
MODEL BASED UNCERTAINTY ANALYSIS IN INTER-
LABORATORY COMPARISONS 

BLAZA TOMAN   
Statistical Engineering Division, National Institute of Standards and Technology, 

Gaithersburg, Maryland 20899, USA 

ANTONIO POSSOLO  
Statistical Engineering Division, National Institute of Standards and Technology, 

Gaithersburg, Maryland 20899, USA 

 

 
Statistical analysis of inter-laboratory comparisons (e.g. Key Comparisons, Supplemental 
Comparisons) is required to produce an estimate of the measurand called a reference 
value and further, measures of equivalence of the participating laboratories. Methods of 
estimation of the reference value have been proposed that rest on the idea of finding a so-
called consistent subset of laboratories, that is, eliminating outlying participants. In this 
paper we propose an alternative statistical model, one that accommodates all of the 
participants’ data and incorporates the dispersion among the laboratories into the total 
uncertainty of the various estimates. This model recognizes the fact that the dispersion of 
values between laboratories often is substantially larger than the measurement 
uncertainties provided by the participating laboratories. We illustrate the method on data 
from key comparison CCL-K1. 

 
 

1.    Introduction 

Data from inter-laboratory comparisons (e.g. Key Comparisons, Supplemental 
Comparisons) is collected to produce information about a particular measurand, 
or a set of measurands. In the case of key comparisons, the primary goal is to 
produce measures of equivalence of the participating laboratories, both 
unilaterally with respect to a reference value, and bilaterally with respect to each 
other. The understanding of the relationship between the measurements and the 
measurand determines how the former should be combined to produce an 
estimate of the latter, and how the uncertainty of this estimate should be 
assessed. This understanding is best expressed by means of a statistical model 
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(that is, an observation equation [1]) that describes that relationship precisely, in 
particular, how the measurement values depend on the measurand. In the context 
of inter-laboratory studies and key comparisons, this suggests how the 
measurement results from the participating laboratories should be combined, and 
how other, pre-existing information about the measurand should be blended in. 
 

Typically, in an inter-laboratory study, the participating laboratories provide 
measurements 1,..., nx x , their standard uncertainties , and possibly the 
accompanying degrees of freedom

1,..., nu u
1,..., nν ν . Each laboratory’s measurement 

summarizes replicated measurements, each of which involves the combination 
of indications and measured values of participating quantities (thermal 
expansion coefficient, temperature, etc.), and possibly also other pre-existing 
information about the measurand. The standard uncertainties are computed using 
methodology based on the Guide to the Expression of Uncertainty in 
Measurement (GUM) [2], combining uncertainty components from various 
sources, evaluated either by Type A or Type B methods. The current practice in 
most metrological experiments is to produce a reference value ( refx ) to estimate 
the measurand and then, in key comparison experiments, to compute the 
unilateral, i refx x− , and bilateral i jx x− degrees of equivalence  (DoE).  The 
reference value (RV) in a key comparison is abbreviated as KCRV.  
 

It is often the case that when a reference value and its uncertainty are 
computed, plots and other summaries of the data suggest that the measurements 
are not consistent, that is, that some of the laboratories’ measurements are too 
far away from the reference value with respect to the accompanying 
uncertainties. In key comparisons, there have been proposals for formal methods 
to address this problem. Namely, [3,4] suggest using a hypothesis test based on a 
chi-square statistic to determine whether the participating laboratories belong to 
a consistent set. If the test determines this not to be the case, then a method is 
proposed for finding a consistent subset of the laboratories. The KCRV is then 
computed using only data from laboratories in the consistent subset. Even 
though not formally expressed in the literature, the chi-square statistic used in 
this method requires an assumption of a particular statistical model for the 
measurements.  

 
In this paper we address this issue, and propose alternative models for the 

analysis of inter-laboratory comparisons that do not require the preliminary 
identification of a "consistent" subset of laboratories whose measurements are 
combined into the KCRV, all the others being excluded. Our models are 
probabilistic: we use probability distributions to describe incomplete knowledge, 
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and to describe also the dispersion of values that arise in replicated 
measurements. And our usage of them is statistical: we employ principles of 
inference to combine information (from data, and possibly from other sources) 
to produce estimates of the measurand, and to characterize the uncertainty of 
these estimates. We illustrate our methods on data from key comparison CCL-
K1, calibration of gauge blocks by interferometry [5,6]. Section 2 introduces the 
current recommended methods, the common estimates of reference values, their 
uncertainties, degrees of equivalence and the consistency testing procedure. 
Section 3 presents proposed methodology based on the laboratory effects model, 
gives formulas and interpretations, and an example. A Laboratory Effects Model 
for experiments with multiple related measurands is shown in section 4.  
 

2.   Current practice 

2.1.   Methods 

Given the measurements and the standard uncertainties for a particular 
measurand from each of n laboratories, the two most common reference values 
are the arithmetic average and the weighted mean.  These are frequently used 
statistical estimators of population means that are optimal under certain 

assumptions about the data. The arithmetic average 
1

1 n

i
i

x x
n =

= ∑  would be 

optimal if the measurements were like outcomes of independent, Gaussian 
random variables, all with the same mean μ , and the same variance .  The 

weighted mean 
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=∑ ∑ would be optimal if measurements were 

like outcomes of independent (assumption 1), Gaussian (assumption 2) random 
variables, all with the same (assumption 3) mean μ , and different known 
variances given by  (assumption 4). We will refer to this as Model W. 
In most cases the standard uncertainties cannot reasonably be regarded as 
though they were based on infinitely many degrees of freedom. In some cases, 
including that of our example CCL-K1, the number of degrees of freedom 
associated with the standard uncertainties is available. In these circumstances it 
is preferable to fit yet another model (WD), which relies on the validity of 
assumptions 1-3, but not on 4.  Under this model, the are estimates of the true 
variances  and behave like outcomes of chi-squared random variables: 

specifically, 
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ν  is like an outcome of a chi-square random variable with iν  

degrees of freedom. 
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The weighted mean (Model W) is suggested as the preferred method for 
calculating a RV by [3] with the condition that a consistency test is carried out 

using the statistic 
( )2

2
2

1

n
i w

Obs
i i

x x
u

χ
=

−
=∑ [4]. Under the assumptions of Model W, 

this is an observed value of a random variable with chi-square distribution with 
n-1 degrees of freedom. The consistency test checks whether , the  
100(1 - α) percentile of the chi-square distribution with n-1 degrees of freedom. 
If the 

2 2
, 1Obs nαχ χ −>

2
Obsχ is in fact larger than , the measurements are determined to be 

inconsistent. The largest subset of participants that passes this test is called the 
largest consistent subset (LCS) in [4] and is used to compute the reference value. 
This subset is found using a sequential procedure, computing 

2
, 1nαχ −

2
Obsχ  for the larger 

subsets first. 

 
Such consistency testing suffers from several consequential shortcomings. 

Most importantly, a conclusion that a set of laboratories is inconsistent appears 
to be interpreted as a violation of assumption 3. This is not necessarily so, in fact 
it could equally well reflect a violation of any of the other assumptions: 
particularly assumption 4, which would mean that the uncertainties are 
underestimated. (Also see [5]) Secondly, the proposed choice of α equal to 0.05 
is conventional but arbitrary. This is unfortunate because the LCS procedure 
may result in different subsets for different values of α as is later shown for the 
CCL-K1 data.  Matters are further complicated by the fact that the proposed 
procedure typically comprises a possibly large number of component tests, each 
of which has a probability 0.05 of erroneously rejecting consistency, by chance 
alone 5% of the subsets will be deemed inconsistent when in fact they are not: 
the value of α must be adjusted to compensate for this effect of multiplicity.  

 
Another issue derives from the sequential nature of the procedure. Suppose 

that , and that the hypothesis of consistency was in fact incorrectly 
rejected.  This means that purely by chance, as will occur with probability α, the 
observed values 1

2 2
, 1Obs nαχ χ −>

,..., nx x  produce large values of 2
Obsχ . Once the whole set of 

laboratories has been deemed inconsistent, we proceed to test each subset 
comprising all but one laboratory for consistency in turn, using the 
corresponding chi-squared statistic. Since the inconsistency of the whole set 
means that the measurements are over-dispersed to begin with, this second 
round of testing likely will produce values of the test statistic that are larger than 
what one would expect if the tests were not being done as a follow-on to the first 
test. This means that for an α level test, the probability of rejecting the null 
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hypothesis when it is true is in fact larger than α. Thus using 
kObs nα  for 

the follow-up test is not as strong an evidence against the second null hypothesis 
as is believed, leading to incorrect conclusions. 

2 2
, 2χ χ −>

Next we illustrate these methods using the data from key comparison CCL-
K1. 
 

2.2.   Example CCL-K1 

This key comparison was carried out to compare deviations from nominal length 
of several steel and several tungsten gauge blocks, and is fully described in 
[6,7]. Here the results for the tungsten gauges are used to illustrate the various 
procedures. Table 1 has the results for the tungsten 1.1 mm gauge. 
 
Table 1. Deviations from nominal length (in mm), standard uncertainties (in mm), and degrees of 
freedom for the 1.1 mm tungsten block (20’20987). 
 
Laboratory Deviation from 

nominal (mm) 
Standard uncertainty 
(mm) 

Degrees of Freedom 

OFMET -54 9 500 
NPL -51 14 119 
LNE -36 10 94 
NRC -51 13 9 
NIST -38 9 50 
CENAM -72 7 72 
CSIRO -32 9 207 
NRLM -66.4 10.3 5 
KRISS -62 9.4 24 
   

Figure 1 shows a plot of the measurements with their 95% confidence 
intervals and the weighted mean with its uncertainty, based on Model W, and on 
Model WD. The plot shows possible lab deviations for at least two laboratories 
(CENAM and CSIRO), and also shows that the measurements from several 
others are quite far from the weighted mean. If those deviations do not merely 
reflect a spuriously bad day in the lab, but indeed express the natural 
interlaboratory variability, then neither Model W nor Model WD would be good 
choices for this particular set of data. 
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Figure 1. Laboratory measurements with their 95% confidence intervals, the weighted mean with its 
uncertainty, based on Model W, and on Model WD, for the 1.1 mm tungsten gauge. 
 
 

A formal test of consistency using the chi-square statistic produces 
, which is larger than , thus confirming what the plot 

suggests,  rejecting the full set of laboratories as consistent at this level of α. The 
LCS procedure for α = 0.05 identifies CENAM as an outlier. The remaining 
laboratories form the LCS.  

2 21.15Obsχ = 2
0.05,8 15.5χ =

 
Since the level of the test is arbitrary, it is interesting to see what happens 

for other values of α. Figure 2 contains a plot which illustrates this. 
 
 

 6 



 
 
Figure 2. Consistent subsets as α varies. The top horizontal line is for α = 0.05. The continuous 
horizontal line towards the bottom is the value of α that results from the so-called Bonferroni [7, 
Section 10.7] correction to accommodate the fact that, to find the largest consistent subset, one is 
either implicitly or explicitly performing separate (and statistically dependent) consistency 
tests. Since α is the probability of incorrectly concluding that the measurements are mutually 
inconsistent, for sufficiently small α no lab is left out of the largest consistent subset (LCS). As α 
increases, the lab (CENAM) with the most deviant measurement drops out from the LCS. However, 
for even larger values of α (somewhat above 0.1), CENAM reenters the LCS, while LNE, NIST, and 
CSIRO drop out. This illustrates the non-monotonic, counter-intuitive behavior of the LCS as a 
function of α. 

2n n− −1

 
This figure shows that the largest consistent subset (LCS) is not a 

monotonic function of α: in other words, the LCS corresponding to a particular 
value of α does not necessarily include the LCS corresponding to a larger value 
of α. Since any choice of a value for α is both arbitrary and influential, and the 
corresponding chi-squared test that is employed to judge significance (either 
using the chi-squared reference distribution or its counterpart determined by 
simulation) typically has low power to detect heterogeneity, we believe that 
basing the KCRV on the LCS as [9] recommends generally is imprudent. 
Indeed, we much prefer alternatives where the measurements provided by all the 
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laboratories are allowed to speak, and play a role, albeit one that is modulated by 
their intrinsic uncertainties, and by the extrinsic dispersion of the measurements. 
  

3.   Laboratory Effects Model 

3.1.   Methods 

Under the Laboratory Effects Model (LEM), measurements are modeled as 
outcomes of independent Gaussian random variables with means , and known 
variances given by . (A similar relaxation of the assumption on the 
variances as given by Model WD can also be used here.) The means can be 
written as 

iλ
2
1 ,..., nu u

i

2

iλ μ β= + , where μ  is the measurand. There are two well-known 
[10,11] alternative models which differ in the definition and interpretation of the 

iβ .  
 

The first type of LEM is called the Fixed Effects Model [10], which 
assumes that the iβ  are systematic laboratory effects (biases) which are expected 
to re-occur in repeated similar experiments. They are unknown constants to be 
estimated from the measurement data. In terms of an observation equation, this 
model can be written as  

( )2~ 0,
i i

i i

iX E

E N u

μ β= + +
 .                                                                                               (1) 

If the measurand is known independently of the results of the interlaboratory 
study – for example, it pertains to a standard reference material (SRM) whose 
certificate puts it at M, with uncertainty u(M), then the iβ   can be estimated as  

ix M− with uncertainty . Clearly, the unilateral DoE is ( )iu u M+ ix M− , the 
bilateral DoE the usual i jx x− .   
 
However, in most cases no independent information about the measurand exists 
and the reference value needs to be estimated from the measurements. In such a 
case, without any additional constraints, unique estimators of μ and of the iβ  do 
not exist [10, section 6.2].  Without some additional (or prior) information about 

the laboratory biases, the constraint is sensible and leads to unique 

estimators via least squares or maximum likelihood. The estimator of the 
measurand μ  is 

1
0

n

i
i

β
=

=∑

x , the iβ  are estimated by ix x− .  It is a particularly pertinent 
feature of this model that the estimates of the laboratory effects are in fact the 
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unilateral DoE with respect to the arithmetic average [12]. The uncertainty of 
the  x  is 

 ( ) 2

1

1 n

i
i

u x u
n =

= ∑ ,                                                                                             (2) 

 

the uncertainty of the unilateral DoE for the ith laboratory is 

 

 ( ) 2 2
2

1

1 2n

i i j
j

u DOE u u u
nn =

= + −∑ 2
i .                                                                  (3)                                                       

 
To summarize, the Fixed Effects Model does not require a common mean 

but partially attributes differences among measurements from various 
laboratories to differences among the means of the random variables which 
represent the observations. The laboratory uncertainties are not increased in this 
model. In addition to the classical interpretation of the measurements as 
observations of random variables, or as sample averages, one may also interpret 
the measurements as expected values of belief distributions about the 
measurand. In this case, the are interpreted as standard deviations of such 
belief distributions. Both interpretations lead to the same formulas and results 
with different interpretations of the uncertainties and uncertainty intervals. Refer 
to [12] for a full discussion. 

iu

 
The second type of LEM is called the Random Effects Model [10, 11]. Here 

the iβ  are random biases which are not expected to have the same value on 
repeated similar experiments, but instead are outcomes of Gaussian random 
variables with mean 0 and variance 2

βσ . In terms of an observation equation this 
is 
 

( )
( )

2

2

~ 0,

~ 0,

i i

i

i i

iX E

N

E N u

β

μ β

β σ

= + +

                                                                                                (4) 

 
Measurements from all laboratories have the same mean μ , but the variances 
are inflated to 2

iu 2
βσ+ .  Using the method of maximum likelihood [11], all of 

the parameters of this model can be estimated. As the laboratory effects are 
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random variables, their estimates are really estimates of the realized values of 
the iβ . The estimated covariance matrix provides the uncertainties of 

the μ̂ (KCRV) and of the ˆ
iβ . The ˆ

iβ  can be used to compare laboratories to 
each other instead of the standard DoE.  

To summarize, under the Random Effects Model, apparent differences 
among laboratory measurements are explained by an increase in the laboratory 
uncertainties. The measurements from all laboratories have the same mean. As 
the ratio of 2ˆβσ  to the  gets large for most or all of the laboratories, the 2

iu
ˆ

iβ approach ˆix μ−  , the usual unilateral DoE. On the other hand, as this ratio 
approaches zero, the ˆ

iβ  approach 0.  
 

As both models are designed to fit data from experiments such as key 
comparisons and inter-laboratory studies, it is useful to discuss when to apply 
one versus the other.  

 
The Fixed Effects Model is meant to be used when the laboratory effects are 

essentially constant biases which are likely to re-occur in similar sizes both 
relative to the value of the measurand and relative to each other, across similar 
experiments.  

 
The Random Effects Model is used for situations when there is no such 

expectation, or no solid documentation for such biases. That is, the laboratory 
biases are most likely due to some common underlying cause which acts in a 
varying nature so that the laboratories may be closer or farther from the target 
value in different experiments, purely by chance. There are no identifiable 
causes that seem responsible for these laboratory biases, hence they are treated 
symmetrically (relative to each other), and modeled as random variables with a 
common distribution, centered at 0, and whose variance captures the dispersion 
of the lab measurements in excess of what their respective uncertainties suggest 
such dispersion should be. 
 

In each particular experiment, it may be difficult to discern the cause of the 
variability among laboratories and thus decide which model to use. But it will be 
seen in the following section that the Random Effects Model provides the most 
conservative solution.  

3.2.   Example 

The laboratory effects models are now applied to the data from key comparison 
CCL-K1. Table 2 contains the estimates of μ  and of the corresponding 
uncertainty under the three models, Model W, the Fixed Effect Model and the 
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Random Effects Model. All model-fitting was done in the R [13] environment  
for statistical computation and graphics, in particular by employing  the R 
function lme [14], which fits linear Gaussian models possibly containing both 
random and fixed effects, as [15] describes in detail. 
  
Table 2. Estimates of the mean deviation from nominal length (in mm), standard uncertainties (in 
mm) in parentheses, and estimates of the standard deviation of the laboratory effects distribution. All 
under the three alternative models.  
 
Block Model W Fixed Effects Random Effects ˆβσ  

0.5 22 (3.1) 24 (3.5) 24 (4.0) 12 
1.00 14 (3.1) 16 (3.5) 16 (4.0) 12 
1.01 26 (3.1) 28 (3.5) 27 (3.6) 9 
1.10 -53 (3.2) -51 (3.5) -51 (4.4) 13 
6.0 -48 (3.1) -47 (3.5) -47 (3.4) 10 
7.0 29 (3.1) 30 (3.5) 31 (3.8) 11 
8.00 47 (3.1) 49 (3.5) 49 (3.3) 10 
80.0 104 (4.0) 104 (4.7) 104 (4.1) 10 
100.0 -76 (4.3) -79 (5.2) -79 (4.7) 14 
  

The results show that estimates of the mean deviation from nominal length 
are quite similar under the three models. The uncertainties of the weighted mean 
are uniformly smaller than the uncertainties of the other two estimates. Figure 3 
provides a comparison of the laboratories via their unilateral Degrees of 
Equivalence under Model W, and under the Fixed Effects Model. The ˆ

iβ are 
given for the Random Effects Model. 
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Figure 3. 95% uncertainty intervals for the DoE obtained using the LCS procedure, and using the 
Fixed Effects model. 95% uncertainty intervals for the estimated biases under the Random Effects 
model 

 
The plot shows that there are no significant (that is, non-zero) laboratory 

biases under the Random Effects Model. This happens because this model 
includes an added variance component to explain the dispersion of the measured 
values produced by the different laboratories above and beyond the variability 
that their stated uncertainties alone would suggest. Model W with the LCS 
procedure identifies CENAM as not belonging to the largest consistent subset. 
Thus the added variability in the form of the between-laboratory variance 2

βσ  
does explain the dispersion of the laboratory measurements under the 
assumption of a common mean. The Fixed Effects Model on the other hand 
produces significant laboratory biases for CENAM and for CSIRO which could 
be interpreted as significant unresolved deviations.  The question then is whether 
these would recur systematically when the same laboratories measure other 
measurands using the same methods and procedures.  If that is the case then the 
Fixed Effects Model is appropriate, otherwise the Random Effects Model is 
preferred. This question of model selection can be answered in situations where 
the experiment consists of measurements on several measurands as is true for 
CCL-K1. 
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4.    Model Selection Based on Measurements of Multiple Measurands 

In CCL-K1, the participating laboratories measured nine steel gauges and nine 
tungsten carbide gauges, of rectangular cross-section and different lengths, using 
optical interferometry, applying the same method of fringe fractions, with phase 
corrections.  (Since neither NIM not VNIIM applied these corrections, we 
follow [6,7] in leaving their measurements out of this study.) Experiments such 
as this, where multiple measurands are measured using essentially the same 
methods, afford a unique opportunity to determine whether the apparent 
differences between laboratories, indicated by the estimated laboratory biases, 
indeed remain constant across measurands. Figure 4 shows the average 
predicted laboratory biases from the Random Effects Model for each of the 
tungsten gauges with different symbols for each laboratory. 
 
 

 
Figure 4. Average Predicted Laboratory Biases in mm. 
 
This graph does show a pattern for the biases of several of the laboratories, 
particularly LNE and CSIRO tend to be high, and CENAM tends to be low, 
compared to the other laboratories. The following model can capture such 
information. 
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Measurements
 

, where i denotes the laboratory and j denotes the gauge 
block, are outcomes of independent Gaussian random variables with means ij , 
and variances given by

xij
λ

2 2
11 1 1,..., ,..., ,..., 2

p nu unpu u . The number of laboratories is n 
and the number of blocks is p. The means can be written as ij j ijλ μ β= + , where 

jμ  are the measurands, and ijβ  are the laboratory effects. For each laboratory i, 
the ijβ  are considered to be Gaussian random variables with a mean given by 

. In terms of an observation equation this is iα
 

( )
( )

2

2

~ ,

~ 0,
i

ij j ij ij

ij i

ij

X E

N

E N u

β

μ β

β α σ

= + +

   .                                                                                     (5) 

 
Thus the represent the average laboratory bias that applies to all blocks 
measured by laboratory i. As in the simpler, Fixed Effects Model, for a unique 
solution to exist, there must be a constraint on the laboratory biases. In this 

model, without any additional knowledge, the constraint serves this 

purpose. This model can again be fitted using maximum likelihood methods, in 
R or other software packages such as WinBUGS [16]. Figure 5 shows a plot of 
95% uncertainty intervals for the  for the 9 tungsten gauges in the CCL-K1 
key comparison.  The three laboratories LNE, CSIRO and CENAM do have 
non-zero average predicted biases over different sized gauges and thus appear to 
have systematic laboratory biases which can now be interpreted as significant 
unresolved differences that recur from experiment to experiment. The remaining 
laboratories do not appear to have such systematic biases as their uncertainty 
intervals for the  include 0.  

iα

1

0
n

i
i

α
=

=∑

iα

iα
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Figure 5. Average estimated laboratory biases  (in mm) and their uncertainty intervals, estimated 
from the measurements of all tungsten gauge blocks 
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5.   Conclusions 

The laboratory effects models presented in this paper facilitate the statistical 
analysis of key comparison data without excluding measurements made by any 
of the participating laboratories. Such exclusion should be done only for cause, 
without which even the most discrepant measurement cannot logically be ruled 
out as erroneous. This inclusive policy enacts a price in uncertainty for the 
reference value. But this only properly reflects the common state of knowledge 
that results when the dispersion of the measurements exceeds what one might 
expect based only on the measurement uncertainties that the laboratories state.  
 

The Fixed Effects Model should be used when there is evidence that the 
observed deviations express systematic effects of the laboratories' measurement 
methods and procedures, hence would recur were the intercomparison to be 
repeated in the same circumstances. Patterns of deviations corresponding to 
multiple measurements, as the exercise in section 4 illustrates, can provide that 
evidence. If no evidence is available that incontrovertibly supports the Fixed 
Effects Model, then the Random Effects Model should be the default choice. As 
indicated above, in many cases this tends to inflate the KCRV's uncertainty 
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relative to the individual laboratories' stated uncertainties: however, this merely 
recognizes the actual dispersion of the measured values.  
 

The Fixed Effects Model allows direct computation of degrees of 
equivalence as required by the MRA. In the case of the Random Effects Model, 
where laboratory biases are modeled as random variables with the same 
probability distribution, equivalence between laboratories may be measured by 
comparing the estimates of the realized biases.  
 

Acknowledgments 

The authors wish to thank Rudolf Thalmann, METAS, for sharing the degrees of 
freedom for the data from key comparison CCL-K1. The manuscript benefitted 
greatly by reviews from Gregory F. Strouse and Nien-fan Zhang of NIST.  
 
References 

1.  Possolo A and Toman B 2007 Assessment of measurement uncertainty via 
observation equations Metrologia  44 464-475 

2.  ISO Technical Advisory Group, Working Group 3, Guide to the Expression 
of Uncertainty in Measurement, International Organization for 
Standardization, Geneva (1993). 

3.  Cox M G 2002 The evaluation of key comparison data Metrologia 39 589 – 
95. 

4.  Cox M G 2007 The evaluation of key comparison data: determining the 
largest consistent subset Metrologia 44 187-200. 

5.  Kacker R, Forbes A, Kessel R, Sommer K-D 2008 Classical and Bayesian 
interpretation of the Birge test of consistency and its generalized version for 
correlated results from interlaboratory evaluations Metrologia 45, 257 – 265 

6.  Thalmann R 2001 CCL Key Comparison CCL-K1: Calibration of gauge 
blocks by interferometry — Final report. Swiss Federal Office of Metrology 
METAS, Wabern, Switzerland  

7.  Thalmann R 2002 CCL key comparison: calibration of gauge blocks by 
interferometry Metrologia 39 165–177  

8.  Wasserman L 2004 All of Statistics, A Concise Course in Statistical 
Inference, Springer Science+Business Media, New York, NY, ISBN 0-387-
40272-1 

9.  Decker J, Brown N, Cox M G, Steele A, and Douglas R 2006 Recent 
recommendations of the Consultative Committee for Length (CCL) 
regarding strategies for evaluating key comparison data. Metrologia 43: 
L51-L55 

10.  Searle S R 1971 Linear Models John Wiley & Sons New York 
11.  Searle S R, Casella G, McCulloch C 1992 Variance Components John 

Wiley & Sons New York 

 16



 17

12.  Toman B 2007 Statistical interpretation of key comparison degrees of 
equivalence based on distributions of belief Metrologia 44 L14-L17 

13.  R Development Core Team (2008) R: A Language and Environment for 
Statistical Computing, R Foundation for Statistical Computing, Vienna, 
Austria, http://www.R-project.org 

14.  Pinheiro J, Bates D, DebRoy S, Sarkar D, R Core team (2008) 
nlme: Linear and Nonlinear Mixed Effects Models, R package version 3.1-
89, http://www.R-project.org 

15.  Pinheiro J. C., Bates, D. M. (2000) Mixed-Effects Models in S 
and S-Plus, Springer-Verlag, New York 

16.  Lunn, D.J., Thomas, A., Best, N., and Spiegelhalter, D. 2000 WinBUGS -- 
a Bayesian modelling framework: concepts, structure, and extensibility. 
Statistics and Computing, 10:325--337. 

 
  

http://www.r-project.org/
http://www.r-project.org/

	1.     Introduction
	2.    Current practice
	2.1.    Methods
	2.2.    Example CCL-K1

	3.    Laboratory Effects Model
	3.1.    Methods
	3.2.    Example

	4.     Model Selection Based on Measurements of Multiple Measurands
	5.    Conclusions

