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Abstract
A recent supplement to the GUM (GUM S1) is compared with a Bayesian analysis in terms of
a particular task of data analysis, one where no prior knowledge of the measurand is presumed.
For the Bayesian analysis, an improper prior density on the measurand is employed. It is
shown that both approaches yield the same results when the measurand depends linearly on the
input quantities, but generally different results otherwise. This difference is shown to be not a
conceptual one, but due to the fact that the two methods correspond to Bayesian analysis under
different parametrizations, with ignorance of the measurand expressed by a non-informative
prior on a different parameter. The use of the improper prior for the measurand itself may
result in an improper posterior probability density function (PDF) when the measurand
depends non-linearly on the input quantities. On the other hand, the PDF of the measurand
derived by the GUM supplement method is always proper but may sometimes have
undesirable properties such as non-existence of moments.

It is concluded that for a linear model both analyses can safely be applied. For a non-linear
model, the GUM supplement approach may be preferred over a Bayesian analysis using a
constant prior on the measurand. But since in this case the GUM S1 PDF may also have
undesirable properties, and as often some prior knowledge about the measurand may be
established, metrologists are strongly encouraged to express this prior knowledge in terms of a
proper PDF which can then be included in a Bayesian analysis. The results of this paper are
illustrated by an example of a simple non-linear model.

1. Introduction

In a recent supplement to the GUM [1], evaluation of
measurement uncertainty is proposed in terms of a probability
density function (PDF) which expresses the knowledge about
the value of the measurand. This supplement [2]—hereafter
called GUM S1—starts from a model which relates the
measurand to a number of input quantities. Having specified
the (joint) PDF on the input quantities, GUM S1 describes how
to numerically determine the resulting PDF of the measurand.

GUM S1 also specifies how to assign a PDF for the input
quantities in various cases. When independent observations

of an input quantity from an assumed Gaussian distribution
are given, a shifted and scaled t-distribution is assigned to that
quantity. It was shown in [3] that in these instances the PDF
resulting from an application of GUM S1 can also be derived
by a Bayesian analysis using Bayes’ theorem, provided that
particular non-informative priors are chosen.

When both data and prior knowledge of the measurand
are available, a Bayesian analysis most conveniently starts
from an observation equation rather than from the model
employed by the GUM [4]. In that case the prior knowledge
about the measurand is accounted for in the construction
of the prior density. Such Bayesian solution differs from
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that of GUM S1 as the presence of prior knowledge of the
measurand is not directly considered in GUM S1. While the
Bayesian approach is generally applicable once the prior and
the sampling distribution of the data have been specified, GUM
S1 gives guidance on the assignment of PDFs for the input
quantities only for particular sampling distributions.

GUM S1 describes how to determine numerically the PDF
for the measurand that is—due to the model relation—uniquely
determined by a transformation of variables from the PDFs of
the input quantities. If in this situation additional independent
knowledge of the measurand is available in terms of a PDF,
reference [5] proposes a method of merging these two densities.
In particular, the PDF derived by GUM S1 and the additional
PDF are multiplied and the result is normalized to produce a
PDF. This can be numerically done by a simple modification
of the Monte Carlo method of GUM S1, cf [5].

As has been pointed out in [6], GUM S1 can yield different
results in the analysis of data than a Bayesian analysis starting
from an observation equation, even in the case of Gaussian
observations and no prior information about the measurand.
In this paper we take a closer look at this observation. We do
this for a particular but generic situation of data analysis in
metrology for which GUM S1 is applicable. After presenting
the results of both approaches, we rewrite the GUM S1 solution
in terms of a Bayesian analysis. This allows the differences
in the assumptions underlying both treatments to be identified.
We show that the results may differ due to the (implicit) choice
of priors. It turns out that the same PDFs are obtained when
the measurand depends linearly on the input quantities and
when a constant prior for the measurand is utilized in the
Bayesian analysis. Thus, in general both approaches will be
equivalent in the absence of prior knowledge (when expressed
by a constant improper prior for the Bayesian approach) only
for linear models; otherwise, different results will be obtained.
We critically assess the considered choices of non-informative
priors in the absence of prior knowledge. We argue that a
constant, improper prior on the measurand itself in a Bayesian
analysis appears to be inappropriate when the measurand
depends non-linearly on the input quantities. We illustrate
the implications by a non-linear example. We show that for
the chosen example, a Bayesian analysis which uses a constant
improper prior yields an improper posterior PDF in contrast to
the GUM S1 solution. We then compare the results with those
obtained by a Bayesian analysis when prior knowledge on the
measurand can be utilized. Finally, we close by drawing some
conclusions of these findings.

2. Task of data analysis

Let Y denote the measurand, and

Y = f (X, Z) (1)

the model relation in terms of the GUM [1]. X and Z serve
as a ‘type A’ and ‘type B’ variable, respectively, that is, there
are data points from which X can be estimated but none for Z.
In order to keep the notation simple, we consider only one
input variable of each type. To illustrate such a situation,

consider a simple version of example H1 of [1]. This concerns
a measurement of length of a nominally (at 20 ◦C) 50 mm end
gauge. We can define Y to be the length of the gauge at 20 ◦C,
X to be the length of the gauge at the actual temperature (for
example 25 ◦C) and Z to be (1 + αθ) where α is the coefficient
of thermal expansion and θ is the deviation in temperature
from 20 ◦C.

The model (1) is assumed to be uniquely solvable for X

according to
X = g(Y, Z). (2)

Under the Bayesian approach, the unknown value of a quantity
is modelled by a random variable whose density represents the
available knowledge about it. We use upper case letters to
denote random variables and lower case letters for possible
values of them. The PDF of a random variable X is denoted
by p(x), and the joint PDF of random variables X and Y by
p(x, y) or—where required—by p(X,Y )(x, y).

The available information about the input quantities is
as follows. A proper PDF p(z) represents our knowledge
about Z. In the simple example, this is based on knowledge
of the coefficient of thermal expansion and of the deviation
in temperature from 20 ◦C. We further assume that the
observations d1, . . . , dn are independent realizations from a
Gaussian density with expectation X and variance �2. No
prior knowledge about X, Y and � is at hand.

3. Bayesian analysis

For the Bayesian analysis we consider the parametrization

θ = (Y, Z, �). (3)

The posterior PDF p(θ|d1, . . . , dn) is obtained via Bayes’
theorem as

p(θ|d1, . . . , dn) ∝ p(θ)l(θ|d1, . . . , dn), (4)

where p(θ) denotes the prior density on θ and the likelihood
function l(θ|d1, . . . , dn) is given by

l(θ|d1, . . . , dn) =
n∏

i=1

e−(di−g(y,z))2/2σ 2

√
2πσ 2

. (5)

Prior densities summarize knowledge available about a
quantity before any updating via Bayes’ theorem is performed.
To distinguish the prior density for Y from other densities for
the measurand considered in this paper, we denote it by p0(y).
We consider the three parameters to be a priori independent
and so p(θ) = p0(y)p(z)p(σ ). Since no knowledge about
� is available, and since it acts as a scale parameter in the
likelihood (5), we will use the standard non-informative prior
p(σ) ∝ 1/σ [7]. Thus,

p(θ) = p(y, z, σ ) ∝ p0(y)p(z)/σ. (6)

As y plays neither the role of a location nor that of a scale
parameter in (5), no ready-made non-informative prior is
available. We will first derive the posterior density of the
measurand using the common improper non-informative prior
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density p0(y) ∝ 1. In our simple example, this prior density
expresses the fact that we are ignorant of the length of the
gauge at 20 ◦C. In section 5 we return to the issue of choice of
non-informative prior density for Y .

After some simplification, (4) yields

p(y|d1, . . . , dn)

∝
∫

p(y, z, σ )l(y, z, σ |d1, . . . , dn) dσ dz (7)

∝ p0(y)

∫
p(z)

tn−1[(g(y, z) − d̄)/(s/n1/2)]

s/n1/2
dz

for the posterior PDF for the measurand. Here d̄ and s denote
mean and standard deviation of the observations d1, . . . , dn,
and tn−1[·] the PDF of a t-distributed random variable with
n − 1 degrees of freedom. Integrating the posterior PDF of Y

for p0(y) ∝ 1 by applying change-of-variable we obtain∫
p(y|d1, . . . , dn) dy

∝
∫ ∫

1

|∂g/∂y|p(z)
tn−1[(x − d̄)/(s/n1/2)]

s/n1/2
dz dx, (8)

where ∂g/∂y is evaluated at (f (x, z), z). Thus, under the
assumption of p0(y) ∝ 1, the Bayesian posterior of the
measurand is clearly a proper density (integrates to 1) when
g(y, z) is linear since then∫

p(y|d1, . . . , dn) dy

∝
∫ ∫

p(z)
tn−1[(x − d̄)/(s/n1/2)]

s/n1/2
dz dx = 1 (9)

holds. But the right-hand side of (8) may not be bounded in
general. Thus, the usual non-informative density p0(y) ∝ 1
cannot be applied routinely.

4. GUM S1

For our particular problem, GUM S1 assigns the scaled and
shifted t-distribution,

p(x) = tn−1[(x − d̄)/(s/n1/2)]

s/n1/2
, (10)

to X. Then, assuming independence between the random
variables X and Z, their joint PDF is

p(x, z) = tn−1[(x − d̄)/(s/n1/2)]

s/n1/2
p(z). (11)

To obtain the PDF p(y) for the measurand Y from p(x, z),
the model relation (1) is employed to first derive from (11) the
joint PDF p(y, z) by application of the change-of-variables
formula, leading to

p(y, z) = |∂g/∂y| tn−1[(g(y, z) − d̄)/(s/n1/2)]

s/n1/2
p(z), (12)

where |∂g/∂y| denotes the determinant of the Jacobian
entering the transformation formula and is evaluated at (y, z).
Subsequent marginalization with respect to z then yields

p(y) =
∫

|∂g/∂y| tn−1[(g(y, z) − d̄)/(s/n1/2)]

s/n1/2
p(z) dz.

(13)

The PDF (13) differs from the Bayesian posterior density (7) by
the prior p0(y) in (7) and by the term |∂g/∂y| in (13), but this
implies that when no prior knowledge about the measurand
is available, and the Bayesian approach is employed with
p0(y) ∝ 1, both approaches yield the same results when the
model (1) is linear. Otherwise, different PDFs are obtained
in general. It is of interest to check whether p(y) is a proper
density. We get∫

p(y) dy

=
∫ ∫

|∂g/∂y| tn−1[(g(y, z) − d̄)/(s/n1/2)]

s/n1/2
p(z) dz dy

=
∫

p(z) dz = 1. (14)

The PDF p(y) (13) can also be derived as a Bayesian posterior
under the parametrization Θ̃ = (X, Z, �) instead of Θ =
(Y, Z, �). Such a parametrization is—in principle—of equal
value since due to relations (1) and (2) there is a one-to-one
correspondence between Θ and Θ̃. Assuming independence
among the three parameters and taking p(x) ∝ 1, we obtain

p(θ̃) = p(x, z, σ ) = p(x)p(z)p(σ ) ∝ p(z)/σ. (15)

It is useful to recall the simple example, and note that here
the ignorance being expressed by p(x) is of the length of the
gauge at the actual measurement temperature, rather than at
20 ◦C. The likelihood (5) in terms of Θ̃ is

l(θ̃|d1, . . . , dn) =
n∏

i=1

e−(di−x)2/2σ 2

√
2πσ 2

. (16)

Application of Bayes’ theorem and subsequent marginalization
with respect to σ immediately yields

p(X,Z)(x, z|d1, . . . , dn) ∝
∫

p(θ̃)l(θ̃|d1, . . . , dn) dσ

(17)

∝ tn−1[(x − d̄)/(s/n1/2)]

s/n1/2
p(z).

The right-hand side of (17) equals the PDF in (11), from
which in the same way as above the PDF (13) is derived for
the posterior p(y|d1, . . . , dn). Thus the GUM S1 PDF (13)
results from a Bayesian analysis using the parametrization
Θ̃ = (X, Z, �) and the particular improper priors p(x) ∝ 1
and p(σ) ∝ 1/σ .

While both parametrizations Θ = (Y, Z, �) and
Θ̃ = (X, Z, �) are valid, only the former allows for a
simple incorporation of available prior knowledge about the
measurand Y . On the other hand, the use of the usual improper
prior (p(x) ∝ 1) to denote ignorance in the parametrization
Θ̃ = (X, Z, �) leads to a proper density for Y for any proper
density for Z. This is not the case for the parametrization
Θ = (Y, Z, �) and the improper prior p0(y) ∝ 1.
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5. Discussion

GUM S1 and the Bayesian analysis yield the same results
when the model relation (1) is linear and the Bayesian analysis
employs the improper prior p0(y) ∝ 1. Otherwise, different
results will emerge in general. Since the PDF derived by GUM
S1 may also be derived from an application of Bayes’ theorem,
the difference between the approaches is not conceptual but is
due to different parametrizations and different priors. This type
of difference in PDFs derived under different parametrizations
with improper priors has been observed in other applications
and has been referred to as the marginalization paradox [8, 9].
Whether this truly represents a paradox or not is a matter of
opinion with [9] representing the view that it does not.

The question of how to express ignorance of the
measurand is clearly important. In Bayesian analysis, when
no prior knowledge about a parameter is available, non-
informative (usually, improper) priors are utilized. However,
the construction of such priors is not straightforward, there
is no unique density that represents ignorance. For a
sampling distribution of the data d of the form p(d|η, υ) ∝
h[(d − η)/υ]/υ, the functionp(η, υ) ∝ 1/υ is viewed as a
standard non-informative prior [7] for the location and scale
parameters η and υ. In our data analysis problem, the pair
(y, σ ) are not location and scale parameters when the model is
non-linear, cf the likelihood (5), and it was shown above that
p(y, σ ) ∝ 1/σ may lead to an improper posterior for Y . For
the parametrization Θ̃ = (X, Z, �) on the other hand, (x, σ )

is a pair of a location and scale parameter, cf the likelihood
(16), and hence the prior p(x, z, σ ) ∝ p(z)/σ is the usual
non-informative prior and leads to a proper posterior for Y .
Note, however, that this prior expresses ignorance of X and
not of Y .

Different concepts such as probability matching priors
[10] or reference priors [11] have been proposed for assigning
non-informative priors. While the former concept attempts to
determine the prior such that the posterior will ensure exact
or approximate frequentist coverage properties of credibility
regions, the latter seeks a prior for which the gain in
information of the posterior relative to the prior is in some
sense maximized. It turns out that for the multivariate case
the reference prior may depend on the final single parameter
of interest; i.e. different multivariate reference priors on
(η1, . . . , ηp) may be obtained depending on which ηi is the
parameter of interest and which are the nuisance parameters.
It may be interesting to see what an approximate probability
matching prior or a reference prior would look like for this
example, but this is beyond the scope of this paper.

In the case of informative prior knowledge on the
measurand Y the parametrization Θ = (Y, Z, �) is to be
preferred, and the PDF (7)—with p0(y) expressing the prior
knowledge about the measurand—should be used instead of
GUM S1.

The modification of GUM S1 proposed in [5] to account
for prior knowledge about the measurand may also be
considered. The same results would be obtained when the
model relation (1) is linear, and different results otherwise.
However, as mentioned in the introduction, the approach [5]

aims at merging (independent) information. It should be
used when GUM S1 is applied for fully specified PDFs on
the input quantities rather than for the task of data analysis
considered here. The reason is that in the former case
redundant information on the measurand (i.e. a prior PDF
and the PDF derived by GUM S1) is available and needs to
be merged. In the case of data analysis considered in this
paper, such merging would be of an informative prior on
the measurand and a Bayesian posterior obtained in using
the particular improper prior underlying GUM S1. It is not
sensible to perform a Bayesian analysis with a non-informative
prior when in fact information is available. Therefore, a
Bayesian analysis using Bayes’ theorem together with the prior
information on the measurand is to be preferred in such a case.
But note that when in addition also prior knowledge on X

would be available (i.e. X would be a mixture of a ‘type A and
type B variable’), some redundant information would be given
and should be merged. But this situation is not considered in
GUM S1.

6. Example

Consider the example

Y = f (X, Z) = X/Z, (18)

X = g(Y, Z) = Y · Z. (19)

The PDF on Z is assumed to be

p(z) =
{

1 z ∈ (0, 1],

0 otherwise.
(20)

In this case, GUM S1 and the Bayesian analysis yield

p(y) =
∫ 1

0
z
tn−1[(y · z − d̄)/(s/n1/2)]

s/n1/2
dz, (21)

and

p(y|d1, . . . , dn)

∝ p0(y)

∫ 1

0

tn−1[(y · z) − d̄)/(s/n1/2)]

s/n1/2
dz, (22)

respectively.
Consider first the case when no prior knowledge on the

measurand is available. Figure 1 shows the resulting GUM S1
PDF (21) for n = 8 observations d1, . . . , d8 on X with mean
d̄ = 1 and standard deviation s = 1. As we noted previously,
the density p(y) (21) integrates to one. However, the first and
all higher moments do not exist for this PDF, and hence the
expectation as the usual estimate cannot be determined here.
Nonetheless, credibility intervals on the measurand could be
established. The PDF (22) obtained by the Bayesian approach
when using the prior p0(y) ∝ 1 on the other hand is improper,
since∫ ∞

−∞

(∫ 1

0

tn−1[(y · z) − d̄)/(s/n1/2)]

s/n1/2
dz

)
dy

=
∫ 1

0

1

z
dz = ∞, (23)
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Figure 1. Results for the considered example: GUM S1 PDF (solid
line) and improper Bayesian posterior (dashed line, large tail) in the
absence of prior knowledge on the measurand. In addition, the
Bayesian posterior is shown (dashed line, small tail) when prior
knowledge on the measurand is utilized.

and yields no solution here. A common substitute prior density
for p0(y) ∝ 1 is a Gaussian density with a large variance. We
have examined the behaviour of the Bayesian solution under
such an alternative prior for Y . It produces a proper posterior
density for Y , one which has all moments, but the moments
and highest probability density intervals are quite sensitive to
the size of the prior variance. Thus it is not a satisfactory
alternative prior density in this problem. There is one feature
of the densities of Y that is rather robust to the choice of prior,
however, and that is the mode. We were able to show that
the posterior mode of Y under the Gaussian prior becomes
the posterior mode under the improper prior as the variance
approaches infinity. Further, figure 1 shows that the modes of
the GUM S1 PDF and the improper Bayes posterior are quite
close.

In this particular example, the lack of moments for the
GUM S1 density of Y and the impropriety of the Bayesian
posterior density are due to the fact that the density p(z) allows
values arbitrarily close to zero. For the Bayesian solution in
particular, note that expression (8) results for this example with
a density p(z) in a proper posterior density for Y if∫

1

|z|p(z) dz < ∞. (24)

Thus, more information on Z (whose value should be non-
zero) could imply a sufficient decay of the PDF which would
then produce a proper posterior density for Y . In this sense,
the problems of the posterior density of Y are due not just to
having no information about Y itself but in addition, also to
having only ‘vague’ (insufficient) information on Z.

To illustrate how informative prior information about the
measurand affects the results, assume next that the Gaussian
density with mean equal to 4 and variance equal to 1 describes
the available prior knowledge about Y . When this particular
density is employed in (22), a proper posterior is obtained.
This is illustrated by figure 1. The resulting estimate and its

associated standard uncertainty are obtained as y = 3.7 and
u(y) = 1.0. Note that all higher moments of this PDF exist.

7. Conclusions

Application of GUM S1 to the analysis of data can be viewed
as a Bayesian analysis using a particular improper prior.
Differences in the resulting densities of the GUM S1 and a
Bayesian analysis starting from an observation equation have
been identified as due to the different parametrizations and
priors underlying both analyses. When the model between the
measurand and the input quantities is linear and the Bayesian
analysis employs a constant improper prior on the measurand,
the two methods yield the same results. Otherwise, different
results are obtained in general.

For a non-linear model, a constant improper prior on
the measurand is not expected to be uniformly appropriate
for a Bayesian analysis in the absence of prior knowledge.
Other non-informative priors such as reference priors may be
considered. When prior knowledge about the measurand is
available, metrologists are encouraged to express it in a proper
prior density on the measurand which can then be included in
the Bayesian analysis.

The relatively simple data analysis problem considered
here illustrates an important fact applicable to many more
complex cases. This is that examination and careful
consideration of all of the PDFs used in either approach are
extremely important.

Appendix

We briefly outline the derivation of equation (7). By inserting
(5) and (6) into (4) we obtain

p(y, z, σ |d1, . . . , dn)

∝ p0(y)p(z)/σ ·
n∏

i=1

e−(di−g(y,z))2/2σ 2

√
2πσ 2

(A1)

∝ p0(y)p(z)
1

σn+1
e−[n(g(y,z)−d̄)2+(n−1)s2]/2σ 2

,

where d̄ and s denote mean and standard deviation of the
observations d1, . . . , dn. Marginalization of (A1) with respect
to σ yields

p(y, z|d1, . . . , dn)

∝ p0(y)p(z)

∫ ∞

0

1

σn+1
e−[n(g(y,z)−d̄)2+(n−1)s2]/2σ 2

dσ

∝ p0(y)p(z)

(
1 +

[(g(y, z)) − d̄)/(s/n1/2)]2

n − 1

)−n/2

∝ p0(y)p(z)
tn−1[(g(y, z) − d̄)/(s/n1/2)]

s/n1/2
. (A2)

By finally marginalizing (A2) with respect to z (7) is obtained.

Metrologia, 46 (2009) 261–266 265



C Elster and B Toman

References

[1] BIPM, IEC, IFCC, ISO, IUPAC, IUPAP and OIML 1995
Guide to the Expression of Uncertainty in Measurement
(Geneva, Switzerland: International Organization for
Standardization) ISBN 92-67-10188-9

[2] BIPM, IEC, IFCC, ILAC, ISO, IUPAC, IUPAP and OIML
2008 Evaluation of Measurement Data—Supplement 1 to
the ‘Guide to the Expression of Uncertainty in
Measurement’—Propagation of distributions using a
Monte Carlo method Joint Committee for Guides in
Metrology, Bureau International des Poids et Mesures,
JCGM 101:2008
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