic modes have a diagonal covariance 
matrix V. 

• We need the similarity transform 

 

 where B can be done with linear optics. 

• With B, we can transform our modes to characteristic 
modes. 

 

• How to find B? 
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