
--

NISI Special Publication 500-222

--

Glossary of Software
Reuse Terms '''"::....

Susan Katz

Christopher Dabrowski
Kathryn Miles
Margaret Law

Computer Systems Laboratory
National Institute of Standards and Technology
Gaithersburg, MD 20899-0001

December 1994

<f!o"'

i
~"'T OFCO.,,+~

~~ ~
If ~. .
c: ~
~ ~
~ ff

() ...~
"~<4rES of

U.S. Department of Commerce
Ronald H. Brown, Secretary

Thchnology Administration
Mary L. Good, Under Secretary for Technology

National Institute of Standards and Thchnology
Arati Prabhakar, Dire~tor

~

r'J1e National Institute of Standards and Technology was established in 1988 by Congress to "assist industry
.6.. i~ the developmentof technology . . . neededto improveproductquality,to modernizemanufacturingprocesses,
to ensure product reliability . . . and to facilitate rapid commercialization . . . of products based on new scientific
discoveries.' ,

NIST, originally founded as the National Bureau of Standards in 1901, works to strengthen U.S. industry's
competitiveness; advance science and engineering; and improvepublic health, safety, and the environment. One of the
agency's basic functions is to develop, maintain, and retain custody of the national standards of measurement, and
provide the means and methods for comparing standards used in science, engineering, manufacturing, commerce,
industry, and education with the standards adopted or recognized by the Federal Government.

As an agency of the U.S. Commerce Department's TechnologyAdministration, NIST conducts basic and applied
research in the physical sciences and engineering, and developsmeasurement techniques, test methods, standards, and
related services. The Institute does generic and precompetitive work on new and advanced technologies. NIST's
research facilities are located at Gaithersburg, MD 20899, and at Boulder, CO 80303. Major technical operating units
and their principal activities are listed below. For more information contact the Public Inquiries Desk, 301-975-3058.

Office of the Director
. Advanced Technology Program. Quality Programs. International and Academic Affairs

Technology Services. Manufacturing Extension Partnership· Standards Services
. TechnologyCommercialization·Measurement Services

. TechnologyEvaluation and Assessment. Information Services

Manufacturing Engineering Laboratory
Precision Engineering. Automated Production Technology. Intelligent Systems. Manufacturing Systems Integration. Fabrication Technology

Materials Science and Engineering
Laboratory. Intelligent Processing of Materials· Ceramics· Materials Reliability.

Polymers· Metallurgy· Reactor Radiation

Electronics and Electrical Engineering
Laboratory. Microelectronics. Law Enforcement Standards
. Electricity

Semiconductor Electronics
. Electromagnetic Fields.. Electromagnetic Technology.. Optoelectronics.

Chemical Science and Technology
Laboratory· Biotechnology· Chemical Kinetics and Thermodynamics· Analytical Chemical Research. Process Measurements2· Surface and Microanalysis Science. Thermophysics2

Building and Fire Research Laboratory. Structures. BuildingMaterials. BuildingEnvironment· Fire Safety. Fire Science

Computer Systems Laboratory. Office of Enterprise Integration. Information Systems Engineering. Systems and Software Technology· Computer Security· Systems and Network Architecture· Advanced Systems
Physics Laboratory. Electron and Optical Physics· Atomic Physics· Molecular Physics. Radiometric Physics· Quantum Metrology. Ionizing Radiation·Time and Frequency.. Quantum PhysicsI

Computing and Applied Mathematics
Laboratory· Applied and Computational Mathematics2· Statistical Engineerini· Scientific Computing Environments2

Computer Services
Computer Systems and Communications2· Information Systems

I At Boulder, CO 80303.

2Some elements at Boulder, CO 80303.

PREFACE

The Computer Systems Laboratory (CSL) wi thin the National Institute
of Standards and Technology (NIST) has a mission under Public Law
89-306 (Brooks Act) to promote the "economic and effici~nt
purchase, lease, maintenance, operation, and utilization of
automatic data processing equipment by federal departments and
agencies." When a potentiallyvaluable innovationin information
technology first appears, CSL may be involved in research and
evaluation. Later on, CSL may serve government interests by
participating in standardization of the results of such research,
in cooperation with voluntary industry standards bodies. Finally,
CSL helps federalagenciesmake practical use of existing standards
and technology through consulting services and the development of
supporting guidelines and software.

If certain commercial software products and companies are
identified in this report for purposes of specific illustration,
such identification does not imply recommendation or endorsement by
the National Institute of Standards and Technology, nor does it
imply that the products identified are necessarily the best
available for the purpose.

iii

- -----

'.:..

Reports on Computer Systems Technology

The National Institute of Standards and Technology (NIST) has a unique responsibility for computer
systems technology within the Federal government. NISI's Computer Systems Laboratory (CSL) devel-
ops standards and guidelines, provides technical assistance, and conducts research for computers and
related telecommunications systems to achieve more effective utilization of Federal information technol-
ogy resources. CSL's responsibilities include development of technical, management, physical, and ad-
ministrative standards and guidelines for the cost-effective security and privacy of sensitive unclassified
information processed in Federal computers. CSL assists agencies in developing security plans and in
improving computer security awareness training. This Special Publication 500 series reports CSL re-
search and guidelines to Federal agencies as well as to organizations in industry, government, and
academia.

_. National Institute of Standards and Technology Special Publication 500-222
Natl. Inst. Stand. Technol. Spec. Publ. 500-222, 32 pages (Dec. 1994)

CODEN:NSPUE2

u.S. GOVERNMENT PRINTING OFFICE
WASHINGTON: 1994

For sale by the Superintendent of Documents, U.S. Government PrintingOffice, Washington, DC 20402

ABSTRACT

One method proposed for increasing the efficiency of software
production in the development of large, reliable sQftware
applications is the systematic reuse of existing software products.
Effective software reuse will require new techniques to supplement
traditional software engineering practices. Preliminary research
has already produced new methods and reports. As a result, new
terminology has emerged. This report provides a baseline set of
recommended definitions for terms commonly used in the software
reuse community. The glossary will be expanded as further research
results become available and are evaluated for use in software
reuse programs.

iv

ACKNOWLEDGMENTS

The authors would like to acknowledge the contributions of Carmelo
Montanez-Rivera and Rebecca Segal of NIST in doing early work in
developing this glossary. Dr. C. Ronald Green and the CRWG R~~se
Committee, Linda Brown, Stan Levine, Doug Rosson, Mason Myers, 'and
members of the MIWG/RAAT/lRAG committee reviewed versions of this
paper and provided valuable advice. We would also like to thank
Thomasin Kirkendall, Dolores Wallace, Jay Watkins, Elwood
Schneider, Arnold Johnson and Dr. Selden Stewart of NIST, as well
as Spencer Peterson, Dr. Hasan Sayani, and David Wheeler. We would
also like to thank Jeni Lindeman, Peggy Himes, and Dorothy Snyder
for proofreading this document.

v
~

.-
1. :IIITRODUCT:IO)f

One method proposed for increasing the efficiency of software
production in the development of large, reliable software
applications is the systematic reuse of existing software proq~cts.
Successful software reuse will require techniques to supplement
traditional software engineering practices. Research has already
produced new methods, a growing body of technical literature, and
a number of software systems developed through reuse. As a result,
new terminology has emerged. The glossary provided in this report
will serve as a baseline set of recommended definitions for use by
the software reuse community.

1.1 Background

In 1992, the Ballistic Missile Defense Organization (BMDO)
established a Manufacturing Operations Development and :Integration
Laboratory (MODIL) for software producibility at NIST to transition
emerging technology from the research community to government and
industry. The purpose of the MODIL was to promote software
producibility through (1) integration and extension of new methods
and techniques into operational products and (2) the transfer of
these products from the laboratory environment to the field.
Earlier versions of this report, under the BMDO project, were
produ~ed from January, 1993, through November, 1993.

In 1994, the Department of Defense (DoD)' Software Reuse
Management :Issues Working Group (MIWG), the Special :Interest Group
- Ada (SIGAda) Reuse Working Group Reuse Acquisition Action Team
(RAAT), and the Council of Defense and Space :Industry Associations
(CODSIA) :Industry Reuse Advisory Group (IRAG) established a working
group to address adoption of the glossary as a baseline document.
Funding support was provided by the Defense :InformationServices
Agency/Center for :InformationManagement (DISA/CIM). A version of
this report, dated October, 1994, was produced for use by the
MIWG/RAAT/IRAG.

1.2 Purpose

The purpose of this report is to present a baseline glossary
of software reuse terms. The report also outlines plans for
maturing the glossary. The purpose of developing and maintaining
the glossary is to promote a consistent understanding of software
reuse terms used in DoD and industry and to provide common
definitions for use in the software reuse community.

1.3 Audience

The intended audience of this report is:

The DoD software reuse community and other government
agencies, industry,and academia involved in software reuse.

1
~

Personnel practicing reuse (e.g., software engineers).
Personnel engaged in management and planning.
The acquisition community.

"/\

1.4 Bow the Glossary Was Developed

DoD standards and program documents provided the background
information base for developing the initial glossary. Recent
reports from industry and academia were reviewed for additional

. terminology and usages. After this initial survey work was
completed, the set of multiple definitions for each term was
reviewed, and a recommended definition was either chosen or
developed from the information obtained. Similar terms were
compared. Related terms were cross-referenced. Where there were
multiple terms for the same idea, the best term was chosen as the
recommended term on the basis of the literature survey. The
alternate terms are still captured in the glossary, to reflect
real-world usage, but they refer the reader back to the definition
of the preferred term.

2. USING TBE GLOSSARY

The glossary is intended as a reference dictionary for anyone
involved in software reuse. For any subject area, it provides a
number of terms which are commonly in use, rather than just the
recommended terms. Terms which may be synonYms of other terms are
listed in their own right, so that they may be looked up
alphabetically by users who encounter them in reuse literature or
discussions. In these cases, the definition of the synonYm will
refer the reader to the recommended term where the actual
definition is found.

Bighliqhted terms are defined elsewhere in the glossary.
Highlighted/italicized words are defined in Appendix A - Related
SoftwareEngineeringTerms. Where applicable,the glossaryrefers
to related terms so that the reader can gain a broader
understanding of the usage of the terminology (e.g., "See also. ..",
"Compare. ..") . Where it was found in the reuse literature that
several different terms were being used to mean the same thing, the
glossary defines the recommended term and provides references to
the recommended term from the alternate terms.

The reference provided for each definition represents the main
source for that definition. The references are intended to
acknowledge contribution and not necessarily to indicate an exact
quote. Where no reference is attributed, the definition was
synthesized from a number of sources and/or from a broad
understanding of the topic area.

Generally, the glossary provides a single recommended
definitionfor each term. Occasionally,alternatedefinitionsare
providedwhen terms are used in differentcontexts. In the future,

2

"

further alternative definitions may be added. A discussion of
plans for maturing the glossary is provided in section 3.

certain terms may have different meanings in different
disciplines, such as in general software engineering, in d~ain
analysis, or in reuse library systems. The glossary specifies"the
disciplinecontextby the phrase "As used in . . . ," for example,
"As used in DomainAnalysis,. . . ."

For some terms, the definitions are followed by a paragraph
marked "Discussion," explaining how the term is related to software
reuse or to other terms in the glossary.

The glossary does not provide definitions for products or
methods developed either commercially or in research institutions.

Appendix A contains definitions for related software
engineering terms. It is provided as a quick reference for terms
which do not have a definition specific to the context of reuse but
are used in definitions found in the main glossary.

3. PLANS POR MATURING THE GLOSSARY

Definitions will continue to be obtained from an ongoing
survey of pertinent reuse literature and electronic access systems.
As software reuse evolves and expands, the glossary will grow. It
is important that the accumulation and evolution of terms occur in
a consistent and controlled manner. To this end, the following
guidelines for maturing the glossary are proposed:

o New definitions will be added and existing definitions may be
refined. Changes will be based on input from reviewers and on
new literature that reflects experience.with software reuse.

o The number of sources from which terms are taken will be
expanded. Sources especially relevant to DoD will receive
primary consideration.

o DoD directives, military standards, and documents will be used
for guidance on selecting the definitions recommended for
usage.

cross-referencing will be
relationships between terms.

o Where it may be important, the origin and background of a term
may be provided to give the reader greater insight into the
usage of the term.

expanded, emphasizing theo

~ 3

GLOSSARY

Adaptability: .

The ease with which software can be modified to meet new
Requirements. [DODSTR,p47]

Adaptation:
The process of modifying a Software system or Asset to perform
its function in a different manner or on different data than
was originally intended. [COHEN92,p14]

Architecture:
1. Organizational structure of a system or Asset. [ANSI90,
p10]

2. The structure of components, their interrelationships, and
the principles and guidelines governing their Design and
evolution over time.

Discussion:
It is recommended that the more specific terms (Domain
ArChitecture,SoftwaresystemDesign) be used. There are also
other types of Architectures, such as strategic ArChitectures,
enterprise Architectures, standards ArChitectures, logical and
physical ArChitectures, and hardware and software
Architectures. Each has unique characteristics and may have
unique Applications.

Asset:
Any product of the software life cycle that can potentially be
Reused. This includes: Domain Model, Domain Architecture,
Requirements, Design, code, Databases, Database Schemas,
documentation, user manuals, test suites, etc. [DODV&S]

Discussion:
In Reuse, an Asset may be a distinct piece of information, or
describe or perform a distinct function, or be a Feature of a
Software system. An Asset is a part which is marked by its
ability to be integrated into different wholes (e.g., software
systems, Domain Models, Designs, etc.). Each of these wholes
may, in turn, be considered an Asset. The term component is
a generic Software Engineering term that is often used as a
synonYm for Asset.

Compare: Reusable Software Asset

Asset certification:
1. The process of assessing that an Asset correctly performs
its stated function(s), adheres to quality and Reuse
standards, and, possibly, is formally proven correct.
[STARS1,p51]

4

2. Alternatively, the process of confirming 'that the
information about an Asset, as given by the Reuse Library, is
correct (including known errors).

Discussion:
To become part of a Reuse Library,
Cataloged. Some Reuse Libraries inay
certification.

an Asset, mU$:t be
also require Asset

Asset Evaluation:
The process of determining whether a particular Asset fits
Requirements and Constraints of a particular Software system
(as documented in its Architecture, or in its Domain Model).
[STARS1,p51]

Discussion:
Asset Evaluation may occur when an Asset is about to be
Reused, as opposed to Asset certification, which occurs when
the Asset is entered into the Reuse Library. Evaluation may
also occur when a determination is made by a Reuse Library
that an Asset fits a Domain Model or generic Architecture.

Asset Library:
Synonym for Reuse Library.

cataloq:
The index of information about Assets that is maintained for

a Reuse Librar,'s contents. [RIG93,p2]

cataloqinq:
Placing information about an Asset into a software Reuse
Library. The Asset plus its cataloq information become a
Reusable Software Asset. [DODSTR,pA-3]

certification:
See Asset certification

Cohesion:
1. The manner and degree to which the tasks performed by a
single Asset are related to one another. [ANSI90,p11]

2. The degree to which an Asset's' structure is unified in
support of its function. [DODSTR,p47]

3. The degree of functional relatedness of processing elements
within a single Module. [YOURDON,p407]

Discussion:
A high level of Cohesion in an Asset may aid in its
Reusability.

Compare: Couplinq

5
~

Cohesiveness:
See Cohesion

Commonality: .,

1. In Domain Analysis, an Asset or a distinct part, function,
or Feature that is characteristic of the class of Systems
within a Domain and that is represented in a Domain Model or
Domain Architecture. .

2. A measure of how common the problem (or Application) is
that is being solved with a given systemj one of the factors
in program generality (and in Reusability). [YOURDON,p407]

Compare: Difference

Component:
One of the parts, either hardware or software, that make up a
system. [ANSI90,p18] Often used as a synonym for Asset.

constraint:
1. As used in software Reuse and Reuse Libraries, a rule or
restriction governing the Reuse of Assets, particularly as
relates to Environment.

2. As used in Software Bngineering, a functional or
operational Requirement for a Software system that limits the
possible solution space. [STARS1,p51]

Context:
1. The circumstances, situation,
particular Software system
[KANG90,p2] [DODINIT,pBl] [PETER91]

or Environment in which a
or a Domain exists.

2. The academic discipline in which a particular term has
meaning (e.g ., the disciplines of Software Bngineering, Domain
Analysis) .

Context Analysis:
The process of determining the scope and boundary of a Domain,
as described in the Feature-Oriented Domain Analysis (FODA)
Method. [KANG90] S~e Domain Definition.

Discussion:

In the Domain Engineering process, Context Analysis oocupies
the same place as Domain Definition, except that in FODA,
Context Analysis emphasizes analysis of interaction between
Systems in a Domain and the domain environment.

Coupling:

1. The degree of data or control connectivity between
different Assets of a SoftwareSystem. [DODSTR,p48]

6

2. The manner and degree of interdependence between Assets.
[ANSI90,p22)

3. A measure of the strength of interconnection between one
Asset and another. [YOURDON,p409) ,~

,,"-

Discussion:
A high degree of coupling between Assets in a Software system
may limit their Reusability.

Coupling makes modification to the system complex and
difficult. Because Coupled Assets cannot be separated from
each other easily and used alone, the scope of Reuse is
narrowed.

Compare: Cohesion

Decoupling:
The process of making Assets more independent of one another
to decrease the impact of changes to, and errors in, the
individual Assets. [ANSI90,p25)

Compare: coupling

Difference:
In Domain Analysis, an Asset or a distinct part, function, or
Feature that distinguishes systems within a domain from each
other and that is represented in a Domain Model or Domain
Architecture.

Compare: Commonality

Domain:
. A distinct functionalarea that can be supportedby a class of

Software systems with similar Requirements and capabilities.
A Domain may exist before there are Software systems to
support it. [PRIET91,p14), [DODV&S,p2)

Domain Analysis (DA):
1. The analysis of systems within a Domain to discover
Commonalitiesand Differencesamong them. [DODV&S,p2)

2. The process by which information used in developing
Software systems is identified,captured, and organized so
that it can be Reused to create new systems within a Domain
[PRIET90).

3. The result of the process in (1) and (2).

Discussion:
Domain Analysis can be viewed as systems analysis applied
across a class of Softwaresystems in a Domain. [PREIT91,p14)

7
~

The principal products of Domain Analysis are the Domain
KOdel, and in 'some Domain Analysis methods (but not all), the
Domain Architecture.

/11.

Domain Analyst:
[DABR92,p15]

A person who performs Domain Analysis.

Domain Architecture:
A generic, organizational structure or Design for Software
systems in a Domain. The Domain Architecture contains the
Designs that are intended to satisfy Requiremen~s specified in
the Domain Kodel. A Domain Architecture (1) can be adapted to
create Designs for Software systems within a Domain and (2)
provides a framework for configuring Assets within individual
Software Systems. The Domain Architecture documents Design,
whereas the Domain Kodel documents Requiremen~s.

Domain Description:
See Domain Definition

Domain Definition:
1. The process of determining the scope and boundaries of a
Domain.

2. The result of the process in (1).

Discussion:

The process establishes what major functions and capabilities
are within the Domain, what functions and capabilities are
excluded from the Domain, and what interactions exist with
external Domains. In the Domain Enqineerinq process, a Domain
Definition is established prior to beginning the development
of the Domain Kodel.

Domain Enqineerinq:
A Reuse-based approach to defining the scope (i.e., Domain
Definition), specifying the structure (i.e., Domain
Architecture), and building the Assets (e.g., Requiremen~s,
Designs, software code, documentation) fora class of systems,
subsystems, or Applica~ions. Domain Enqineerinq can include
the following activities: Domain Definition, Domain Analysis,
developing the Domain Architecture, and Domain Implementation.

Domain Expert:
Individual who is intimately familiar with
provide detailed information to the
[DABR92,P16]

the Domain and can
Domain Analysts.

Domain Implementation:
The process of creating adaptable Assets that can be Reused in
the development of Software systems within a Domain. Domain
Implementation may also include the specification of a

8

--

software development process that describes how software
systems in the Domain are developedthrough Reuse of Assets.

Domain Manager:
Individual
definition,
the Domain.

or organization responsible for managing the
use, evaluation,and evolution of Assets wi~in
[DABR92,p15]

Domain Model:
A product of Domain Analysis which provides a representation
of the Requirements of the Domain. The Domain Model
identifies and describes the structure of data, flow of
information, functions, constraints, and controls within the
Domain that are included in software systems in the Domain.
The Domain Model describes Commonalities and variabilities
among Requirements for software systems in the Domain.
[DODV&S,p4]

Discussion:
The Domain Model documents Requirements, whereas the Domain
Architecture documents Design.

Domain scoping:
See Domain Definition

Environment:
The circumstances or conditions in which a Software system
executes. This includes interfaces with an operating system,
interfaces with other Systems, dependency on Database
management systems, hardware or network constraints, or any
factor that affects the functioning of the Software system.

Extraction:
The retrieval of Assets from a Reuse Library. [RIG93,p2]

Faceted Classification:
A method derived from the field of library science which can
be used to provide multiple access routes to Reusable Software
Assets in a Reuse Library. [PRIET90], [DODSTR,pA-3]

Discussion:
Each facet in the scheme represents a particular aspect of a
software Asset such as its function, its operating
environment, or other significant attributes. Each user of a
Reuse Library may use different facets, or key information, in
searching for relevant Assets.

Feature:
An attribute or characteristic of a system that is meaningful
to, or directly affects, the user, developer, or other entity
that interacts with a system.

9
~

Discussion:
Feature concepts are defined differently by several Domain
Analysismethods,including[KANG90],[MOORE91],and [STARS1].

.\

Horizontal Domain:
A Domain that provides information or services to more than
one Domain. Examples of Horizontal Domains include
communications, graphical user interfaces, and Dat;abases.

Compare: vertical Domain

Horizontal Reuse:
Reuse of Assets in more than one vertical Domain.

Compare: vertical Reuse

Interoperability:
See Reuse Library Interoperability

Library:
See Reuse Library

Library Metric:
A standard
comparisons
operations.

of measure that
and evaluations

[RIG93,p3]

can support quantitative
related to Reuse Library

See also: Metric

Library Mechanism:
See Reuse Library system

Metric:
1. A quantitative measure of the degree to which a system,
Asset, or process possesses a given attribute. [ANSI90,p47]

2. The definition, algorithm, or mathematical function used to
make a quantitative assessment of a software product or
process. [PENG93]

Discussion:
Metrics are used in making quantitative assessments of such
topics as the amount of Reuse, the reliability of Assets, the
effort associated with reusing Assets or other characteristics
of a Domain or Software system.

opportunistic Reuse:
The ad hoc Reuse of Assets in the development of Software
systems using a software development process that has not been
altered to accommodate systematic Reuse. In opportunistic
Reuse, the developer determines where Reuse can be applied to
develop a Software system without the organized use of Domain

10

- -- --- - - -- - - ---- - --- --- --- - ------

Bngineering products during successive stages of a Sofbware
Engineering process.

Compare: systematic Reuse

Planne4 Reuse:
See systematic Reuse

.,
..:\

Replication:
The repetition or duplication of an Asset within a Software
system.

Reusability:
1. The degree to which an Asset
Software system, or in building
no A4aptation. [PETER91]

can be used in more than one
other Assets, with little or

2. In a Reuse Library, the characteristics of an RSA that make
it easy to use in different Contexts. [RIG93,p3]

Reusable Asset:
See Reusable Software Asset (RSA)

Reusable Component:
See Reusable Software Asset (RSA)

Reusable software:
Software Designed and implemented for the specific purpose of
being Reused. [PETER91] Reusable Software is a broad term
applying to Assets, Applications, or Software systems. The
recommended term is Reusable Software Asset (RSA).

Reusable Software Asset (RSA):
, An Asset that has been cataloguedand is storedin a Reuse

Library. [RIG93,p1]

See also Asset and Asset certification

Discussion:
The term Reusable Software Asset connotes more value added
than an Asset. This value lies in the meta-information
regarding the Asset in its catalog entry, and in the Reuse
Library or Reuse Library system in.which it is contained.
These additions make it easier to locate appropriate Assets
which have been evaluated for Reuse and to determine
information about their suitability for Reuse in a particular
context. In contrast, an Asset is a software product which
may or may not be locatable and/or reusable, and an Asset may
or may not have to be certified, depending on the Requirements
of the Reuse Library. An Asset may be stored in a Repository.

.11~

Reusable software Component (RSC):
Synonym for Reusable Software Asset (RSA).

Reusable Software Library:
See Reuse Library

,\

Reuse:
1. To use again. [Webster]

2. The process of implementing or updating Software Systems
using existing software Assets. [DODSTR,p2] [COHEN92,p5]
[KANG90,p3] [DODINIT,pB3] [PETER91]

Discussion:
Reuse is the application of Reusable Software Assets, with or
without adaptation, to more than one Software system. Reuse
may occur within a Software System, across similar Software
systems, or in widely different Software Systems. [DODV&S,p2]

Reuse-Based Development:
The use of a disciplined, systematic, quantifiable approach to
the development, operation, and maintenance of software (where
Reuse is a primary consideration in the approach). [PETER91]

Discussion:
Reuse-Based Development uses Domain Engineering products
during systems/Software Engineering.

Reuse Library:
A controlled collection of Reusable Software Assets, together
with the procedures and support functions required to provide
the RSAs for Reuse. The procedures and support functions may
be automated via a Reuse Library system. If this is the case,
then the Reuse Library contains both the RSAs and the Reuse
Library System. [RIG93,p4]

Compare: Software Repository

Reuse Library Interoperability:
The ability of two or more distinct, heterogeneous Software
Reuse Libraries to dynamically provide access to the other's
Assets, Asset descriptions, and other available information.
[STARS1], [DODV&S]. .

Reuse Library system:
A Software system that automates the procedures and support
functions of a Reuse Library. A Reuse Library system includes
the storage capabilities of a Software Repository, but it is
more than a storage facility. It provides capabilities that
assist the user in accessing the contents of what is stored

12

(e . g ., brows ing, hypertext, etc.). Reusable Assets are stored
in a Reuse Library which is supported by a Reuse Library
system. [BRAUN92,p8]

Reverse Enqineerinq: ".

The process of analyzing an existing Software system to derive
its Design, Requirement;s, and other Soft:ware Engineering
products.

salvaqe:
The process of finding and Reengineering an existing Component
so that it may potentially be Reused in subsequent
Applicat;ions, developments, or maintenance. [GPALS92,p21]

Software Architecture:
See Architecture

Software Application:
See Applicat;ion

SoftwaJ;'e Asset:
See Asset

Softwa~e Component:
See component

Software Enqineerinq Environment:
The supporting hardware, software, and firmware used in the
production of software throughout its life cycle. Typical
elements include computer equipment, compilers, assemblers,
operating systems, debuggers, simulators, emulators, test
tools r documentation tools, Requirement;s, Designs, CASE tools,
'and Dat;abase management systems. [ANSI90~p67]

Discussion:
A Reuse Library system can be among the tools in a Software
Enqineerinq Environment. other tools, such as CASE tools, can
enhance Reuse and improve the quality of information about
Assets in a cataloq.

software Repository:
A permanent, archival storage place for software and related
documentation. [ANSI90,p68] [PETER91]

Discussion:
A Software Repository is simply a storage mechanism for
Assets, as opposed to a Reuse Library system, which provides
both storage and user-friendly mechanisms to find and access
stored RSAs.

Compare: Reuse Library

~ 13

Software Reuse:
See Reuse

Software Reuse Library:
See Reuse Library

software system:
An organized collection of computer programs, procedures,
associated documentation, and data (i.e., Assets) pertaining
to the operation of a computer system that accomplish a
specific functionor set of functions.[ANSI90,p66,74]

,:,

Subdomain:
A Domain that can be viewed as part of a larger Domain
(context-dependent).

Support Domain:
Synonym for Horizontal Domain.

system:
1. A collection of Assets organized to accomplish a specific
function or set of functions. [ANSI90, p73]

2. A set of interrelatedparts, which may include people,
methods, hardware, software, and/or firmware, that function
together to achieve an overallpurpose.

Discussion:
Generally more inclusive than a Software system, although the
terms are sometimes used synonymously.

systematic Reuse:
Reuse of Assets in which Software systems are developed using
a Software Engineering process that is specifically structured
for Reuse. systematic Reuse means that software development
is guided by an organized use of Domain Engineering products
(including a Domain Hodel, Domain Architecture, and other
Assets) during successive stages of a Software Engineering
process.

See Domain Engineering

Compare: opportunistic Reuse

Traceability:
1. The degree to which a relationship can be established
between two or more products having a predecessor-successor or
superior-subordinate relationship to one another. [ANSI90, p78]

2. In Software Engineering, the successful cross-referencing
across a Software system's related Assets, from operational
software Modules back to their original Requirements,

14

--

including all intervening stages of development and testing,
and related documentation.

3. In Domain Enqineerinq, the characteristic of Domain odels,
Domain Architectures, Designs, and Software systems that""for
any particular Asset, identifies and documents the derivatlon
path (from the preceding phase' in the Software Engineering
process) and allocation/flowdown path (to the successive
phase) of Requirements and Constraints. [STARS1,p56]

vertical Domain:
A Domain which addresses aspects of a single function or
Application area. [BRAUN92,p8] Examples include payroll
systems, automated weapons Systems, robotic control Systems.
A vertical Domain draws on capabilities from any Horizontal
Domains that support its purpose.

Compare: HorizontalDomain

vertical Reuse:
Reuse of Assets within a vertical Domain.

Compare: HorizontalReuse

~ 15

APPDtDIX A

RBLATED SOFTWARE ENGINBERING TERMS
;,

Application:
1. Synonym for Software system.

2. A Software system that interacts directly with some non-
software system (e.g., human, robot, etc.).

Application Generator:
A type of tool that uses software Designs and/or Requirements
to generate entire software Applications automatically,
including program source code ~d program control statements.

Discussion:
An Application Generator may be one of the tools in a Software
Bnqineerinq Environment, or it may be used independently.

Compare: Source Code Generator

Code Generator:
1. A synonym for Source Code Generator.

2. In compiler technology, the back end of a compiler, which
builds object code or assembly code.

confiquration Item:
1. In DoD software development, an agg~egation of hardware or
software that satisfies a function and is designated by the
Government for separate Configuration Management. [MIL-STD-
973]

2. In DoD software development, a digital data file [MIL-HDBK-
59A] that is designated by the Government for separate
ConfigurationManagement.

3. An aggregation of hardware, software, or both, that is
designated for ConfigurationManagement and treated as a
single entity in the Configuration Management process.
[ANSI90, p20]

Confiquration Kanaqement:
In DoD software development, the discipline applying technical
and administrative direction and surveillance over the life
cycle of Configuration Items to:

a. Uniquely identify Configuration Items, including
versions and their status.

b. Identify and document the functional and physical

16

,-

characteristics of configuration Items.
c. Control changes to Configuration Items and their related

documentation.
d. Record and report information needed to manage

Configuration Items, including the approval status.,of
proposed changes and the, implementation status - 'of

approved changes.
e. Audit Configuration Items to verify conformance to

specifications.

[MILSTD-973]

Discussion:
In Software Reuse, the process of cataloging and classifying
all Assets, recording and controlling the release and change
of these assets throughout the system life cycle, recording
and reporting the status of Assets and change requests, and
verifying the completeness and correctness of Assets.

Database: .

A collection of interrelated data stored together in one or
more computerized files. [ANSI90, p25]

Discussion:
A'Database could be an Asset, the mechanism for storing a set
of related Assets, or a catalog.

Database Schema:
The information that describes the structure of the data in a
Database.

Discussion:
'The Design of a catalog or Library could contain a Database
Schema. However, the Database refers to a Database Schema
that is populated with actual instances of data. Similarly,
for a delivered Software system, the Database Schema and the
Database represent separate Assets,' and support different
types of Reuse.

Design:
1. The process of defining the Architecture,
interfaces, and other characteristics of a
compon.nt. [ANSI90, p 25)

components,
system or

2. The specification (n.) defining a solution for meeting
Requirements.

3. The process (v.) of defining a solution for meeting
Requirements.

~ 17

Extensibility:
The ease with which a system or component can be modified to
increase its storage or functional capacity. [ANSI90, p32]

.\

Functional Baseline:
1. The version of an Asset that is established after initial
completion of the definition of the software system functions
and associated data, interface characteristics, functional
characteristics for key Configuration Items, and tests
required to demonstrate achievement of each specified
characteristic. This baseline is normally controlled by the
customer; e.g., the Government. [MIL-STD-490A]

2. In Configuration Hanagement, the initial, approved
technical documentation for a Configuration Item. [ANSI90,p35]

Module:
A Component which is
Hodules include source
Design Modules.

either code or Design. Examples of
code Hodules,object code Hodules,and

portability:
The extent to which a Hodule originally developed on one
computer or operating system can be used on another computer
or operating system. [BRAUN92,p8]

Discussion:
The greater the Portability of an Asset, the greater the
potential for reuse. Therefore, Portability should be one of
the items of meta-information accompanying each Asset in a
Cataloq.

Reenqineerinq:
The process of examining, altering, and
existing Software system to reconstitute
[STARS1,p55]

re-implementing an
it in a new form.

Requirement:
1. A condition or capability needed by a user to solve a
problem or achieve an objective. [ANSI90,p62]

2. A condition or capability that must be met or possessed by
a System or system component to satisfy a contract, standard,
specification, or other formally imposed document.
[ANSI90,p62]

Discussion:
The set of all Requirements forms the basis for subsequent
development of the system or Asset. When considering an Asset
for Reuse, the cataloq information about that Asset must be
evaluated to determine whether or not the Asset meets the
Requirements of the system for which it is being considered.

18

Sof~ware Bnqineerinq:
The use of a systematic, disciplined, quantifiable approach to
the development, operation, and maintenance of software; that
is, the use of engineering principles in the development of
software. [ANSI90,p67]

,...........

Source Code Generator:
A tool that uses software Requirements and/or Designs to
automatically generate source code. An Application Generator
generates entire Applica~ions, whereas a Source Code Generator
may generate smaller pieces of source code. SynonYm for Code
Generator (however, Source Code Genera~or is the recommended
term). Compare with Application Generator.

19
:

[ANSI83]

[ANSI90]

[BAILIN1]

[BAILIN2]

[BOHL]

[BRAUN91]

[BRAUN92]

[CARPS92]

[COAD91]

[COHEN92]

[DABR92]

[DATE]

--

BIBLIOGRAPHY

An American National Standard: IEEE Standard
Glossary of Software Engineering Terminology,
ANSI/IEEE Std 729-1983, IEEE Standards Departm~nt,
445 Hoes Lane, PO Box 1331, Piscataway, NJ 08855-
1331.

Software Enaineerina Terminoloay, IEEE 610.12,
ANSI/IEEE, March 30, 1990.

Bailin, S., and J. Moore, The KAPTUR Environment:
An ODerations Concept, CTA Incorporated, Rockville,
MD.

Sidney C. Bailin, "Domain analysis with KAPTUR,"
presentation, CTA Incorporated, 1992.

Bohl, Marilyn, Information
edition, Science Research
Chicago, IL, 1971.

Processing,
Associates,

Second
Inc. ,

Christine Braun, William Hatch, Theodore
Ruegsegger, "Domain Specif ic Software
Architectures--Commandand Control," GTE Federal
Systems, Bob Balzer, Martin Feather, Neil Goldman,
Dave Wile, USC, Information Sciences Institute.

Christine L. Braun, "Software Reuse," presentation,
GTE Federal Systems Division, November 11, 1992.

Central Archive for Reusable Defense Software
(CARDS) Draft Glossary, August 6, 1992.

Peter Coad and Edward Yourdon, Obiect-oriented
Analysis (second edition), Yourdon Press, Englewood
Cliffs, NJ, 1991.

Sholom Cohen, "A Model Base for Software
Engineering, " Software Engineering Institute,
Carnegie Mellon University, July 1992.

Dabrowski, Christopher and Kirkendall, Thomasin
Preliminary ReDort on Domain Analysis Methods,
Computer Systems Laboratory, NIST, December 22,
1992.

Date, C. J., An Introduction to Database Systems,
Third Edition, Addison-Wesley Publishing Company,
1982.

. A-1

~

[DOD2167A]

[DeMarco]

[DODSTR]

Domain Analvsis Guidelines (Draft), DoD Software
Reuse Initiative, May 1992.

DoD Global Protection Aaainst Limited Strikes
Software Reuse Strateav, February 1992.

[DODINIT]

[DODV&S] DoD Software Reuse Initiative Vision and Strateav,
July 15, 1992.

[DUSINK] E.M. Dusink, J. van Katwijk, Reflections On
Reusable Software And Software Comoonents,
Technical University Delft.

[GALL83] Frank J. Galland, Dictionarv of Comoutina, ed.
1983.

[GORLEN] Keith E. Gorlen, Sanford M.
Plexico, Data Abstraction and
proarammina in c++, John Wiley &
P019 1UD, England.

Orlow, Perry S.
Obiect Oriented
Sons, West Sussex

[GPALS92] GPALS Software Reuse Execution Plan,
November 17, 1992.

DRAFT,

[HU89] David Hu, C/C++ for Exoert Svstems, Management
Information Source, Inc., Portland, OR, 1989.

[KANG90] Kyo C. Kang, .Shalom G. Cohen, James A. Hess,
William E. .Novak, A. Spencer Peterson, Feature-
Oriented Domain Anal sis FODA Feasibilit Stud,
Carnegie-Mellon University Software Engineering
Institute, November 1990.

[MIL-HDBK-59A] Military Handbook 59A, "Management of Digital Data
Files," U.S. Department of Defense, September 28,
1990.

[MIL-STD-490A] Military Standard 490A, "Specification Practices,"
U.S. Department of Defense, June 4, 1985.

[MIL-STD-973] Military Standard 973, "configuration Management,"
U.S Department of Defense, April 17, 1992.

A-2

[MOORE91]

[PENG93]

[PETER91]

[PRIET90]

[PRIET91]

[PYST88]

[RANDOM]

[RIG93]

[SPC1]

[STARS1]

[STARS2]

[ULLMAN]

"

Moore, J., and S. Bailin, "Domain Analysis:
Framework for Reuse," in Domain Analvsis and
Software Systems Modelinq by R. Prieto-Diaz and G.
Arango (eds.), IEEE Computer society Press, Los
Alamitos, CA, 1991, pp. 179-203.

'~'"

wendy W. peng and Dolores R. Wallace, Software
Error Analvsis, National Institute of Standards and
Technology Special Publication 500-209, U.S.
Department of Commerce, March 1993.

A. Spencer Peterson, Cominq to Terms with Software
Reuse Terminoloqv: A Model-Based ADDroach,
'Software Engineering Institute, Carnegie Mellon
University, ACM Software Engineering Notes, April
1991, Volume 16, Number 2, pgs. 45-51.

Prieto-Diaz, Ruben, "Domain Analysis: An
Introduction," ACM SIGSOFT Software Engineering
Notes, Vol. 15, No.2, pgs. 47-54, April, 1990.

Prieto-Diaz, Ruben, "The Reuse Library
Model," IS-40.2 03041-002, STARS Reuse
Program, New York, NY, March 1991.

Process
Library

Arthur Pyster and Bruce Barnes, The Software
Productivity Consortium Reuse Proqram, IEEE, 1988.

The Random House College Dictionarv, Revised
Edition, Random House, Inc., New York, NY, 1980.

RIG Technical Report RTR-0001 RIG Glossarv, April
1, 199j.

Reuse Driven Software Processes
Software Productivity consortium,
Version 02.00.03, November, 1993.

Guide Book,
SPC-92019-CMC,

UT40-STARS Reuse ConceDt Volume I-ConceDtual
Framework for Reuse Process. Version 1.0, Informal
Technical Data, February 14, 1992.

Reuse Librarv Process Model, STARS Program, July
26, 1991.

Ullman, Jeffrey D., PrinciDles of Database Systems,
Second Edition, Computer Science Press, Rockville,
MD, 1982.

A-3

~

[USDA93]

[WEBSTER]

[YOURDON]

An Overview of Obiect-oriented Proaramming,
Graduate School, United States Department of
Agriculture (USDA), February 1993.

~

Webster's II New Riverside Universitv Dictionarv,
The Riverside Publishing Company, Boston, MA, 1984.

Yourdon, Edward, and Constantine, Larry, Structured
Desian, Second Edition, YOURDON, Inc., New York,
NY, 1978.

A-4

.'

INDEX
Adaptability (4)
Adaptation (4), (ll), (12)
Application (6), (12), (13), (lS), (16), (19)
Application Generator (16), (19) '''"

Applications (ii), (l), (4), (S), (ll), (13), (16), (19) -

Architecture (4-9), (13), (14), (17)
Architectures (4), (lS)
Asset (4-7), (9-l3), (lS), (17-1S)
Asset certification (4), (S), (ll)
Asset Evaluation (S)
Asset Library (S)
Asset's (S)
Assets (S-lS), (17)

Catalog (S), (ll), (13), (17), (lS)
Cataloged (S)
cataloging (S), (17)
certification (4), (S), (ll)
Code Generator (16), (19)
Cohesion (S-7)
Cohesiveness (6)
Commonalities (7)
Commonality (6), (7)
Component (4), (6), (11-13), (17), (lS)
Configuration Item (16), (lS)
Configuration Management (16), (lS)
Constraint (6)
Constraints (S), (9), (lS)
Context (3), (6), (ll), (14)
Context Analysis (6)
Contexts (2), (ll)

. Coupled (7)

. Coupling (S-7)

Database (4), (9), (13), (17)
Database Schema (17)
Database Schemas (4)
Databases (4), (lO)
Decoupling (7)
Design (4), (S), (9), (13), (17), (lS)
Designed (ll)
Designs (4), (S), (13), (lS), (16), (19)
Difference (6), (7)
Differences (7)
Domain (3-l0), (12), (14), (lS)
Domain Analysis (3), (6-l0)
Domain Analyst (S)
Domain Analysts (S)

B-1

~

Domain Architecture (4), (6-9), (14)
Domain Definition (6), (8), (9)
Domain Engineering (6), (8), (11), (12), (14), (15)
Domain Expert (8)
Domain Implementation (8)
Domain Manager (9)
Domain Model (4-9), (14)
Domain Models (4)
Domain Scoping (9)
Domains (8), (10), (15)

Environment (1), (6), (9), (13), (16)
Extensibility (18)
Extraction (9)

Faceted Classification (9)
Feature (4), (6), (7), (9), (10)
Functional Baseline (18)

Horizontal Reuse (10), (15)

Interoperability (10), (12)

Libraries (5), (6), (12)
Library (3), (5), (9-14), (17)
Library Mechanism (10)
Library Metric (10)
Library's (5)

Metric (10)
Module (5), (18)
Modules (14), (18)

Opportunistic Reuse (10), (14)

Planned Reuse (11)
Portability (18)

Reengineering (13), (18)
Replication (11)
Requirement (6), (18)
Requirements (4), (5), (7-9), (11), (13-18)
Reusability (5-7), (11)
Reusable Asset (11)
Reusable Component (11)
Reusable Software (4), (5), (9), (11), (12)
Reusable Software Asset (4), (5), (11), (12)
Reusable Software Component (12)
Reusable Software Library (12)
Reuse (1), (ii), (iii), (1-15), (17), (18)
Reuse Libraries (5), (6), (12)

B-2

