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Abstract
After the Gaussian distribution, the probability distribution most commonly used in evaluation
of uncertainty in measurement is the rectangular distribution. If the half-width of a rectangular
distribution is specified, the mid-point is uncertain, and the probability distribution of the
mid-point may be represented by another (narrower) rectangular distribution then the resulting
distribution is an isosceles trapezoidal distribution. However, in metrological applications, it is
more common that the mid-point is specified but the half-width is uncertain. If the probability
distribution of the half-width may be represented by another (narrower) rectangular
distribution, then the resulting distribution looks like an isosceles trapezoid whose sloping
sides are curved. We can refer to such a probability distribution as an isocurvilinear
trapezoidal distribution. We describe the main characteristics of an isocurvilinear trapezoidal
distribution which arises when the half-width is uncertain. When the uncertainty in
specification of the half-width is not excessive, the isocurvilinear trapezoidal distribution can
be approximated by an isosceles trapezoidal distribution.

S This paper has associated online supplementary data files.

1. Introduction

If a variable Xk has a rectangular distribution on the
interval (−k, k) and another (independent) variable Xh has
a rectangular distribution on the interval (−h, h), where
k > h > 0, then the sum X = Xk + Xh has an
isosceles trapezoidal distribution with parameters −(k + h),
−(k − h), (k − h) and (k + h) [1, section 4.07]. Based
on this result, the Guide to the Expression of Uncertainty in
Measurement (GUM) [2, section 4.3.9, note 2] states that if
the width of a rectangular distribution is uncertain and the
probability distribution of the width can be represented by
another (narrower) rectangular distribution then the resulting
distribution is an isosceles trapezoidal distribution. We show
that this statement is not correct; however, it is a reasonable
approximation for many applications in metrology.

We can always express a rectangular distribution on an
interval (α, β) as (µ − δ, µ + δ), where µ = (α + β)/2 is

the mid-point and δ = (β − α)/2 is the half-width. Suppose
XR is a variable with rectangular distribution on the interval
(µ − δ, µ + δ) with mid-point µ and half-width δ. As noted
in [1, section 4.05] and [2, section 4.3.7], the expected value
E(XR) and the standard deviation S(XR) of the probability
density function (pdf) of XR are, respectively,

E(XR) = µ, (1.1)

and

S(XR) =
√

E(XR − µ)2 =
√

δ2

3
= δ√

3
. (1.2)

In this paper, we use Greek letters, such as µ, δ and ε, for
specified quantities.

We show in section 2 that if the half-width of a rectangular
distribution is specified, the mid-point is uncertain and the
probability distribution of the mid-point may be represented by
another (narrower) rectangular distribution then the resulting
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distribution is an isosceles trapezoidal distribution. This result
is of theoretical interest largely. In metrological applications,
it is more common that the mid-point is specified but the half-
width is uncertain. If the probability distribution of the half-
width may be represented by another (narrower) rectangular
distribution then we show in section 3 that the resulting
distribution looks like an isosceles trapezoid whose sloping
sides are curved. We can refer to such a probability distribution
as an isocurvilinear trapezoidal distribution. In section 4,
we describe the following characteristics of an isocurvilinear
trapezoidal distribution which arises when the half-width is
uncertain: cumulative distribution function (cdf), moment
generating function (mgf), moments, expected value and
standard deviation. We also discuss how random numbers from
such a distribution may be generated. Finally, in section 5,
we show that moderate uncertainty in the specification of
half-width increases the standard deviation of the rectangular
distribution only slightly. Also, if the uncertainty in the
specification of half-width is not excessive, the isocurvilinear
trapezoidal distribution can be approximated by an isosceles
trapezoidal distribution.

2. The half-width is specified but the mid-point is
uncertain

Suppose the probability distribution of a variable XS is
rectangular on the interval (Y −δ, Y +δ), where the half-width δ

is specified (fixed) but the mid-point Y is uncertain. It follows
that the conditional pdf of XS given Y = y is rectangular on the
interval (y − δ, y + δ). Suppose the uncertainty concerning the
mid-point Y may be represented by a rectangular distribution
on the interval (µ−ε, µ+ε), where δ > ε > 0. Then, as shown
in this section, the resulting unconditional distribution of XS is
an isosceles trapezoidal distribution with the pdf displayed in
figure 1. The isosceles trapezoidal distribution of XS is fully
characterized by the three parameters δ, (µ − ε) and (µ + ε).
However, following the parametrization of [3], it is more
convenient to refer to the isosceles trapezoidal distribution of
XS as having the four parameters µ − (δ + ε), µ − (δ − ε),
µ + (δ − ε) and µ + (δ + ε). As indicated in figure 1, the
parameters µ − (δ + ε) and µ + (δ + ε) are the end-points and
the parameters µ − (δ − ε) and µ + (δ − ε) identify the flat
middle part of the isosceles trapezoid.

The conditional pdf of XS given Y = y is

gXs|Y (x|y) = 1

2δ
if y − δ � x � y + δ. (2.1)

The pdf of Y is

gY (y) = 1

2ε
if µ − ε � y � µ + ε. (2.2)

Therefore the joint pdf of XS and Y is

gXs,Y (x, y) = 1

4εδ

if y − δ � x � y − δ and µ − ε � y � µ + ε, (2.3)

where δ > ε > 0. The unconditional pdf g(x) for a particular
value x of XS is obtained by integrating the joint pdf (2.3) with

Figure 1. Probability density function g(x) of an isosceles
trapezoidal distribution with parameters µ − (δ + ε), µ − (δ − ε),
µ + (δ − ε) and µ + (δ + ε).

Figure 2. The region in the (x, y) plane where the joint pdf of XS

and Y has a positive value.

respect to the possible values of y corresponding to that x. The
region in which the joint pdf of XS and Y has positive value
is indicated in figure 2 as the parallelogram bounded by the
parallel lines y = µ ± ε and the parallel lines y = x ± δ. The
range of possible values of y for a given x depends on which
of the three horizontal line segments in figure 2 contains that
value x. If µ−(δ+ε) � x � µ−(δ−ε), then µ−ε � y � x+δ.
If µ − (δ − ε) � x � µ + (δ − ε), then µ − ε � y � µ + ε. If
µ + (δ − ε) � x � µ + (δ + ε), then x − δ � y � µ + ε.

Thus

g(x) =


0 if x � µ − (δ + ε),

[x − (µ − (δ + ε))]

4εδ
if µ − (δ + ε) � x � µ − (δ − ε),

1

2δ
if µ − (δ − ε) � x � µ + (δ − ε),

[(µ + (δ + ε)) − x]

4εδ
if µ + (δ − ε) � x � µ + (δ + ε),

0 if µ + (δ + ε) � x.

(2.4)

By comparing (2.4) with the pdf of a trapezoidal distribution
given in [3, section 2], we see that g(x) is the pdf of an isosceles
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trapezoidal distribution with parameters µ−(δ+ε), µ−(δ−ε),
µ + (δ − ε) and µ + (δ + ε). Thus the unconditional probability
distribution of XS is an isosceles trapezoidal distribution with
the pdf g(x) indicated in figure 1. The properties of a general
trapezoidal distribution are described in [3]. In particular
from [3, section 2] the expected value E(XS) and the standard
deviation S(XS) of the pdf g(x) given in (2.4) are, respectively,

E(XS) = µ (2.5)

and

S(XS) =
√

E(XS − µ)2 =
√

δ2

3
+

ε2

3
. (2.6)

The situation discussed in this section is of theoretical interest
largely. In metrology, one rarely encounters situations where
the state of knowledge about a quantity is described by a
rectangular distribution whose half-width is specified but the
mid-point is uncertain. Generally, the mid-point is specified
but the half-width is not known exactly. In the next section
we show that if the uncertainty about the half-width may be
represented by a rectangular distribution then the resulting
distribution is an isocurvilinear trapezoidal distribution.

3. The mid-point is specified but the half-width is
uncertain

Suppose the probability distribution of a variable XC is
rectangular on the interval (µ − Z, µ + Z), where the mid-
point µ is specified (fixed) but the half-width Z is uncertain.
It follows that the conditional pdf of XC given Z = z is
rectangular on the interval (µ − z, µ + z). Suppose the
uncertainty concerning the half-width Z may be represented
by a rectangular distribution on the interval (δ − ε, δ + ε),
where δ > ε > 0. Then, as shown in this section, the
resulting unconditional distribution of XC is an isocurvilinear
trapezoidal distribution with the pdf displayed in figure 3.
The isocurvilinear trapezoidal distribution of XC is fully
characterized by the three parameters µ, (δ − ε) and (δ + ε).
However, it is more convenient to refer to the isocurvilinear
trapezoidal distribution of XC as having the four parameters
µ − (δ + ε), µ − (δ − ε), µ + (δ − ε) and µ + (δ + ε). As
indicated in figure 3, the parameters µ− (δ + ε) and µ+ (δ + ε)
are the end-points and the parameters µ−(δ−ε) and µ+(δ−ε)
identify the flat middle part of the isocurvilinear trapezoid.

The conditional pdf of XC given Z = z is

fXC|Z(x|z) = 1

2z
if µ − z � x � µ + z. (3.1)

The pdf of Z is

fZ(z) = 1

2ε
if δ − ε � z � δ + ε. (3.2)

Therefore the joint pdf of XC and Z is

fXC,Z(x, z) = 1

4εz
if µ − z � x � µ + z

and δ − ε � z � δ + ε, (3.3)

Figure 3. Probability density function f (x) of an isocurvilinear
trapezoidal distribution with parameters µ − (δ + ε), µ − (δ − ε),
µ + (δ − ε) and µ + (δ + ε).

Figure 4. The region in the (x, z) plane where the joint pdf of XC

and Z has a positive value.

where δ > ε > 0. The unconditional pdf f (x) for a particular
value x of XC is obtained by integrating the joint pdf (3.3) with
respect to the possible values of z corresponding to that x. The
region in which the joint pdf of XC and Z has positive value is
indicated in figure 4 as the trapezoid (wider side up) bounded
by the parallel lines z = δ±ε and the V-shaped lines z = x−µ

and z = |x − µ|. The range of the possible values of z for a
given x depends on which of the three horizontal line segments
in figure 4 contains that valuex. Ifµ−(δ+ε) � x � µ−(δ−ε),
then |x − µ| � z � δ + ε. If µ − (δ − ε) � x � µ + (δ − ε),
then δ − ε � z � δ + ε. If µ + (δ − ε) � x � µ + (δ + ε), then
x − µ � z � δ + ε.

Thus

f (x) =


0 if x � µ − (δ + ε),

1

4ε
ln

(
δ + ε

|x − µ|
)

if µ − (δ + ε) � x � µ − (δ − ε),

1

4ε
ln

(
δ + ε

δ − ε

)
if µ − (δ − ε) � x � µ + (δ − ε),

1

4ε
ln

(
δ + ε

x − µ

)
if µ + (δ − ε) � x � µ + (δ + ε),

0 if µ + (δ + ε) � x.

(3.4)
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The range of possible values of z for a given x can
succinctly be expressed as follows: if µ − (δ + ε) �
x � µ + (δ + ε), then max{|x − µ|, δε} � z �
δ + ε. Thus the pdf f (x) of XC given in (3.4) can be
expressed as

f (x) = 1

4ε
ln

(
δ + ε

max{|x − µ|, δ − ε}
)

for µ − (δ + ε) � x � µ + (δ + ε). (3.5)

The pdf f (x) has the shape of an isocurvilinear trapezoid
with parameters µ − (δ + ε), µ − (δ − ε), µ + (δ − ε) and
µ + (δ + ε) illustrated in figure 3.

The Supplement 1 to the GUM (GUM S1) [4, section
6.4.3] states the following. Suppose a quantity X is known
to lie between limits A and B with A < B, where the mid-
point (A + B)/2 is fixed (specified) and the width (B − A)

is not known exactly (uncertain). Further suppose that A

and B are known to lie in the known intervals (a ± d) and
(b ± d), respectively, where d > 0 and a + d < b − d.
If no other information is available concerning X, A and B,
then a probability distribution for X which has the maximum
entropy (information uncertainty) is the curvilinear trapezoidal
distribution with pdf

gX(ξ) = 1

4d
ln

(
w + d

max{|ξ − x|, w − d}
)

for a − d � ξ � b + d. (3.6)

If we make the following substitutions in (3.6) a = (µ − δ),
b = (µ + δ), x = (a + b)/2 = µ, w = (b − a)/2 = δ, d = ε

and ξ = x, we get the pdf f (x) given in (3.5).

4. Characteristics of an isocurvilinear trapezoidal
distribution which arises from uncertain
half-width

We will describe the cdf, mgf, moments, expected value
and standard deviation of an isocurvilinear trapezoidal
distribution having the pdf f (x) given in (3.4). We will also
describe how random numbers from the pdf f (x) may be
generated.

4.1. Cumulative distribution function

The cdf of a random variable W is defined as the probability
Pr(W � x) and it is obtained by integrating the pdf of
W within the limits from −∞ to x. The cdf F(x) of an
isocurvilinear trapezoidal distribution with the pdf f (x) given

in (3.4) is

F(x) =


0 if x � µ − (δ + ε),

1

4ε

[
(x − µ) if µ − (δ + ε) � x

×
(

ln
δ + ε

|x − µ| + 1

)
+ δ + ε

]
� µ − (δ − ε),

1

4ε

[
(x − µ) ln

δ + ε

δ − ε
+ 2ε

]
if µ − (δ − ε) � x

� µ + (δ − ε),

1

4ε

[
(x − µ)

(
ln

δ + ε

x − µ
+ 1

)
if µ + (δ − ε) � x

+3ε − δ

]
� µ + (δ + ε),

1 if µ + (δ + ε) � x

(4.1)

(see appendix 1, available from the online version of this
journal).

4.2. Moment generating function and moments

The mgf of a random variable W denoted by MW(t) is defined
as the expected value E(etW ) with respect to the pdf p(w)

of W . If the expected value E(etW ) exists for t in some
neighbourhood of zero, then the mgf MW(t) exists. The mgf
for a pdf is unique. If the expected value E(etW ) exists then
the mgf can be expressed as

MW(t) =
∫ ( ∞∑

k=0

tkwk

k!

)
p(w) dw

=
∞∑

k=0

(∫
wkp(w) dw

)
tk

k!
= 1 +

∞∑
k=1

E(Wk)
tk

k!
. (4.2)

The expected value E(XC) of an isocurvilinear trapezoidal
distribution with the pdf f (x) given in (3.4) is

E(XC) = µ (4.3)

(see appendix 2, available from the online version of this
journal).

We will first determine the mgf of XC − µ and then
determine the mgf of XC. The mgf of XC − µ is

MXC−µ(t) = 1 +
∞∑

j=1

(δ + ε)2j+1 − (δ − ε)2j+1

2 · ε · (2j + 1)2

t2j

(2j)!
(4.4)

(see appendix 3, available from the online version of this
journal).

The central moments E(XC−µ)k about the expected value
(mean) µ can be easily determined from the mgf of XC − µ.
By comparing the coefficients of tk/k! in (4.2) and (4.4) we
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note that all moments about the mean µ of odd order (that is,
k = 2j − 1 for j = 1, 2, . . .) are zero, thus

E(XC − µ)k = 0 for k = 1, 3, 5 . . . (4.5)

and if k is even (that is, k = 2j for j = 1, 2, . . .), then

E(XC − µ)k = (δ + ε)k+1 − (δ − ε)k+1

2 · ε · (k + 1)2
for k = 2, 4, 6 . . . .

(4.6)

In particular,

E(XC − µ)2 = (δ + ε)3 − (δ − ε)3

2 · ε · (2 + 1)2
= δ2

3
+

ε2

9
. (4.7)

Thus the standard deviation S(XC) of an isocurvilinear
trapezoidal distribution with the pdf f (x) given in (3.4) is

S(XC) =
√

E(XC − µ)2 =
√

δ2

3
+

ε2

9
. (4.8)

The mgf of XC is related to the mgf of XC −µ by the following
equation:

MXC(t) = E(etXC) = etµE(et (XC−µ)) = etµMXC−µ(t). (4.9)

Therefore from (4.4) the mgf of the pdf f (x) given in (3.4) is

MXC(t) = etµMXC−µ(t)

= etµ


1 +

∞∑
j=1

(δ + ε)2j+1 − (δ − ε)2j+1

2 · ε · (2j + 1)2

t2j

(2j)!


 . (4.10)

The kth moment E(Xk
C) for k = 1, 2, . . ., is the kth derivative

of (4.10) evaluated at t = 0. The first and second derivatives
of (4.10) evaluated at t = 0 yield

E(XC) = µ and E(X2
C) = µ2 +

δ2

3
+

ε2

9
. (4.11)

Since E(XC − µ)2 = E(X2
C) − (E(XC))2, expressions (4.7)

and (4.11) agree.

4.3. Generation of random numbers

The GUM [2] approach to determine the expected value and the
variance for an output variable (measurand) is to propagate the
expected values and the variances of incompletely specified
state-of-knowledge probability distributions for the input
variables through a linear approximation of the measurement
function. An alternative approach proposed in the GUM
S1 [4] is to propagate probability distributions by numerical
simulation of the measurement equation. The latter approach
requires generation of random numbers from the probability
distributions specified for the input variables. Random
numbers from an isocurvilinear trapezoidal distribution with
the pdf f (x) given in (3.4) can be easily generated as follows.

Suppose {u1, . . . , un} and {v1, . . . , vn} are two indepen-
dent sets of random numbers obtained by a random number
generator from a rectangular distribution on the interval [0, 1].
Then {z1, . . ., zn}, where zi = (δ − ε) + ui × 2ε, is a set of
random numbers for the half-width from a rectangular distri-
bution on the interval (δ − ε, δ + ε) and {x1, . . . , xn}, where

xi = (µ − zi) + vi × 2zi is a set of random numbers from the
isocurvilinear trapezoidal distribution with the pdf f (x).

5. Conclusion

The GUM S1 [4, section 6.4.3] identifies the pdf f (x) of
an isocurvilinear trapezoidal distribution given in (3.5) as a
maximum entropy distribution. Our derivation of the pdf f (x)

is closely linked to the metrological practice. Metrologists
often use a rectangular distribution to describe the state of
knowledge about a quantity for which very little reliable
specific information is available. They identify the best
available estimate for the quantity as the mid-point and set
the half-width by subjective judgment. Therefore the half-
width is uncertain (not exactly known). Thus an isocurvilinear
trapezoidal distribution, derived by assuming that the inexact
knowledge about the half-width may be represented by a
rectangular distribution, is a more accurate representation of
the available state of knowledge than a rectangular distribution
which ignores the uncertainty in specification of the half-width.

If a variable XR has a rectangular distribution with mid-
point µ and half-width δ, then E(XR) = µ and S(XR) =√

(δ2/3). If a variable XC is has a rectangular distribution
with mid-point µ but uncertain half-width represented by
a rectangular distribution on the interval (δ − ε, δ + ε),
where δ > ε > 0, then the resulting distribution of XC is
isocurvilinear trapezoidal with E(XC) = µ and S(XC) =√

(δ2/3+ε2/9). If the uncertainty concerning the half-width is
ignored then the standard deviation S(XC) is underestimated
by an amount quantified by the relative difference [S(XC) −
S(XR)]/S(XR) = √

(1 + ε2/3δ2) − 1.
The ratio ε/δ indicates the uncertainty concerning the

specification of half-width. The values of the relative
difference [S(XC) − S(XR)]/S(XR) for ε/δ = 0.25, 0.50,
0.75 and in the limit as ε/δ tends to 1.0 are 1%, 4%, 9% and
15%, respectively. Therefore, even if the ratio ε/δ is as large
as 0.50, the underestimation of the standard deviation of the
isocurvilinear trapezoidal distribution will not be more than
4%. Thus in many metrology applications the uncertainty in
the specification of the half-width of a rectangular distribution
may be ignored. In applications where thorough evaluation of
the uncertainty is desired, the larger standard deviation S(XC)

of the isocurvilinear trapezoidal distribution should be used.
Let us compare the isocurvilinear trapezoidal distribution

with the corresponding isosceles trapezoidal distribution. If
a variable XS has an isosceles trapezoidal distribution with
parameters µ− (δ + ε), µ− (δ − ε), µ+ (δ − ε) and µ+ (δ + ε),
then E(XS) = µ and S(XS) = √

(δ2/3 + ε2/3). The relative
difference [S(XS)−S(XC)]/S(XC) in the standard deviations
of the isosceles and the isocurvilinear trapezoidal distributions
with the same parameters µ−(δ+ε), µ−(δ−ε), µ+(δ−ε) and
µ+(δ+ε) is

√
[(1+ε2/δ2)/(1+ε2/3δ2)]−1. The values of the

relative difference [S(XS) − S(XC)]/S(XC) for ε/δ = 0.25,
0.50, 0.75, and in the limit as ε/δ tends to 1.0 are, respectively,
2%, 7%, 15% and 22%. Therefore, even if the ratio ε/δ is as
large as 0.50, the relative difference [S(XS) − S(XC)]/S(XC)

in the standard deviations will not be more than 7%. Thus it is
reasonable to conclude that from the viewpoint of evaluating
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Figure 5. Comparison of the pdf f (x) of isocurvilinear trapezoidal
distribution indicated by solid lines and the pdf g(x) of isosceles
trapezoidal distribution indicated by dashed lines with the same
parameters µ − (δ + ε), µ − (δ − ε), µ + (δ − ε) and µ + (δ + ε) for
µ = 0, δ = 1.0 and ε = 0.25.

Figure 6. Comparison of the pdf f (x) of isocurvilinear trapezoidal
distribution indicated by solid lines and the pdf g(x) of isosceles
trapezoidal distribution indicated by dashed lines with the same
parameters µ − (δ + ε), µ − (δ − ε), µ + (δ − ε) and µ + (δ + ε) for
µ = 0, δ = 1.0 and ε = 0.50.

uncertainty in measurement, the differences between the
standard deviations of the isosceles and the isocurvilinear
trapezoidal distribution are not significant for the values of the
ratio ε/δ likely to occur in many metrological applications.
Thus note 2 of section 4.3.9 in the GUM [2] is a reasonable
approximation for many applications in metrology.

Let us compare the pdf f (x) of the isocurvilinear
trapezoidal distribution with the pdf g(x) of the isosceles
trapezoidal distribution with the same parameters µ − (δ + ε),
µ − (δ − ε), µ + (δ − ε) and µ + (δ + ε). In figures 5–8, the
pdf f (x) of the isocurvilinear distribution is displayed by solid
lines and the pdf g(x) of the isosceles trapezoidal distribution
is displayed by dashed lines.

In figure 5, µ = 0, δ = 1.0 and ε = 0.25. The standard
deviation S(XS) of the isosceles trapezoidal distribution is 0.60
and the standard deviation of the isocurvilinear trapezoidal
distribution S(XC) is 0.58. Therefore the relative difference
is 2%.

In figure 6, µ = 0, δ = 1.0 and ε = 0.50. The standard
deviation S(XS) of the isosceles trapezoidal distribution is 0.65

Figure 7. Comparison of the pdf f (x) of isocurvilinear trapezoidal
distribution indicated by solid lines and the pdf g(x) of isosceles
trapezoidal distribution indicated by dashed lines with the same
parameters µ − (δ + ε), µ − (δ − ε), µ + (δ − ε) and µ + (δ + ε) for
µ = 0, δ = 1.0 and ε = 0.75.

Figure 8. Comparison of the pdf f (x) of isocurvilinear trapezoidal
distribution indicated by solid lines and the pdf g(x) of isosceles
trapezoidal distribution indicated by dashed lines with the same
parameters µ − (δ + ε), µ − (δ − ε), µ + (δ − ε) and µ + (δ + ε) for
µ = 0, δ = 1.0 and ε tends to 1.0.

and the standard deviation of the isocurvilinear trapezoidal
distribution S(XC) is 0.60. Therefore the relative difference
is 7%.

In figure 7, µ = 0, δ = 1.0 and ε = 0.75. The standard
deviation S(XS) of the isosceles trapezoidal distribution is 0.72
and the standard deviation of the isocurvilinear trapezoidal
distribution S(XC) is 0.63. Therefore the relative difference
is 15%.

In figure 8, µ = 0, δ = 1.0 and ε tends
to 1.0. The standard deviation S(XS) of the isosceles
trapezoidal distribution is 0.82 and the standard deviation
of the isocurvilinear trapezoidal distribution S(XC) is 0.67.
Therefore the relative difference is 22%.

Figures 5 and 6 indicate that the isosceles trapezoidal
distribution is a good approximation for the isocurvilinear
trapezoidal distribution even when ε is as large as 50% of
δ. However, since the isocurvilinear trapezoidal distribution
arising from uncertain half-width is fully characterized, there
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may be no need to approximate it, especially in the Monte Carlo
method for propagating probability distributions, GUM S1 [4].
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