NIST Scoring Package User’s Guide
Release 1.0

Michael D. Garrisand Stanley A. Janet

National Institute of Standards and Technology
Gaithersburg, MD 20899

Table of Contents
1. Introduction

2. Concepts of Scoring
2.1 Form-Based Scoring
2.1.1 Effects of Regjection
2.2 Character-based Scoring

3. Dynamic String Alignment
3.1 String Alignment Concepts
3.2 Dynamic String Alignment Algorithm

4. File Formats

4.1 Form-Based Scoring Files
4.1.1 Form and Format Terminology
4.1.2 Table A Files
4.1.3 Reference Files
4.1.4 Hypothesis Files
4.1.5 Confidence Files
4.1.6 Rejection Files

4.2 Form-Based Scoring Output

4.3 Character-Based Scoring Files
4.3.1 File and Format Terminol ogy
4.3.2 Classification (CLS) Files
4.3.3 Hypothesis (HYP) Files
4.3.4 Rejection (RJIX) Files
4.3.5 Confidence (CON) Files

4.4 Character-Based Scoring Output

5. Softwar e Documentation
5.1 Release Notes
5.2 Installation Procedures

o A~ W W

\'

11
11
11
11
14
15
17
18
19
19
20
20
21
21
22
22

23
23
23

5.3 Command Executions
5.3.1 Merge
5.3.2 Score
5.3.3 Ocrmerge.sh
5.3.4 Convref and Convhyp
5.4 Fundamental Accumulators
5.5 Provided Data and Examples
5.5.1 Form-Based Scoring
5.5.2 Character-Based Scoring
5.5.3 Installation Testing

6. References
A. Form Template Files
B. Form-Based Files

C. Form-Based Scoring Output
C.1 Example Scoring Summary (.sum)
C.2 Example Fact Sheet (.fct)
C.3 Scoring Summary Description
C.4 Fact Sheet Description

D. Character-Based Files

E. Character-Based Scoring Output
E.1 Example Scoring Summary (.sum)
E.2 Example Fact Sheet (.fct)

F.IHead File Format
G. MISFile Format

H. Sour ce Code Documentation for IHead and MISfiles
H.1 decomp <IHead file in> <IHead file out>
H.2 dumpihdr <IHead file>
H.3 fragmis <misfile> <rootname>
H.4 htoc <hex value>

24
25

R RERS

35
36
36

37
38
41

47
47
49
50
53

55

57
57
58

59

63

65
65
65
65
65

H.5 ihdr2sun <IHead file>

H.6 sunalign <Sun rasterfile>

H.7 xtrctcls -[c,h] <clsfile> <index>

H.8 xtrctmis <misfile> <outfile> <index>

65
65
66
66

1. Introduction

The increased performance and connectivity of computers has touched off an imaging revolution. One area of application which
is benefitting immensely from advancements in imaging technology is automated document processing and automated data entry
through the use of optical character recognition. As thistechnology continues to advance, the number of commercially available
productsisincreasing. Multiple products are emerging, all of which are designed for optical character recognition problems.
Improved recognition algorithms have enabled the accuracy of these products to steadily increase, but each product isbased on a
different, often proprietary, set of algorithms. This presents potential users of optical character recognition technology with many
different choices and options and leads to a series of significant questions: How does one determine when the technology has
matured enough to make it economically advantageous to deploy? How does a potential user determine which product is best for
his or her specific needs? How can a system devel oper, who has the ability to choose from alarge variety of diverse algorithmic
approaches, intelligently choose and then track progress when developing optical character recognition systems? The answer to
these questions lies in objective system performance measurement. Thisis the motivation behind the development of the NIST
Scoring Package.

Application requirements germane to a specific automated character recognition problem are embodied in a representative set of
referenced images. Associated with each referenceimageisthe ASCII textual information that isto be recognized in the image.
NIST has produced three referenced image databases of digitized formswhich are available to the public and distributed through
NIST’s Standard Reference Data Division on CD-ROM. NIST Special Database 1 (SD1)[1] contains 2,100 digitized pages of a
hand-print collection form completed by 2,100 different writers geographically distributed across the United States. Each full-
page image in the database is a form comprised of 33 entry fields. Each entry field is demarcated by a separate box on the form.
These fields include 28 numeric fields totalling 130 hand-printed digits, 1 a phabetic field containing the 26 lower-case letters, 1
aphabetic field containing the 26 upper-case letters, and a text paragraph field containing the first sentence from the Preamble to
the Constitution of the United States. NIST Special Database 2 (SD2)[2] contains 5,590 digitized tax forms from the IRS 1040
Package X for the year 1988 completed with machine-print. Theseinclude Forms 1040, 2106, 2441, 4562, and 6251 together with
SchedulesA, B, C, D, E, F, and SE. NIST Special Database 6 (SD6)[3] contains 5,595 digitized tax formsfrom the samelist com-
pleted with hand-print. The information provided on these images of tax forms has been generated by a computer and does not
represent real people or real tax data.

Two other referenced databases are available to the public from NIST. They contain images of isolated characters that are useful
for testing in isolation the character classification components of full-scale recognition systems. NIST Special Database 3
(SD3)[4] contains 313,389 images of segmented characters from the 2,100 writersin SD1. SD3 is comprised of 223,125 digits,
44,951 upper-case letters, and 45,313 lower-case | etters. These images have been verified to contain correctly segmented charac-
tersand do not include images of split and merge characters. Associated with every character imagein this database isareference
value specifying the class of the character in the image. A second character image database, NIST Special Database 7 (SD7)[5],
was intended to be used primarily for testing hand-print character classifiers. SD7 contains hand-print from 500 writers and has
approximately 83,000 isolated character images including 59,000 digits and 24,000 upper-case and lower-case letters. Because
SD7 was atesting database, the reference classifications for each character image are distributed on floppy disk separately from
the character images which are distributed on CD-ROM.

The reference information in these databases serve as ground truth for measuring recognition performance. The images are pre-

sented to a recognition system, and the system’s results are returned. This includes hypothesized text of what the system located
and recognized. The Scoring Package reconcilesthe hypothesized text with the reference text, accumulating stati stics used to com-
pute performance measures. Figure 1 illustrates the use of referenced images and the Scoring Package to assess the performance
of arecognition system.

The model in Figure 1 has several advantages. First, knowledge of the internal details of a system being tested is not required.
Thisiscritical when testing systems comprised of proprietary functional components. Second, the performance measures are com-
puted in an automated way without any human inspection. Thisis extremely important when assessing the performance of optical
character recognition (OCR) technol ogy, especially large-scal e character recognition systems. An exampleisthe NIST massively
parallel model recognition system whose character recognition component is capable of classifying character images up to 1000
characters per second[6]. This system is capable of processing 2,100 pages of forms containing 130 hand-printed digits per form
for atotal of 273,000 digitsin approximately 4 hours. The visual inspection of the system output from asingle 4 hour processing

session took atechnician 6 months. In order to conduct tests in a reasonable amount of time, the compiling and computing of
performance measures must be automated.

Recognition
Form Images System Hypothesized Strings
Referenced .
Image Database Scoring
» Package
Reference Strings ¢
Performance Analysis

Figure 1: Testing paradigm for recognition systems using referenced images and the Scoring Package.

Using the system testing paradigm in Figure 1, potential users of character recognition technology can design a collection of ref-
erenced images representative of their specific needs. The set of images can then be presented to different candidate systems, and
using the Scoring Package, performance measures can be computed from the output of each system for the purpose of system
comparison. Likewise, a system developer can take a set of referenced images and present them to several variations of asingle
system. For example, one system configuration may use algorithmic approach A for character segmentation, whereas another sys-
tem configuration may use algorithmic approach B. By presenting the same set of referenced images to both system configura-
tions, performance measures can be computed and used to compare the two al gorithmic approaches within the context of afully
operational system.

The NIST Scoring Package is areference implementation of the draft, “ Standard Method for Evaluating the Performance of Sys-
tems Intended to Recognize Hand-printed Characters from Image Data Scanned from Forms’, which has been submitted to ANSI
X.3A. Asthe draft standard is modified and ultimately adopted by ANSI, the Scoring Package will be periodically updated to
remain consistent with the standard. The software has been developed on a UNIX workstation and is implemented with a combi-
nation of utilitieswritteninthe‘C’ programming language and the UNIX shell facility. Section 2 presents the concepts of scoring
forms processing systems and character classifiers. Section 3 discusses the concepts and algorithm used for dynamic string align-
ment. Section 4 defines the files and the formats required as input to the Scoring Package. Section 5 documents how the Scoring
Package software isinstalled and invoked.

2. Concepts of Scoring

The Scoring Package hasthe ability to analyze recognition results from tests conducted with two different types of images (images
of forms and images of isolated characters). Form-based scoring is designed to analyze the results of processing form images and
to measure system performance at the form, field, and character levels. Form-based scoring is useful when comparing form pro-
cessing systems and is discussed in Section 2.1. Character-based scoring is designed to analyze the results of recognizing isolated
character images and to measure classification error rates. Character-based scoring is useful when comparing character classifiers
and is discussed in Section 2.2.

2.1 Form-Based Scoring

The Scoring Package has been developed to measure the performance of character recognition systems, and more specifically,
automated forms processing systems such as those used to process the imagesin SD2 and SD6. Figure 2 illustrates four different
forms processing tasks addressed by the draft standard. These tasksinclude form identification, field identification, field recogni-
tion, and character recognition. In general, thefirst step to processing aform requires proper identification of the form type. Based
on the identified type, fields can be located through the use of a spatial template. If fields cannot be unambiguously identified by
position alone, then other contexts may be required such asreading the label printed on the form next to each field. Thisisreferred
to asfield identification. Once afield has been located and identified, it then can be recognized. Typically the recognitionis done
character by character, and if al the charactersin afield have been correctly classified, the field is considered to be correctly rec-
ognized. This definition of field recognition makes it dependent on the results of character recognition, which is emphasized in
the figure by character recognition being nested within field recognition. Currently, the Scoring Package is able to measure the
system performance of the form identification, field recognition, and character recognition tasks. The ability to measure the task
of field identification has yet to be implemented.

Form Identification

Field I dentification

Field Recognition

Character Recognition

Figure 2: Four tasks of a generic forms processing system.

By establishing form identification as the first task, the Scoring Package does not address system issues such as pages missing
from a multiple-page document, and other page handling issues. The Scoring Package has been designed to use forms for which
the reference information is complete, accurate, and stored in a specified machine-readabl e file format. The forms are typically
imaged and, together with the reference information, stored on CD-ROM. Only those forms organized in this fashion can be used
by the Scoring Package.

The diagram in Figure 2 should be not be mistaken as a model for implementing forms processing systems. It should be viewed
as aflexible framework by which forms processing systems can be analyzed and compared. If a specific system does not perform
one of the tasks, for example a system may not conduct field identification, then the output resulting from that task is not used in
measuring system performance. Note that these system variations are primarily dependent on the types of forms being processed,
so that aslong as the same set of form images are presented to each system, a consistent set of performance measurements will

be computed resulting in avalid comparison. These four tasks embody the primary functions which distinguish forms processing
from other applications such as free-formatted correspondence reading. Also notice that these tasksin no way limit theimplemen-
tation of aforms processing system by dictating a presumed set of algorithmic procedures. For example, traditional character rec-
ognition systems conduct character segmentation prior to character classification.[6][7] Methods of combining segmentation and

classification into a single concurrent process have recently been developed.[8][9][10] Regardless of the algorithmic techniques
used, both types of systems produce character classifications that can be analyzed and compared, and both systems can be ana-
lyzed according to the tasks listed in Figure 2.

A more detailed diagram of the forms processing tasksis shown in Figure 3. Thisfigureillustrates the possible outcomes resulting
from each of the four tasks. Forms identification can either result in a correctly identified form or an incorrectly identified form.
Likewise, field identification can either result in acorrectly identified field or and incorrectly identified field. Character recognition
can result in a character being correctly recognized, incorrectly recognized, or missed. Characters are frequently missed due to
errors during segmentation. If all the charactersin afield have been correctly recognized, then the field is considered to be cor-
rectly recognized. Otherwise, the field is considered to have been incorrectly recognized. Performance measurements can be com-
puted by compiling statistics at each of these possible outcomes.

For each form image used to test aforms processing system, the Scoring Package is given theform’stype, alist of theform’sfield
identities, and alist of text strings corresponding to what was entered on the form, field by field. The files and formats used as
input to the Scoring Package are discussed in detail in Section 4. Using this reference information, the Scoring Package can deter-
mine the level of error the system achieves when performing each of the four tasks. If the type of aform is correctly identified,
then the form istallied as correctly identified and scoring continues at the field identification task. If form identification isincor-
rect, then no faith can be placed on the outcomes from any subsequent tasks and scoring is discontinued. The formistallied as
incorrectly identified and the fields and characters on the form are tallied as missing. The sameistrue at the field identification
task. If thefield iscorrectly identified, then thefield istallied as correctly identified and scoring continues at the field and character
recognition tasks. If the field identification is incorrect, no faith can be placed on the outcomes from any subsequent tasks and
scoring is discontinued. Thefield istallied asincorrectly identified and charactersin the field are tallied as missing.

Field recognition isdependent on the outcomesfrom character recognition so that character recognition analysisis conducted first.
For each field which is correctly identified from a correctly identified form, the hypothesized characters generated by the recog-
nition system when reading the field are reconciled with the reference string of what was entered in the field. Thisis done through
the use of adynamic string alignment algorithm which is discussed in detail in Section 3. The alignments produced are used to
tally the number of correct, incorrect, and missing characters. If all the characters in the reference string are recognized by the
system correctly and no additional charactersarefalsely inserted, then thefield istallied as being correctly recognized. Otherwise,
thefield istallied asincorrectly recognized. Thisistrue when character level rejections do not exist or areignored. The next sec-
tion discusses how system rejections impact scoring.

2.1.1 Effects of Rejection

Up to this point, the effects of system rejections on scoring have not been addressed. Systems have the potential to reject the out-
comes from each of the four forms processing tasks. For example, a system may choose to reject the hypothesized form type
assigned to a specific form image, or a system may choose to reject the hypothesized classification assigned to a segmented char-
acter image. Rejecting outcomes gives a system the ability to flag low confidence decisions as unknown, so that they may be ver-
ified by human inspection.

Provisions have been made in the Scoring Package to account for several types of system rejections. If the hypothesized identifi-
cation of aformisrejected, the Scoring Package considers all thefields and characters on the form to berejected. Only thosefields
belonging to forms whose identification is accepted continue to be analyzed at the field identification task. In asimilar way, if a
field identification is rejected, the Scoring Package considers all the charactersin the field to be rejected. Only those characters
belonging to fiel dswhoseidentification is accepted continueto be analyzed at thefield recognition and character recognition tasks.
In the character recognition task, any classification resulting from the recognition of a segmented image may be rejected. Itis
desirablefor asystem to reject classifications associated with incorrectly segmented images such as split or merged charactersand
images of noise. These segmentation errors result in characters being missed (deletion errors) and in erroneous additional classi-
fications being made (insertion errors). It is also desirable to reject incorrect classifications associated with correctly segmented
character images. These represent the substitution errorsin the system. Unfortunately, rejection mechanisms are not perfect, so
that occasionally, correctly classified character images are al so rejected. Having described the variousinstances of character level
rejections, afield is considered correctly recognized only if every character in the field's reference string has been correctly clas-
sified with no characters missed and there are no additional (inserted) classifications remaining after rejection.

Form ldentification

/\

Correct Form Incorrect Form
Identification Identification

Field | dentification

/\

Correct Field Incorrect Field
Identification Identification

Field Recognition

Character Recognition

/\

Correct Character Incorrect Character Missed
Recognition Recognition Characters

Correct Field Incorrect Field
Recognition Recognition

Figure 3: The possible outcomes resulting from each of the four forms processing tasks.

2.2 Character-based Scoring

The Scoring Package can also be used to measure the classification errors of character classifiers. Here, instead of analyzing the
processing of form images, the Scoring Package analyzes the recognition of isolated character images such as those distributed
with SD3 and SD7. The class assigned to each of these imagesistypically taken from one of the digits ‘0’ through ‘9", one of the
upper-case aphabetic letters ‘' A’ through ‘Z’, one of the lower-case aphabetic letters ‘a through ‘z', one of the punctuation char-
acters, or one of ahandful of special characters.

Character-based scoring was used in thefirst Census Optical Character Recognition Systems Conference sponsored by the Bureau
of the Census and hosted by NIST. The report from this conference can be used as a case study of character-based scoring.[11]
The files and formats used for character-based scoring differ from those used for form-based scoring. The differences are dis-
cussed in detail in Section 4. Though the files and formats differ, the concepts for character-based scoring are quite similar to the
character recognition task analyzed in form-based scoring. Character-based scoring only addresses the classification of correctly
segmented character images, so that images are either correctly recognized or incorrectly recognized, and their associated classi-
fications may be rejected.

3. Dynamic String Alignment

The importance of automating the performance assessment of large scale character recognition systems was emphasized in the
introduction. The automation of the Scoring Package islargely due to the use of adynamic string alignment algorithm. Thisalgo-
rithm is responsible for determining how errors occurring in the character recognition task in form-based scoring should be
assessed. The alignment algorithm reconciles the reference string (what was entered in afield) with the hypothesized string gen-
erated by the recognition system. String alignment concepts are discussed in Section 3.1 and the actual algorithm used is described
in Section 3.2.

3.1 String Alignment Concepts

In this section, several different examples are presented in order to demonstrate how string alignments can be used to automati-
cally assess the performance of character recognition systems. A familiar system error is a substitution error in which the recog-
nition system assigns an incorrect classification to a segmented character image. Figure 4 displays an alignment produced by the
Scoring Package of a substitution error caused by an ambiguous character, a‘3’ classified asan ‘8. The hand-printed ‘3’ ismal-
formed so that it really does ook ambiguously like an ‘8 when read by a human. The top image in the figure is an isolated field
containing thefive hand-printed digits‘0’, ‘1’, ‘2, *3', and ‘4. The second line of images are the result of segmenting theisolated
field into separate images, one character per image. The third line in the figure lists the reference string of what truly was printed
in the field. The fourth line lists the hypothesis string corresponding to the assigned classifications generated by the recognition
system. Thelast line in the figure marks the substitution errorsidentified by the Scoring Package witha‘1’ representing a substi-
tution error made by the recognition system. As shown in the figure, the ssgmented character image containing the malformed ‘3’
isclassified by the recognition system asan ‘8’ and isidentified as a substitution error by the Scoring Package by reconciling the
hypothesis string with the reference string.

Isolated Field Image Iﬂ /L? ‘/

ted Ch t
SegmenI mag&ar acter L 1 q
2 3 4
Hypothesis String 2 8 4

Ali t of Substituti
|gnmen(1o: oh) Iitutions O O O 1 O

Figure 4: Scoring Package alignment of a substitution error caused by a malformed character.

PN

&
Reference String O
0)

Another source of character recognition errors comes from incorrectly segmented character images. Most character classifiersare
designed to recognize characters one character image at atime. With unconstrained hand-print, characters frequently touch or
overlap making the clean separation of characters difficult. Unfortunately, characters are not always segmented correctly. This
resultsin isolated images containing partial characters, multiple characters, and noise. These segmented images arein turn passed
to the system’s character classifier. Typical segmentation failuresresult in theinsertion of character-like imagesinto, and the dele-
tion of legitimate character images from, the recognition system. This is demonstrated in the examples shown in Figure 5 and
Figure 6.

Figure 5 shows an example alignment produced by the Scoring Package of an insertion error caused by a segmentation failure.
The top image is an isolated field containing the four hand-printed digits‘3’, ‘4’, ‘5, and ‘6’. The second line of imagesisthe
result of segmenting the isolated field into separate images, which are assumed to be one character per image. Noticethe ‘4’ has
been incorrectly separated into two piecesresulting in two isolated images with two strokesforming aright anglein theleft image

and avertical stroke in theright image. Thisisan example of a segmentation failure, the splitting of a character into multiple
images. Thethird linein the figure lists what was printed in the field. The fourth line lists the hypothesis string corresponding to
the assigned classifications generated by the recognition system.

Isolated Field Image 3 L{ 5 &

Segmented Character 3 L
3

| mages

Reference String

R ORFR N |~
O O U1 | In
eoNoNe)le N

Hypothesis String 3 6
Alignment of Insertions
(1= Ing) O 1
Alignment of Substitutions
0 0O

Figure 5: Scoring Package alignment of an insertion error caused by a segmentation failure and resulting in a substitution error.

Dueto the segmentation failure, the character classifier in the recognition system is presented the two pieces of the ‘4’ rather than
one complete character. The result can be seen in the hypothesis string where thefirst piece of the ‘4’ isclassifiedasa‘'6’ and the
second piece of the‘4’ isclassified asa‘l’. Thefifth linein the figure markstheinsertion error identified by the Scoring Package
witha'1l representing the inserted classification of a‘6’. Often, asingle segmentation failure introduces multiple errorsinto the
system. This can be seen by the last line in the figure which marks a substitution error at the position of the second piece of the
‘4’ the vertical stroke. If segmentation failures go undetected, then the character classifier assumes the resulting isolated images
are correct and the classifier will assign a classification to each isolated image it is permitted to see. By reconciling the reference
string to the hypothesis string, the Scoring Package |abel ed the second piece of the ‘4’ as a substitution error, knowing that a ‘4’
was truly printed in the field.

Figure 6 shows an example alignment produced by the Scoring Package of adeletion error caused by a segmentation failure. The
topimageisanisolated field containing thefive digits‘4’,'5',‘6', ' 7', and ‘' 8'. The second line of imagesistheresult of segment-
ing the isolated field into separate images, which are assumed to be one character per image. Noticethe ‘5’ and ‘6’ have been
merged into asingle isolated image. Thisis another example of a segmentation failure, the merging of multiple charactersinto a
single segmented image. Thethird linein thefigure lists the reference string of what truly was printed in the field. The fourth line
lists the hypothesis string corresponding to the assigned classifications generated by the recognition system.

Dueto the segmentation failure, the character classifier in the recognition system is presented a single image containing two char-
acters rather than two separate images each containing one character. Thisis another example of how, if a segmentation failure
goes undetected, the character classifier will assign a classification to each isolated image it is permitted to see. The result can be
seen in the hypothesis string where the number of assigned classifications is one less than the length of the reference string, and
the merged image containing the ‘5’ and ‘6’ isclassified asa‘7’. Thefifth linein the figure marks the deletion error identified by
the Scoring Package with a‘1’ representing the position of the deleted character. The last line in the figure marks the substitution
error resulting from the merged character image being incorrectly classified. By reconciling the reference string to the hypothesis
string, the Scoring Package |ocated the position of the del eted character and |abeled the classification assigned to the merged char-
acter image as a substitution error.

I solated Field Image 5/52 7&
Segmer}tr?]dagcgaracter 5/ S’Z
4 5
7
0

Reference String

o
o ~N~N|N\
O O o %

Hypothesis String 4
Ali t of Deleti
|gnme(ri:%el) lons O 1
Ali t of Substituti
|gnmen(1(1 on) itutions O 1 O O

Figure 6: Scoring Package alignment of a deletion error caused by a segmentation failure and resulting in a substitution error.

The examplesin Figure 5 and Figure 6 demonstrate how system errors have a cascading effect, resulting in multiple errors being
introduced into a single hypothesis string. The alignment examples shown are, by design, easy to understand and are easily
derived. In practice, multiple errors frequently occur in asingle hypothesis string resulting in many different possible alignments.
The Scoring Package analyzes each candidate alignment and chooses the one that assesses the least amount of penalty. The Scor-
ing Package doesthisin aconsistent and logical way so that, when given the same hypothesis string and reference string, the Scor-
ing Package will always generate the same alignment. As multiple errors are introduced into the hypothesis string, it becomes
increasingly more difficult for the Scoring Package to unambiguously determine insertion errors from substitutions errors. This
distinction often requires human inspection which would compromise the degree to which the Scoring Package is automated.
Therefore, the Scoring Package does not di stinguish substitution errors from insertion errors and lumps them together into asingle
category called false positives.

The examples shown in this section have been for form-based scoring. Note that the same dynamic string alignment algorithm
used for form-based scoring can be used for character-based scoring. Thisisrealized by treating each isolated character imagein
character-based scoring as afield containing only one character in form-based scoring. Using this conversion scheme, the align-
ment algorithm simply determinesif a character classifier’s hypothesized classification matches the reference class associated
with the isolated character image.

3.2 Dynamic String Alignment Algorithm

The dynamic string alignment algorithm used in the Scoring Package has been adapted from the Levenstein Distance algo-
rithm.[12] This algorithm uses dynamic programming to find the minimum distance between two strings given penaltiesfor char-
acter substitutions, deletions and insertions. The algorithm was modified to return the information needed to construct aligned
reference and hypothesis strings.

First, two 2-dimensional arrays are filled. One array contains the minimum cumulative penalties using the Levenstein Distance
that represent the mutation of the reference string into the hypothesis string along all possible paths. The other array holds the
decisions (substitution, insertion, deletion, or no change) that yielded the minimum additional penalty to arrive at each point. An
array of the series of decisionsis then gathered, and the aligned reference and hypothesis strings are generated from that.

The algorithm was extended in four other ways: 1.) It can accept input strings of any length given sufficient memory; 2.) The pen-
atiesare not fixed, but are parameters which can be modified from the command line; 3.) Another parameter controls the way the

algorithm breaks ties between equal-cost paths; and 4.) The penalties are context-sensitive, that is they are not scalar values, but
are functions of the characters.

Context-sensitive alignment can result in more logical alignments. For example, given areference string “h” and hypothesis
strings “k-" and “-k”, if the penalty for a‘k’ being substituted for a‘h’ isless than the penalty for a‘-’ being substituted for a‘h’,
then the alignment al gorithm will produce output which, more often than not, reflects what was actually confused by arecognition
system as shown in Figure 7. The ‘k’ is aligned with the ‘h’ and the ‘-’ is scored as an insertion. If the penalties were constants,
substitutions between dissimilar characters would occur as often as those between similar characters. Currently, the only com-
mand-line interface to the context mappings specifies that case-insensitive alignment be employed.

Context-Sensitive Alignments

h h
K- - K

Figure 7: Alignments resulting from less penalty for a‘k’ being substituted for a‘h’ than a*‘-’ being substituted for a‘h'.

10

4. File Formats

Strict adherenceto file formatsis essential for successful Scoring Package operation. In light of their critical importance, this sec-
tion is devoted to file format specifications. Section 4.1 deals with the files and formats required for form-based scoring, while
Section 4.2 deals with the files and formats required for character-based scoring.

4.1 Form-Based Scoring Files

There are five unique file types utilized by the NIST Scoring Package for form-based scoring: Table A files, referencefiles,
hypothesis files, confidence files, and rejection files. Three of these file types are required (Table A files, reference files, and
hypothesis); two are optional (confidence files and rejection files). Figure 8 lists these files identifying their source and frequency
of occurrence. Thetester designs and administers a scoring test; the subject takes the test. Of the two file types generated by the
tester (Table A files and reference files), the Table A files must be distributed to the subject in addition to test images, while the
reference files are for the tester’s use only and are never released. Each of these five files are discussed in detail in the following
sections.

FILE SOURCE OCCURANCE STATUS
Table A Tester Per Form Template | Required
Reference Tester Per Form Sample Required
Hypothesis Subject Per Form Sample Required
Confidence Subject Per Form Sample Optional
Reject Subject Per Form Sample Optional

Figure 8: Five different file types required by the NIST Scoring Package for form-based scoring.

4.1.1 Form and Format Ter minology

In thisdocument, aform template refersto each unique variation or version of ablank form. Each form face such asthe 1040 page
1, the 1040 page 2, the Schedule A, etc. isidentified as a unique form template. A separate form template must also be identified
for variations of the same form face when a different number or order of entry fields exist due to changes from year to year or due
to printing variations among tax preparers and tax packages. In this document, aform sample refersto an instance of aform tem-
plate with its entry field valuesfilled in. The form samples are theimagesin a test database.

To simplify file format descriptions, several terms must be defined. A Single-Value ASCII String Representation (SVASR) isa
buffer of variable length containing any number of printable ASCII characters in the hexadecimal range 21 to 7E. A SVASR is
void of any space characters, hexadecimal 20. A Multiple-Value ASCII String Representation (MVASR) is a buffer of variable
length containing any number of printable ASCII charactersin the hexadecimal range 20 to 7E including any number of space
characters. An ASCII Delimiter Character (ADC) isasingle space character, hexadecimal 20. The ADC isused to separate aline
of contiguous SVASR’s or to separate a SVASR followed by aMVASR. An ASCII Line Representation (ALR) isabuffer of vari-
able length containing any number and combination of SVASRs, MVASRs, and ADCs terminated by the ASCII LF character,
hexadecimal OA. This meansthat the ASCII CR character, hexadecimal 0D, cannot occur anywherein an ALR, or in place of, or
in combination with the ASCII LF character OA at the end of the ALR. Also note that all files described in this document do not
contain any end-of-file marker or end-of-file character.

4.1.2 Table A Files

Table A filesare created by thetester. A separate Table A fileisrequired for each unique form template or layout existing in the
test database. Thistable is comprised of three columns of information including entry field identifications, entry field types, and
an optional column of entry field context labels. Each line of the table data represents a single entry field found on the form tem-
plate. The entry field identification strings listed in the first column dictate the identity of each entry field on the form. These ref-
erences must match identically to the field answers generated by the tester in the reference files and the subject’s responses in the
hypothesisfiles. Reference files and hypothesisfileswill be discussed in detail later. Appendix A contains a blank template of the

11

first page of a 1988 1040 form labeled with the entry field identifications used in the corresponding Table_A file which isalso
included in the appendix. The contents of the Table_A file shown in Figure 35 has been listed in two adjacent text columns.

Thetype of an entry field can be, for example, one of four possible choices (A, F, I, and ICON). Figure 9 liststhe field types used
in SD2 and in SD6 to describe entry fields. The type “A” should be used for any alphanumeric field, “F’ should be used for any
floating point field, “1” should be used for any integer field, and “1CON” should be used for any field which is not of the previous
three types. The “ICON” type should be used to represent annotations in the margin of aform, box check-marks, signatures, and
other types of fields which will not be recognized character by character.

TYPE DEFINITION
A Alphanumeric Fields
F Floating Point Fields
I Integer Fields
ICON Non-Character Fields
(box markings, signatures)

Figure 9: Four different entry field types used in Table_A filesfor SD2 and SD6.

Thethird column in aTable_A file contains entry field context labels. If provided, the context labels can be used to identify and
score subsets of entry fields uniquely. The context labels used in SD2 and SD6 include Data, Name, and SSN and are listed in
Figure 10. For example, using this context convention, the social security numbers on forms can beisolated and scored apart from
the other entry fields on the form. The context assigned to an entry field is optional. This meansthe Table_A filefor agiven form
template must contain the identification label and the type of each entry field on the form, but context labels may or may not be
specified. If acontext label isdesired for asingle entry field on form template, then context labelsfor all entry fields on the form
template should be provided. If no context labels are desired for a given form template, then none need be provided.

CONTEXT DEFINITION
DATA Generic Data
NAME Names of People
SSN Social Security Numbers

Figure 10: Three different entry field contexts used in SD2 and SD6.

As stated earlier, aTable A fileis comprised of two required entry field columns (identifications and types) and one optional col-
umn (context labels). The tester is responsible for generating and assigning each of the entry field identifications, types, and con-
text labels. The only entry field type automatically distinguished by the Scoring Package is ICON. This enables the scoring of
fields containing character data to be automatically separated from the scoring of fields containing non-character data. By invent-
ing and assigning entry field types and context labels, the tester can design aflexible test in which both global scores and scores
computed on specific subsets of fields may be specified. For example, by designing a Table A file such that all fields containing
the names of people are identified with the context label “NAME”, the tester can invoke the Scoring Package specifying that only
the fields containing the names of people be included in the computation of scores.

A Table A fileis comprised of avariable number of ALRS, one ALR per entry field on the form template being represented. If
context labels are being used for the given form template, then each ALR is comprised of three SVASRS, representing in order,
an entry field’s identification string, type, and context label. One ADC is used to separate the identification string from the type,
and one ADC is used to separate the type from the context |abel. If context labels are not being used for the given form template,
then each ALR is comprised of two SVASRs, representing in order, an entry field's identification string and type with one ADC
used to separate the two.

12

Figure 11 lists thefirst ten lines of a Table_A file for the first page of a 1988 1040 form for which context labels are included.
Notice that there are no graphical lines or heading in thisfile, only character data organized in columns. Figure 12 lists byte for
byte the hexadecimal representation of theten lineslisted in Figure 11. Notice the hexadecimal OA character terminating each line
and the hexadecimal 20 character separating each SVASR. Figure 13 and Figure 14 list thefirst ten lines of a Table A file for the
first page of a 1988 1040 form for which no context |abels are provided. Notice in Figure 14 there is only one hexadecimal 20
character separating the entry field identification string from the type with each line terminated by a hexadecimal OA character. In
order to readily identify which form template a Table_ A file represents, the form type should be embedded in thetabl €' sfile name.
For example “1988 1040 1 atab” could be used to store the table information listed in either Figure 11 or Figure 13.

1 V1A DATA
2 V1A DATA
3 V1A DATA
1 V2A NAME

1 . V3 A DATA
l V4 A DATA

1 V5ICON DATA
2 V51CON DATA

55556566665
8888888888

1L H
1L H
1L H
1L H
1L H
1L H
1L H
1L H
1L H
1L H

Figure 11: Top of an example Table_A file containing context labels.

31 30 34 30 5F 31 5F 4C 5F 48 31 5F 56 31 20 41 20 44 41 54 41 OA

31 30 34 30 5F 31 5F 4C 5F 48 32 5F 56 31 20 41 20 44 41 54 41 OA

31 30 34 30 5F 31 5F 4C 5F 48 33 5F 56 31 20 41 20 44 41 54 41 OA

31 30 34 30 5F 31 5F 4C 5F 48 31 5F 56 32 20 41 20 4E 41 4d 45 0A

31 30 34 30 5F 31 5F 4C 5F 48 32 5F 56 32 20 41 20 53 53 4E OA

31 30 34 30 5F 31 5F 4C 5F 48 31 5F 56 33 20 41 20 44 41 54 41 OA

31 30 34 30 5F 31 5F 4C 5F 48 32 5F 56 33 20 41 20 53 53 4E OA

31 30 34 30 5F 31 5F 4C 5F 48 31 5F 56 34 20 41 20 44 41 54 41 OA
313034 30 5F 31 5F 4C 5F 48 31 5F 56 35204943 4F 4E 2044 4154 41 0A
313034 30 5F 31 5F 4C 5F 48 32 5F 56 352049 43 4F 4E 2044 41 54 41 0A

Figure 12: Hexadecimal listing of the Table A portion listed in Figure 11.

13

1040 1 L_H1 V1A
1040 1 L_H2 V1A
1040 1 L_H3 V1A
1040 1 L_H1 V2A
1040 1 L_H2 V2 A
1040 1 L_H1 V3A
1040 1 L_H2 V3A
1040 1 L_H1 V4A
1040 1 L_H1 V5ICON
1040 1 L_H2_V5ICON

Figure 13: Top of an example Table_ A file excluding context labels.

31 30 34 30 5F 31 5F 4C 5F 48 31 5F 56 31 20 41 OA
31 30 34 30 5F 31 5F 4C 5F 48 32 5F 56 31 20 41 OA
31 30 34 30 5F 31 5F 4C 5F 48 33 5F 56 31 20 41 OA
31 30 34 30 5F 31 5F 4C 5F 48 31 5F 56 32 20 41 OA
31 30 34 30 5F 31 5F 4C 5F 48 32 5F 56 32 20 41 OA
31 30 34 30 5F 31 5F 4C 5F 48 31 5F 56 33 20 41 OA
31 30 34 30 5F 31 5F 4C 5F 48 32 5F 56 33 20 41 OA
31 30 34 30 5F 31 5F 4C 5F 48 31 5F 56 34 20 41 OA
31 30 34 30 5F 31 5F 4C 5F 48 31 5F 56 35 20 49 43 4F 4E OA
31 30 34 30 5F 31 5F 4C 5F 48 32 5F 56 35 20 49 43 4F 4E OA

Figure 14: Hexadecimal listing of the Table A portion listed in Figure 13.

4.1.3 Reference Files

For every form sample in atest database an associated reference file is required. Reference files are created by the tester for use
in system testing. These files contain the identification of the form template contained in the form sample followed by the actual
data entered in each field on the form. The Scoring Package treats the form identification and entry field values recorded in the
referencefile asground truth. Theintegrity of any test iscompl etely dependent on the accuracy of thesefiles. Appendix B contains
an image of a completed first page of a 1988 1040 tax form and the reference file associated with the form imageislisted in two
adjacent text columnsin Figure 36. Note that the information contained in the form was derived from a computer and does not
contain real tax information.

A reference fileis comprised of avariable number of ALRs with the first ALR identifying the sample's form template followed
by one ALR per entry field on the sample. The form identification is the first ALR in the reference file and is represented as a
SVASR. Each ALR following the form identification ALR corresponds to a specific entry field on the form. These entry field
ALRscontain arequired entry field identification string and aconditional entry field value. Theidentification string is represented
asaSVASR and the entry field valueisrepresented asan MVASR. If an entry field ALR containsthe conditional entry field value,
thenthe ALR is comprised of a SVASR and MVVASR separated by an ADC. If an entry field ALR does not contain an entry field
value, then the ALR is comprised of a SVASR representing the identification string only. If an entry field contains data, then its
value should contain exactly what was entered inthefield. If an entry field isblank, then its value should be omitted fromthe ALR
including the omission of the ADC.

Figure 15 liststhefirst ten lines of areferencefile for thefirst page of 21988 1040 form. Thefirst lineidentifies the form template
contained in the form sample. The remaining lines correspond to the first 9 entry fields contained on the first page of the 1040

form. Noticethat thefirst threeentry fields (1040 1 I H1 V1,1040 1 | H2 V1,1040 1 L H3 V1) haveno entry field value
entered in the reference file because their corresponding fiel ds on the form were left empty. Figure 16 lists byte for byte the hexa-

14

decimal representation of theten lineslisted in Figure 15. Notice the hexadecimal OA character terminating each line. Also notice
that thefirst three entry field ALRs contain only asingle SVA SR representing i dentification strings without associated values. This
represents three entry fields which were left blank on the form sample. The remaining six entry field ALRS contain both identifi-
cation strings and values. These are entry fields that werefilled in on the form sample. Notice that the identification strings are
represented as SVA SRS, the values are represented as MVVASRs, and that there is asingle ADC, hexadecimal 20, separating the
two.

1988 1040 _1
1040 1 L_H1 V1
1040 1 L_H2 V1
1040 1 L_H3 V1

1040 1 L_H1 V2 Berry K. & LorasA. Boyle
1040_1 L_H2 V2 A1586 7384

1040_1 L_H1 V37861 Fairfield Street
1040_1 L_H2 V3 A73 285386

1040_1 L_H1 V4 Boyle, MT 30073

1040 1 L_H1 V51

Figure 15: Top of an example referencefile.

31 39 38 38 5F 31 30 34 30 5F 31 0A

31 30 34 30 5F 31 5F 4C 5F 48 31 5F 56 31 0A

31 30 34 30 5F 31 5F 4C 5F 48 32 5F 56 31 0A

31 30 34 30 5F 31 5F 4C 5F 48 33 5F 56 31 0A

31 30 34 30 5F 31 5F 4C 5F 48 31 5F 56 32 20 42 65 72 72 79 20 4B 2E 20 26 20 4C 6F 72 61 73 20 41 2E 20 42 6F 79 6C 65 0A
31 30 34 30 5F 31 5F 4C 5F 48 32 5F 56 32 20 41 31 35 20 38 36 20 37 33 38 34 0A

31 30 34 30 5F 31 5F 4C 5F 48 31 5F 56 33 20 37 38 36 31 20 46 61 69 72 66 69 65 6C 64 20 53 74 72 65 65 74 0A

31 30 34 30 5F 31 5F 4C 5F 48 32 5F 56 33 20 41 37 33 20 32 38 20 35 33 38 36 0A

31 30 34 30 5F 31 5F 4C 5F 48 31 5F 56 34 20 42 6F 79 6C 65 2C 20 4D 54 20 33 30 30 37 33 0A

31 30 34 30 5F 31 5F 4C 5F 48 31 5F 56 35 20 31 0A

Figure 16: Hexadecimal listing of the reference file portion listed in Figure 15.

Entry field 1040 1 L_H1 V5isan example of an ICON entry field. Notice that thisfield’'svalueisa ‘1’ which signifiesthat the
field contains abox check mark. If the ICON entry field was empty on the form, then avalue of ‘0" would be used in the reference
file. This convention reflects aformat change in the way ICON entry fields are represented in the reference file. In the past, such
asin SD2 and SD6, the entry field value was left blank when no information was present, and in SD2 avalue of “_ICON_" was
used in place of the ‘1’ when information was present.

Theentry field identification stringslisted in the reference file must match exactly in name and in order to the identification strings
recorded in the Table A file associated with the sample’s form template. The SVASR used for the form identification should be
embedded in the associated Table_A file name. In our previous file name example, Table A was named “1988_1040_1 atab”.
Notice that the form identification in the reference file exampleis“1988 1040 1". For historical reasons, the reference files used
for form-based scoring have also been called format files. All reference files should have a consistent extension such as “fmt”.

4.1.4 Hypothesis Files

For every form sample in atest database, the subject must return an associated hypothesis file. Each hypothesis file contains the
form template identified by the subject’s system followed by the results of what his system captured and recognized from each
entry field on the form sample. The Scoring Package aligns the subjects's results with the true entry field values contained in the
form sample’'s associated reference file in order to compute error rates. Appendix B contains an example of a hypothesisfile cor-
responding to the completed form displayed in the appendix. The hypothesisfile shown in Figure 37 islisted in two adjacent text
columns.

15

Hypothesisfilesareidentical informat to that of referencefiles. A hypothesisfileiscomprised of avariable number of ALRswith
thefirst ALR containing the form template identified by the subject’s system followed by one ALR per entry field on the form.
Theform identification isthe first ALR in the hypothesis file and is represented as a SYASR. Each ALR following the form iden-
tification ALR correspondsto aspecific entry field on theform. Theseentry field ALRs contain arequired entry field identification
string and a conditional entry field value. The identification string is represented as a SVASR and the value is represented as an
MVASR. If asubject’s system detected and captured datawithin an entry field, then the recognized valueisincluded and the entry
field ALR is comprised of a SYASR and MVASR separated by one ADC. If a subject’s system detected a blank field, then the
value is omitted including the ADC, and the entry field ALR is comprised only of a SVASR representing the identification string.

It is common for al phanumeric entry fields to be made up of more than one word. Therefore, the recognition of spacing must be
addressed. When capturing and recognizing fixed-spaced machine generated text, spaces between words are clearly detectable.
When capturing and recognizing proportionally-spaced machine generated text, the detection of spaces becomes slightly obscure.
When capturing and recognizing hand-printed data, the detection of spaceswithout the use of dictionaries and grammars becomes
practically impossible. In light of this, the subject has the choice of reporting recognition results with or without the recognition
of spaces. If the subject chooses to report the recognition of spaces, then the value of an entry field detected to contain multiple
words will contain a space character wherever the subject’s system detected one. Remember that the value of an entry field ALR
in the hypothesisfile isaMVASR which includes the existence of space characters, hexadecimal 20. If the subject chooses not to
report the recognition of spaces, then thevalueof all entry field ALRs, even if theentry field really iscomprised of multiplewords,
will contain no space characters. The Scoring Package can handle either hypothesis format for entry field values.

Figure 17 liststhefirst ten lines of an example hypothesis file where the subject chose not to report the recognition of spaces. This
example represents perfect recognition of the form corresponding to the reference file in Figure 15. Figure 18 lists byte for byte
the hexadecimal representation of the ten lines listed in Figure 17. Notice that the multiple word values do not have any space
characters, hexadecimal 20. Also notethat the fiel ds having recognized information retain the use of the ADC to separate the entry
field identification string from the entry field value in the hypothesisfile.

1988 1040 1

1040 1 L _H1 Vi

1040 1 L _H2 V1

1040 1 L _H3 V1

1040 1 L H1 V2 BerryK.&LorasA.Boyle
1040 1 L _H2 V2 A15867384
1040_1 L _H1 V3 7861FairfieldStreet
1040_1 | _H2 V3 A73285386
1040_1 L _H1 V4 Boyle MT30073
1040 1 L _H1 V51

Figure 17: Top of an example hypothesis file where the subject chose not to report the recognition of spaces.

3139 38 38 5F 31 30 34 30 5F 31 0A

31 30 34 30 5F 31 5F 4C 5F 48 31 5F 56 31 0A

31 30 34 30 5F 31 5F 4C 5F 48 32 5F 56 31 0A

31 30 34 30 5F 31 5F 4C 5F 48 33 5F 56 31 0A

3130 34 30 5F 31 5F 4C 5F 48 31 5F 56 32 20 42 65 72 72 79 4B 2E 26 AC 6F 72 61 73 41 2E 42 6F 79 6C 65 0A
31 30 34 30 5F 31 5F 4C 5F 48 32 5F 56 32 20 41 31 35 38 36 37 33 38 34 0A

31 30 34 30 5F 31 5F 4C 5F 48 31 5F 56 33 20 37 38 36 31 46 61 69 72 66 69 65 6C 64 53 74 72 65 65 74 0A
3130 34 30 5F 31 5F 4C 5F 48 32 5F 56 33 20 41 37 33 32 38 35 33 38 36 0A

31 30 34 30 5F 31 5F 4C 5F 48 31 5F 56 34 20 42 6F 79 6C 65 2C 4D 54 33 30 30 37 33 0A

31 30 34 30 5F 31 5F 4C 5F 48 31 5F 56 35 20 31 0A

Figure 18: Hexadecimal listing of the hypothesis file portion listed in Figure 17.

16

The entry field identification strings listed in the hypothesis file must match exactly in name and in order to the identification
strings in the Table_A file associated with the sample’s form template and the corresponding reference file. The tester must dis-
tribute Table A files to the subject so that the subject can return hypothesized answers referenced by correct entry field identifi-
cation strings. The SVASR returned from the subject for the form identification must also be one from alist of form templates
provided to the subject from the tester. All hypothesis files should have a consistent extension such as“HY P".

4.1.5 Confidence Files

Character classifiers typically produce afloating point value on the range 0.0 to 1.0, representing how confident the classifier is

of itsrecognition decision. By setting thresholds on these values, a subject can tune his system to desired levels of performance

trading off throughput for accuracy. The Scoring Package is capable of conducting basic analyses with only the subject’s hypoth-
esisfile aligned with the form sample’sreference file. However, through the optional use of confidence files, the Scoring Package
can do additional analysesif the subject provides confidence valuesfor each character classified. Appendix B containsan example
of aconfidence file corresponding to the completed form displayed in the appendix. Note that the line breaks within single entry
field specificationsin Figure 38 are due to the wrap-around properties of the listing. Line breakswithin an entry field specification
do not indicate the presence of new-line charactersin thefile.

Confidence files are comprised of avariable number of ALRswith thefirst ALR containing the confidence of the recognition sys-
tem’s identification of the form template followed by one ALR per entry field on the form sample. The confidence of the form
identification isthe first ALR in the confidence file and consists of the form identification (also included in the hypothesis file)
and the actual confidence value. Both the form identification and the confidence value are represented as SVA SRs separated by
an ADC. Each ALR following the form identification ALR corresponds to a specific entry field on the form. These entry field
ALRs contain arequired entry field identification string and a conditional list of confidence values. The identification string and
confidence values are represented as SVA SRs separated by ADCs. If asubject’s system detected and captured datawithin an entry
field, then the confidence values are included and the entry field ALR contains the identification string and one confidence value
for each individual character captured and classified. If a subject’s system detected a blank field, then the confidence values are
omitted, and the entry field ALR contains a SVASR representing the entry field identification string.

A confidence value must be a number ranging from 0.0 through 1.0. The number of digits to the right of the decimal point must
be less than 17. Whether or not a subject chooses to report his recognition results of spaces, the number of bytes comprising an
entry field’svalue MVASR in the hypothesisfile must equal the number of individual confidence valuesreported in the confidence
file for the entry field. Failure of the number of bytesin the hypothesis file's MV SAR to equal the number of confidence values
in the confidence file will result in the entry field being removed from the analysis conducted by the Scoring Package.

Figure 19 liststhefirst five lines of an example hypothesis file where the subject chose to report his recognition results of spaces.
Figure 21 lists the corresponding lines from an example confidence file. Notice that the last line in Figure 19 contains a space
character in the MVASR “B. Boyle” which islisted as hexadecimal in Figure 20 as “42 2e 20 42 6f 79 6¢ 65". Also notice that
the eight bytesin the MVVA SR are assigned exactly eight confidence valuesin the last line of Figure 21. Had the subject chosen
not to report his recognition results of spaces, then the MVASR of thelast linein Figure 19 would be“B.Boyl€” without the space
character. The hexadecimal listing for the MVASR would be “ 42 2e 42 6f 79 6¢ 65”, omitting the hexadecimal 20. Inturn, the list
of confidence valuesin Figure 21 would be reduced from eight values to seven with the confidence value “0.258367" omitted.

The entry field identification strings listed in the confidence file must match exactly in name and in order to the identification

strings dictated in the Table A file associated with the sample's form template and the corresponding reference and hypothesis
files. All confidence files should have a consistent extension such as“CON”.

17

1988 1040_1
1040 1 1Vvi1

LH
1040 1 L_H2 V1
1040 1 L_H3 V187
1040 1 L_H1

V2 B. Boyle

Figure 19: Top of a hypothesis file where the subject chose to report the recognition of spaces.

313938385f 313034 305f 310a

31 30 34 30 5f 31 5f 4c 5f 48 31 5f 56 31 0a

31 30 34 30 5f 31 5f 4c 5f 48 32 5f 56 31 0a

31 3034 30 5f 31 5f 4c¢ 5f 48 33 5f 56 31 20 38 37 Oa

3130 34 30 5f 31 5f 4c 5f 48 31 5f 56 32 20 42 2e 20 42 6f 79 6¢ 65 Oa

Figure 20: Hexadecimal listing of the hypothesis file portion listed in Figure 19.

1988_1040_1 0.989425

1040 1 L H1 V1

1040 1 L_H2 V1

1040_1_L_H3 V1 0.786324 0.998934

1040_1 L_H1 V2 0.675347 0.994671 0.258367 0.683123 0.876284 0.391576 0.4987481 0.719952

Figure 21: Top of an example confidence file corresponding to the hypothesis file in Figure 19.

3139 38 38 5f 31 30 34 30 5f 31 20 30 2e 39 38 39 34 32 35 Oa

31 30 34 30 5f 31 5f 4c¢ 5f 48 31 5f 56 31 O0a

31 30 34 30 5f 31 5f 4c 5f 48 32 5f 56 31 Oa

31 30 34 30 5f 31 5f 4c 5f 48 33 5f 56 31 20 30 2e 37 38 36 33 32 34 20 30 2e 39 39 38 39 33 34 Oa

31 30 34 30 5f 31 5f 4¢ 5f 48 31 5f 56 32 20 30 2e 36 37 35 33 34 37 20 30 2e 39 39 34 36 37 31\
20302e 323538333637 20302e36 3383331 323320302e383736323834\
20302e33393135373620302e3439383734383120302e3731393935320a

Figure 22: Hexadecimal listing of the confidence file portion listed in Figure 21.

4.1.6 Rejection Files

A second type of optional file which asubject can return isrejection files. Given the confidence values from arecognition system,
asubject can use very sophisticated methods for determining whether a recognition decision should be accepted or rejected.
Therefore, rather than return raw confidence valuesin aconfidencefile, the subject may chooseinstead to specify explicitly which
classifications should be rejected and which should be accepted in arejection file. Once again, the Scoring Package is capable of
conducting basic analyses with only the subject’s hypothesisfile. However, through the optional use of rejection files the Scoring
Package can do additional analysesif the subject provides reject values for each character classified. Appendix B contains an
example of aregjection file. Once again, note that the line breaks within single entry field specificationsin Figure 39 are due to the
wrap-around properties of the listing and do not indicate the presence of new-line charactersin thefile.

Rejection files are comprised of avariable number of ALRswith the first ALR containing information as to whether the recogni-
tion system accepted or rejected the identification of the form template followed by one ALR per entry field on the form sample.
The rgjection line corresponding to the form identification isthe first ALR in the rejection file and consists of the form identifica-
tion (also included in the hypothesisfile) and abinary reject value. Both the form identification and the rejection value are repre-
sented as SVASRs separated by an ADC. Each ALR following the form identification ALR corresponds to a specific entry field
ontheform. These entry field ALRs contain arequired entry field identification string and a conditional list of reject values. The

18

identification string and reject values are represented as SVASRs separated by ADCs. If asubject’s system detected and captured
datawithin an entry field, then the reject values are included and the entry field ALR contains the identification string and one
reject valuefor each individual character captured and classified. If asubject’s system detected ablank field, then thereject values
are omitted, and the entry field ALR contains a SVASR representing the entry field identification string only.

Reject values must be a binary number equal to ‘0’ or *1'. A *1’ indicates that the classification should be scored as unknown
rather than asacorrect or incorrect classification. A ‘0" indicatesthat the classification should be scored correct if the hypothesized
character isidentical to the reference character and scored incorrect otherwise. Regardless if a subject chooses to report his rec-
ognition results of spaces or not, the number of bytes comprising an entry field's value MVASR in the hypothesis file must equal
the number of individual reject values reported in therejection file for the entry field. Failure of the number of bytesin the hypoth-
esisfilesMVSAR to equal the number of reject valuesin the rejection file will result in the entry field being removed from the
analysis conducted by the Scoring Package.

Figure 23 liststhefirst five lines of arejection file corresponding to the example Hypothesisfile listed in Figure 19. Notice that in
thelast line of Figure 23 thereisareject value (‘0" or ‘1’) for each and every byte of the MVASR listed in the last line of Figure
19 including areject value for the space character. If the subject had chosen not to report the recognition results of space charac-
ters, then the reject value for the space character would be omitted.

1988 1040 10

1040 1 L_H1 V1

1040 1 L H2 V1

1040 1 L_H3 V100
1040 1 L _H1 V210000010

Figure 23: Top of arejection file corresponding to the hypothesis file shown in Figure 19.

31393838 5f 313034 305f 312030 0a

31 30 34 30 5f 31 5f 4¢ 5f 48 31 5f 56 31 0a

31 30 34 30 5f 31 5f 4c 5f 48 32 5f 56 31 0a

31 30 34 30 5f 31 5f 4c¢ 5f 48 33 5f 56 31 20 30 20 30 Oa

31 30 34 30 5f 31 5f 4c 5f 48 31 5f 56 32 20 31 20 30 20 30 20 30 20 30 20 30 20 31 20 30 Oa

Figure 24: Hexadecimal listing of the rejection file portion listed in Figure 23.

The entry field identification stringslisted in the rejection file must match exactly in name and in order to the identification strings
dictated in the Table A file associated with the sample's form template and the corresponding reference and hypothesisfiles. All
rejection files should have a consistent extension such as“REJ’.

4.2 Form-Based Scoring Output

Two form-based scoring output files arelisted in Appendix C. Thefirst fileisasummary report listing the performance measures
computed consistent with the draft standard. The second file is afact sheet that gives a detailed accounting of all fundamental
events accumul ated by the Scoring Package. An explanation of how these files were generated is given in Section 5.5.1. Line by
line descriptions of the output files are included in the appendix immediately following the two listings.

4.3 Character-Based Scoring Files

There are four unique file types utilized by the NIST Scoring Package for performing character-based scoring: classification files,
hypothesisfiles, rejection files, and confidence files. Two of thesefile types are required (classification files and hypothesisfiles);
two are optional (rejection files and confidence files). Figure 25 lists these files identifying their source. Once again, the tester
designs and administers a scoring test; the subject takes the test. The classification files are for the tester’s use only and are never
released. Each of these four files are discussed in detail in the following sections. Additional information on character-based scor-
ing files and how they are used for testing character classifiers can be found in the conference report from the first Census Optical
Character Recognition System Conference.[11]

19

FILE SOURCE STATUS
Classification Tester Required
Hypothesis Subject Required
Rejection Subject Optiona
Confidence Subject Optional

Figure 25: Four different file types utilized by the NIST Scoring Package for character-based scoring.

4.3.1 File and Format Ter minology

The main distinction between form-based scoring and character-based scoring is made with respect to the types of images being
recoghized by a subject’s system. In form-based scoring, the subject is given a collection of images of completed formsto test his
system. Using these form images, as described in Section 4.1, allows performance measurements to be calculated at the form,
field, and character levels. In character-based scoring, the subject is given a collection of isolated characters, one character per
image, to test just hissystem’s character classifier. Thisresultsin performance measurements being cal cul ated at just the character
level.

Several large collections of isolated character images have been gathered by NIST. Theseimages are typically stored in Multiple
Image Set files, or MISfiles. One database using the MISfile format is SD3. Briefly, an MIS file contains one or more isolated
character images. The last raster row of pixels comprising a previous character image is concatenated with the first raster row of
pixels comprising the next character image. In this way, the MISfileis stored as onetall raster image file when really thefile
contains a column of concatenated character images. A collection of MIS files can be used to represent an entire test set of char-
acter images. Each MISfile contains an ASCII header developed by NIST called IHead which is prefixed to the raster image data.
This header contains all the information necessary to effectively interpret the image data stored in the file, including attributes
such asthe pixel width and height of theimage. The IHead fileformat is described in detail in Appendix F. A compl ete description
of the MISfile format isincluded in Appendix G.

In order to accurately specify fileformatsfor character-based scoring, two terms must be defined. An ASCI| String Representation
(ASR) isabuffer of variable length containing any number of printable ASCII characters, where the printable ASCII characters
include all charactersin the hexadecimal range 20 to 7E. An ASCII Line Representation (ALR) is an ASR terminated by the
ASCII LF character, hexadecimal OA. This meansthat the ASCII CR character 0D cannot occur anywhereinan ALR, or in place
of, or in combination with the ASCII LF character OA at the end of the ALR.

A Multiple Feature Set (MFS) fileisafile of ALRs. Each MFSfileis associated with aunique MISfile. Thefirst line of the MFS
file contains the ASR of a decimal number, which is the number of linesin the file minus one, and also the number of imagesin
the associated MISfile. No ASCII space characters, hexadecimal 20, are allowed inthe ASR for thefirst line. Each linefollowing
thefirst line of an MFSfileisan ALR containing information about the corresponding image in the associated MISfile. Each of
the four files utilized by the Scoring Package for character-based scoring are MFS formatted files.

4.3.2 Classification (CLS) Files

In order to analyze character recognition results, the Scoring Package requires reference classification information that can be
compared against a subject’s recognition results. The reference classifications associated with each character in an MISfile are
stored in aclassification (CLS) file. A CLSfileisafilein the MFSfile format. Each line following thefirst line contains an ASR
of the correct class assigned to the corresponding image in the associated MISfile. The ASR in each line consists of two ASCI|
characters. These arethe ASCI| charactersthat represent the hexadecimal number that representsthe ASCI | character of theclass.
No space characters are allowed on any line of thistype of file. One CL S file should be created by the tester for each MISfile
included in the test set. The name of a CL S file should correspond to the same name used for the associated MISfilein the test
set and have a consistent extension such as“CLS’. An example of aclassification file corresponding to a collection of isolated
hand-print charactersis shown in Appendix D.

20

Figure 26 shows an example of a CLSfile that contains reference classifications for the five characters‘G’, ‘r’, ‘'L’, 'S, and ‘w'.
Thetester would have created this CLSfilein order to reference aMI S file containing the images of the five characters. An ASCII
listing (that recognized the convention that OA isthe end of line marker) of thefileis shown in thefigure. Similarly, ahexadecimal
listing of the same CL Sfileis shown in Figure 27. In this example, the upper-case‘C’ in “4C” could just as well be alower-case
‘C’, resulting in ahexadecimal 43 instead of a hexadecimal 63.

5

47
72
4C
53
77

Figure 26: ASCII listing of a CLS file containing the five characters‘'G’, ‘r’, ‘'L’, 'S, and ‘w'.

35 0A 34 37 0A 37 32 0A 34 63 0A 3533 0A 37 37 0A

Figure 27: Hexadecimal listing of a CL S file containing the five characters‘G’, ‘r’, ‘L', ‘'S, and ‘w’.

4.3.3 Hypothesis (HYP) Files

A hypothesis (HYP) fileisafilein the MFSfile format containing a subject’s hypothesized character classifications generated by
his system’s character classifier. Each line following thefirst line contains an ASR of the hypothesized class assigned to the cor-
responding image in the associated MISfile. The ASR in each line consists of two ASCII characters. These are the ASCI| char-
actersthat represent the hexadecimal number that represents the ASCII character of the hypothesized class. No space characters
are allowed on any line of thistype of file. One HY P file should be returned by the subject for each MIS file processed by his
system. The name of a HY P file should correspond to the same name used for the associated MISfile in the test set and have a
consistent extension such as“HY P’. An example of a hypothesisfileisincluded in Appendix D.

For example, consider aHY Pfile generated by a subject’s system when given the M1Sfile associated with the CLSfilein Figure
26. An ASClI listing of the HY Pfileis shown in Figure 28. Notice that the last character classification inthe HY Pfileisincorrect.
Thelower-case ‘w’ in the MIS file was mistakenly identified by the subject as alower case ‘m’, hexadecimal 6D. Similarly, a
hexadecimal listing of the same HY P fileis shown in Figure 29.

5

47
72
4C
53
6D

Figure 28: ASCII listing of aHY P file containing the five characters‘G’, ‘r’, ‘L', ‘'S’ and ‘m’.

35 0A 34 37 0A 37 32 0A 34 63 0A 3533 0A 36 44 0A

Figure 29: Hexadecimal listing of aHY P file containing the five characters‘G’, ‘'r’, ‘L', 'S, and ‘m’.

4.3.4 Regjection (RJIX) Files

A rejection (RJIX) fileisafilein the MFSfile format in which the ASR on each line following thefirst lineisan ASCII ‘0’ or an
ASCII *1'. A '1’ indicatesthat the classification should be scored as unknown rather than asacorrect or anincorrect classification.
A ‘0’ indicates that the classification should be scored correct if identical with the true classification and scored incorrect other-
wise. The name of an RJX file should correspond to same name used for the associated M1S file and have a consistent extension
such as“RJ0". An example of argjection fileisincluded in Appendix D.

21

A subject may use the RIX filesto return information on the reliability of the hypothesized classifications obtained from his OCR
system. Thisformat isuseful if the system does not provide confidence levels or activations. The use of RIX filesisalso preferred
if the subject’s system has an accept/reject criterion that is more complex than setting a threshold on the highest confidence level
or activation. An example of aRJX file associated with the HY Pfilein Figure 28 is shown in Figure 30. Similarly, a hexadecimal
listing of the same RJX fileis shown in Figure 31.

P ORFRPEFOOU

Figure 30: ASCII listing of aRJX file associated with the HY P filein Figure 28.

35 0A 30 OA 31 0A 31 0A 30 0A 31 0A

Figure 31: Hexadecimal listing of the RJIX file shown in Figure 30.

4.3.5 Confidence (CON) Files

A confidence (CON) fileisafilein the MFSfile format in which the ASR on each line after the first line gives the decimal repre-
sentation of the confidence level (or activation) assigned to the classification on the corresponding line of the HY Pfile that is asso-
ciated with the same MISfile. The confidence level must be a number ranging from 0.0 through 1.0. The number of digitsto the
right of the decimal point must be lessthan 17. The name of a CON file must be the same as the name of the associated MISfile
and have a consistent extension such as“CON”. An example of a confidence fileisincluded in Appendix D.

A subject may use CON files to return the confidence levels assigned by his OCR system to the hypothesized classifications
obtained from his system, provided that such information is available, and provided that his system makes its accept/reject deci-
sions by comparing the contents of these files with a subject-specified threshold. For example, consider the same HY P file used
for the last example. An ASCII listing of an associated CON fileis shown in Figure 32. Similarly, a hexadecimal listing of the
same CON file is shown in Figure 33. Leading zeros are optional as shown in the example.

375

5

0.
9
Ve
4
.8

Figure 32: ASCII listing of a CON file associated with the HY P file in Figure 28.

35 0A 30 2E 33 37 35 0A 2E 39 0A 2E 37 0A 2E 34 0A 2E 38 0A
Figure 33: Hexadecimal listing of the CON file shown in Figure 32.

4.4 Character-Based Scoring Output

Two character-based scoring output files are listed in Appendix E. Thefirst file isasummary report listing the performance mea-
sures computed consistent with the draft standard. The second fileisafact sheet that givesadetailed accounting of al fundamental
events accumulated by the Scoring Package. An explanation of how these files were generated is given in Section 5.5.2. These
two output files use the same formats that are used for reporting the form-based scoring results described in Appendix C.

22

5. Softwar e Documentation

5.1 Release Notes

Release 1.0 of the Scoring Package contains several changesin the format of files used for form-level scoring. These new file
formats represent changes with respect to the files contained in the databases SD2 and SD6. SD2 identifiesan ICON field that
contains information with the string “_ICON_" in the reference file, and identifies void ICON fields by leaving the entry field
value in the reference file empty. SD6 identifies ICON fields containing information with thevalue of ‘1" in the reference file and
representsvoid ICON fieldsby leaving the entry field valuein the reference file empty. Release 1.0 of the Scoring Package requires
an entry field value of * 1’ to signify the presence of ICON information and a‘ 0’ to signify the absence of ICON information. This
change allowsproper recording of ICON field decisions, so that ICON fields can have associ ated confidence values and berejected
for both the presence of information and the absence of information in the field.

A second file format change is associated with the use of Continuation Alpha (CA) fields. CA fields were introduced for the pur-
pose of form synthesis when modeling a single textual response potentially spanning more than one entry field on aform. Both
SD2 and SD6 usethe CA field typeintheir Table A files, and CA field valueswere recorded in referencefilesin an unnecessarily
complex way. Release 1.0 of the Scoring Package expects the numeric, textual, or ICON data contained in an entry field to be
recorded on the corresponding entry field's line in the reference file with no exceptions. Using this convention, CA fields are
scored identically to Alphanumeric (A) entry fields, so that the use of CA field types for scoring purposes is made obsol ete.

Command utilities and a special option flag have been provided with this rel ease of the Scoring Package to provide backward
compatibility with old file formats. Thisis especially useful when scoring files from SD2 and SD6. Any scoring files created
between now and the next rel ease of the Scoring Package, should adhere strictly to the format guidelines outlined in this document.

5.2 Installation Procedures

The Scoring Package software is distributed as a combination of ‘C’ language source code and UNIX shell scripts. Installation
instructions have al so been provided on the CD-ROM in thefileinstall.txt found in the directory doc. In order to run the Scoring
Package, the source code must be compiled. The CD-ROM is aread-only media, requiring the source code to be copied to aread-
writable file system prior to compilation. This section outlines the procedures necessary to install the software from CD-ROM.
These instructions assume installation of the package in the directory /usr/local/score on a UNIX system running SunoS! 4.1.1.
Toinstall the software in another directory, change all occurrences of /usr/local/score to the absol ute path name of the destination
directory. Theseinstructions assume the use of the UNIX C-Shell command interpreter “csh”. Before every execution of “make”,
you should actually run “make-n” to see what commands will be executed and to verify that they make sense and won't harm any
existing data.

Thefirst installation step is to mount the CD-ROM containing the Scoring Package and copy the software to a read-writable file
system:

mount -v -t hsfs-o ro /dev/srO /mnt

make -f /mnt/makefile.txt cdcopy CDROOT=/mnt IROOT=/usr/local/score

umount -v /mnt

where CDROOT is the absolute path name of the CD-ROM file system, and IROOT is the absolute path name under which the
Scoring Package should be copied and compiled. The default for CDROOT is/mnt. The default for IROOT is/usr/local/score.
This step copies the entire contents from the CD-ROM into IROOT which will require approximately 5 megabytes after compi-
lation. By installing in /usr/local/score, all executable commands for the Scoring Package will reside in /usr/local/score/bin.

The second installation step adds the Scoring Package's directory of executable commands to the execution path in the current
shell:

set path=(/usr/local/score/bin $path)
rehash

1. Certain commercial systems may be identified in order to adequately support the subject matter of this work. In no
case does such identification imply recommendation or endorsement by the National Institute of Standards and Technol -
ogy, nor does it imply that the equipment identified is necessarily the best available for the purpose.

23

To add the Scoring Package's directory of executable commands to the execution path in future shells, edit ~/.cshrc:
#vi ~/.cshrc
and add /usr/local/score/bin to the list of directories assigned to the shell variable “path”.

The third installation step compiles the provided source code and installs the resulting executable commands:

cd /usr/local/score

make clean

make compile

make install BINDIR=/usr/local/score/bin
rehash

The Scoring Package software has been devel oped and is supported under SUnOS 4.1.1. The software requires a multi-tasking
operating system which has the ability to spawn sub-processes. The options to mer ge that spawn sub-processes are reffilter,
hypfilter, cnffilter, rejfilter, table_a_ filter, and mrdfilter. The optionsto scor e that spawn sub-processes are zcat, tar, and ztar.
All of these options are described in the following section. Compilation on other UNIX systemsmay result in undefined functions.
One possible solution isto check the GNU C library for source code corresponding to any undefined functions. GNU source code
can be acquired via“ftp” from prep.ai.mit.edu [18.71.0.38] in thefile/pub/gnu/glibc-1.04.tar.Z (or the latest version). If accessto
the network is not available, the source code may also be acquired by writing:

Free Software Foundation
675 Mass Ave
Cambridge, MA 02139
phone: 617/876-3296.

All users of the Scoring Package should register their copy of the package with NIST by sending their name, company, US Mail
address, e-mail address, phone number, and the number of their package’s release. To register viaelectronic mail, please send the
reguested information to scoring@magi.ncsl.nist.gov [129.6.48.150]. If accessto the network is not available, please register via
US Mail or FAX to:

Stanley A. Janet

NIST

225/A216

Gaithersburg, MD 20899
phone: 301/975-2916
FAX: 301/590-0932

Given thisinformation, NIST can announce any software changes or new releases. Please send all problems, questions, and bugs
viaelectronic mail to scoring-bugs@magi.ncsl.nist.gov. In addition to acompl ete description of the problem, identify the machine
model and operating system under which the problem occurs. This software has been thoroughly tested by NIST on UNIX systems
running SUnOS 4.1.1. Any attempt to run this software on any other computer operating system is strictly the responsibility of the
user.

5.3 Command Executions

This section describes the various utilities included with this rel ease of the Scoring Package and specifies how they may be
invoked. Three commands, merge, score, and ocr mer ge.sh control the actual scoring process. Two other utilities, convref and
convhyp, have been provided to handle outdated file formats discussed in the release notes above. Documentation on the use of
these utilitiesis also included on the CD-ROM in the directory doc. Finally, documentation for IHead and MISfile utilities pro-
vided with thisreleaseis provided in Appendix H.

24

53.1Merge

Mergeisreguired by the form-based scoring processto createfiles, in aformat called the mergefileformat, from areferencefile,
ahypothesisfile, an optional confidencefile, and zero or more optional rejection files. Dividing the scoring processinto two parts
separates the logic of the datainput and data scoring tasks. M er ge assembl es the various scoring input filesinto asinglefile of a
canonical form that can be processed by score and provides input file format checking and conversion while facilitating visual
checking and manual creation of mergefilesfor testing. Frequently, asingle set of mergefilesis processed multipletimesby score.
Using the merge utility requires format checking and conversion to be conducted once, rather than every time scoreis invoked.
Merge may be invoked as follows:

#merge[optiong] file. ..

Options:
-h prints usage message and exits
-V prints version and exits
-v turns on verbose output

-0 merge-options selects merge options described below

The Scoring Package permitsvariousfiletree structuresfor storing theinput files required for scoring. Therefore, ahighly flexible
input utility such as mer geisrequired. The merge-options are specified on the command line using the “-0” option. Each option
selected may be specified with a separate “-0" flag or as alist of options separated by commas associated with asingle “-0” flag.
These merge-options can be divided into four groups: input options, output options, debugging options, and miscellaneous
options.

1. Input Options

explicit specifiesthat all files are named explicitly on the command line. Thisis the default. The command line must
consist of one or more scoring sets, each set containing three or more file names. Thefirst two files of ascoring
set are the reference and hypothesisfiles. The final file of each set isthe merge file. If a confidence file and/or
rejection filesare specified, then they must follow the hypothesisfile with the confidencefilefirst. Thefollowing
C-Shell command sequence executes mer ge on two sets of fileswith arguments that specify the presence acon-
fidencefile and two rejection files per set. Theresulting mergefiles“x.mrg” and “y.mrg” are then used by score.

set xfiles = (x.{fmt,hyp,con,rj1,rj2,mrg})

set yfiles= (y.{fmt,hyp,con,rj1,rj2,mrg})

merge -0 explicit,conf=c,nrej=2,formtypes $xfiles $yfiles
score -s output=Ad x.mrg y.mrg

implicit instructs mer geto generate file names from each argument on the command line, using each argument asafile's
root name, appending a period and an extension, and optionally prefixing adirectory path (unless thefirst char-
acter of the argument is aslash). M er ge generates scoring files and merge files that reference the current work-
ing directory by default. To specify a different directory, the following assignments should be included in the
merge-options on the command line;

refdir=value

hypdir=value

cnfdir=value

rejdir=value

mr gdir=value

In implicit mode, the extensions of generated files names may be specified and appended to the arguments on
thecommand line. The default extensionsare“fmt”, “HYP”, “CON”, “REJ’" and “mrg” respectively. To specify
alternative extensions, the following assignments should beincluded in the merge-options on the command line:

refext=value
hypext=value
cnfext=value
rejext=value
mrgext=value

25

nre=#

conf=value

table_a=file

no_table a

Using these flags, only one rejection file may be specified for each scoring set when the implicit mode is used.
Therefore, theimplicit mode merge command that correspondsto the explicit mode exampl e above, except with
only one rejection file specified per scoring set, would be:

merge -0 implicit,conf=c,nrej=1,formtypes,hypext=hyp,cnfext=con,rejext=rj1 x y

instructs mer ge to expect the specified number of rejection files on the command line for every scoring file set,
where each scoring file set is comprised of at least areference and hypothesisfile pair. This option isshown in
the explicit mode example above. The default is zero (0) rejection files per set.

instructs mer ge to expect a confidence file with every scoring file set when avalue of ‘¢’ isused. Thedefault is
avalue of ‘n” which instructs merge not to expect confidence files. This option is shown in the explicit mode
example above.

specifies the name of the Table A file to be used in scoring.

prohibits the use of any Table A file.

table a dir=value

newca

oldca

newicons

oldicons

newformats

oldformats

formtypes

noformtypes

formids
noformids

hyp_ignore

instructs mer ge to read the specified Table A file from the given directory. The path specified for table_a dir
is appended to the file name specified for table_a, if the file name is arelative path. If the file name specified
for table_aisacomplete path beginning with the slash character, then the value specified for table a dir is
ignored.

instructs mer ge that Continua Alpha (CA) fieldswill have any corresponding text after their field label. Thisis
the default. Refer to the release notes for changes made relative to the use of CA fields.

instructs mer ge to queue lines in reference files that begin with atab and assign the first remaining line from
the queue to any CA field subsequently encountered.

instructs mer ge that the presence of ICON datais denoted in reference and hypothesisfilesby a‘1’, and that
the absence of ICON datais denoted by a‘0’. Thisisthe default.

instructs mer ge that the presence of ICON data is denoted in reference and hypothesis files by the string
“_ICON_" ora‘l’, and absence is denoted by either a‘0’ or no text following thefield label.

setsboth “newca’ and “newicons’ flags. Thisisthe default. Refer to the release notesfor changes made relative
to the file formats.

instructs mer ge to accept old formats for CA and ICON fields instead of the new formats. Thisoptionis
required when scoring reference files from SD2 and SD6.

instructs mer ge to expect form types to be present on the first line of the scoring input files. Confidence files
have a confidence value following the form type. Rejection fileshave a“0” or “1” following the form type
denoting form type acceptance or rejection respectively. This option is shown in the explicit mode example
above.

instructs mer ge to assume there are no lines present in the scoring input files with form type hypotheses. This
isthe default. This option is useful when scoring results from systems that do not make form identifications.
Using this option in conjunction with formtypesis not permitted.

is reserved for future use.
is reserved for future use.

instructs mer geto ignore field datain the hypothesis, confidence and rejection files. For character fields, empty
lines are written to the merge file. For ICON fields, zeroes are written instead.

26

reffilter=cmd specifies how areference file should be filtered prior to being processed.

hypfilter=cmd specifies how a hypothesis file should be filtered prior to being processed.

cnffilter=cmd specifies how a confidence file should be filtered prior to being processed.

rejfilter=cmd specifies how arejection file should be filtered prior to being processed.

table a filter=cmd
specifies how a Table A file should be filtered prior to being processed. These filter options utilize the system
call popen(3) so that multiple instances of the same filter type are appended to create a pipe. For example:
-o reffilter="sed s:foo:bar:’ reffilter="tr A &
is equivaent to:
-0 reffilter="sed s:foo:bar: | tr A &
The term filter represents any user-specified program (UNIX command, shell-script, or custom program) that
reads from standard input, modifies the data stream in some specified way, and writes the modified data stream
back out to standard output. These filter options are useful when on-line modifications and format changes to

scoring input files are deemed useful and necessary. These options are not typically used for general scoring
purposes when the input file formats and contents match the precise specifications of the Scoring Package.

sKip=# instructs mer ge to skip the specified number of linesinto the reference, hypothesis, confidence and rejection
files. This option is useful when local headers on all input file types are used.

refskip=# instructs mer ge to skip the specified number of linesinto reference files.

hypskip=# instructs mer ge to skip the specified number of linesinto hypothesisfiles.

cnfskip=# instructs mer ge to skip the specified number of linesinto confidencefiles.

rejskip=# instructs mer ge to skip the specified number of linesinto rejection files.

2. Output Options

fillconf=value specifiesthat confidence values output should be derived from random values between 0.0 and 1.0 when the
valueisthe string “random”. If the value is a number, then the confidence values output should be the given
number.

divider=value setsthedivider in merge filesto the given string. The default divider isthe string “ %%%%%" .
mrdfilter=cmd specifiesthat the output going to the mergefileisfirst piped through the given command. Seethereffilter exam-
ple above.

3. Debugging Options

nofree prevents memory obtained using malloc(3) and associated callsfrom being deallocated. Appliesonly to callsto
score_freg() in merge, not inside library calls.

quit stops processing of files on the first occurrence of an error. By default, mer ge proceeds to the next set of files
on error.

mallocdb={0|1|2}
setsadebug level for callsto malloc(3). Thisoption iscompiled into mer geif /usr/lib/debug/malloc.o exists (it
doesin SUn0OS4.1.1). If thefile does not exist, the option currently has no effect. See malloc_debug(3) for more
information on the possible debug levels.

4. Miscellaneous Options

name=value overridesthe program name used for examplein error messages. This option isuseful when mergeis started up
by other programs, such asin ocr mer ge.sh, so that error messages will make better sense. The default value for
the program name is the base-name of argv[Q].

seed= initializes the random number generator used by merge using the specified seed.

27

5. Notes and Caveats

Linesin any of the input files that begin with ‘# are considered comments and are ignored. The skip operations are performed
after any filtering, and do not include comment lines.

Theimplicit mode should not be used when more than one rejection file per reference file are being specified via“nrej=#".

The merge files created by aversion of mer ge should only be scored by the corresponding version of score, astheinternal merge
file format may change.

28

5.3.2 Score

Scor e performs the entire scoring task and accepts both files and directories as legal arguments. If files are provided, they must
be of the merge file format and created by the corresponding version of merge. Merge files are scored directly. If directories are
provided, then by default, score searches the directories recursively for merge files. Score may be invoked as follows:

score[optiong] { file|dir } ...

Options:
-h[h[h]] prints a short (h), medium (hh), or long (hhh) usage message and exits
-V prints version and exits
-V turns on verbose output
-A selects options that modify default string alignment parameters described below
-0 selects options that modify global parameters described below
-S selects options that create a scoring profile described below

There are three classes of options used by score: global options, scoring profile options, and alignment options. Global options
control the basic actions of score. Scoring profile options create subsets of input data for a single execution of score. The align-
ment options control the way reference and hypothesis character strings are aligned. The algorithm employed by scor e chooses
the minimum penalty alignment as found from a modified L evenstein distance algorithm[12]. Given these classes of options, glo-
bal options can be specified separately (-0 <option1> -0 <option2>) or together in a comma-separated list (-0 <option1>,<op-
tion2>). Likewise, alignment options can be specified separately (-A<optionl> -A<option2>) or together in a comma-separated
list (-A<option1>,<option2>). Scoring profile options differsin that each instance of acomma-separated list of options specified
with aunique “-s’ flag represents a separate scoring profile.

1. Global Options

name=value overrides the program name used for example in error messages. This option is useful when scoreis started up
by other programs, such asin ocr mer ge.sh, so that error messages will make better sense. The default valuefor
the program name is the base-name of argv[Q].

zcat instruct scor e to assume files with the extension “.Z” are compressed files. Files having this extension are
decompressed prior to any subsequent processing. This option is useful for processing large numbers of merge
files that need to be compressed in order to save disk space.

tar instructs scor e to assume files with the extension “ .tar” are tar archives. Tar archives have al their contents
extracted in atemporary directory. That directory is processed asif it appeared on the command line, then
removed. This option is useful for processing large numbers of merge files that need to be bundled in order to
save file system nodes.

ztar instructs scor e to assume files with the extension “.tar.Z” are compressed tar archives. Files with this extension
are first decompressed and then handled the same way tar archives using the tar option are processed. This
option is useful in saving both disk space and file system nodes.

recurse turns on recursive directory processing, which forces scor e to process all files contained in adirectory that is
either a specified command line argument or atemporary directory that tar archives are extracted into. By
default, directories are searched recursively.

norecur se turns off recursive directory processing. Only the filesin adirectory will be processed, not those in any subdi-
rectories.

nocase instructs scor e to consider case mismatches to be correct.

case instructs scor e to consider case mismatches to be substitutions. This is the default.

nowhite instructs scor e to ignore the reported recognition of spaces by removing blanks and tabs from reference strings
and from hypothesis strings. Any confidence and/or reject values corresponding to areported space are also
removed.

29

yesicon=string overrides the string denoting the presence of ICON data in reference and hypothesis files. The default string
signifying the presence of ICON datais“1”.

noicon=string overridesthe string denoting the absence of ICON datain reference and hypothesisfiles. The default string sig-
nifying the absence of ICON datais“0".

nofree prevents memory obtained using malloc(3) and associated calls from being deallocated. This option applies
only to callsto score free() in score, not inside library calls.

quit stops the scoring of files on thefirst occurrence of an error. By default, scor e proceeds to the next mergefile on
error.

mallocdb={0|1|2}
setsadebug level for callsto malloc(3). Thisoption is compiled into scor e if /ust/lib/debug/malloc.o exists (it
doesin SunOS4.1.1). If thefile does not exist, the option currently has no effect. See malloc_debug(3) for more
information on the possible debug levels.

linebuf buffers lines being printed to standard output. This option is useful for watching scor€'s progress or for debug-
ging if score prematurely exits with buffers not being flushed.

prdatasize instructs scor e to produce output for monitoring the size of its data segment. The output is printed before and
after allocating spacefor al scoring profiles, and after every fileis processed. The value printed at each point is
the pointer to the start of the program’s data space. This option is useful for watching how much memory has
been allocated and not freed. See sbrk(2).

maxfiles=# instructs scor e to stop processing after the specified number of merge files have been scored. Thisoptionisuse-
ful for getting sample numbers from afraction of the mergefilesin alarge set that is conveniently accessed via
wild-carding. For example:

score ... -0 maxfiles=50 data/*.mrg

2. Scoring Profile Options

Scoring profile options create subsets of input data to be processed during a single execution of score. For example, if two rejec-
tion files are provided for a set of input scoring files during the merge phase, the alignments can be scored using both rejection
files by creating two scoring profiles, one profile specifying the first rejection file should be applied and the second profile speci-
fying the second rejection file should be applied. An example of this follows:

set opts = output=FCd
score -s ${ opts} ,rejline=1,0f=r1.out -s ${ opts} ,rejline=2,0f=r2.out x.mrg y.mrg

Notice the two “-s" option sequences which represent two different scoring profiles. At least one scoring profile must be present
on score's command line. Adding more profiles will require more cal culations and will increase the amount of memory utilized
by score. The maximum number of scoring profiles that can be created is limited only by the amount of available memory.

In the options listed below, aleading exclamation point inverts the option, a plus sign leading a number changes an equality test
to agreater than test, and aminus sign leading a number changes an equality test to aless than test. The optionsthat use the term
“character field” have no effect on ICON fields, which are currently always scored (unless ignored based on field number).

sel=[!]Jrangelist selectsfields based on their number within their files. A rangelist is one or more slash-separated range specifi-
cations, where arange specification is asingle number representing afield number, or two dash-separated num-
bers representing arange of field numbers. Field number are 1-oriented. The following are al legal range lists:

1 (first field)
3-5 (third, fourth and fifth fields)
1/3-5/10 (first, third, fourth, fifth and tenth fields)

formtype=[!]name
scores only the fields on forms of the specified type. Fields from formswhose type was not specified during the
invocation of merge are not scored.

30

fieldtype=[!]Jname

scores only the fields of the specified entry field type as defined by a corresponding Table A file. Fields from
forms where no Table_A file was specified during the invocation of merge are not scored.

fieldcontext=[!]Jname

lencmp=test

astr=[!]regex

refstr=[!]regex
hypstr=[!]regex
alen=[![+]#
rlen=[!|+|-]#
hlen=[!|+|-]#
charfields
nocharfields
Idist=[+|-]#

right

wrong

nok=[+|-]#

nerr=[+|-]#

nsub=[+|-]#

nins=[+|-]#

ndel=[+|-]#

rejthr=#

scores only thefields having the specified context |abel as defined by a corresponding Table A file. Fieldsfrom
forms where no Table_A file was specified during the invocation of merge are not scored.

scores only those character fields where the reference string length is equal to, not equal to, less than, less than
or equal to, greater than, or greater than or equal to the hypothesis string length. These conditional tests may be
specified from the corresponding list:

eq, neq, It, le, gt, ge

scores only character fields with alignment strings matching the provided regular expression. The alignment
string consists of thefollowing charactersrepresenting, respectively, character matches, substitutions, insertions
and deletionsin the alignment:

NS D?
Therefore, astr=""S would select fields that begin with asubstitution error. See regex(3) for information onthe
syntax of regular expressions.
scores only character fields with reference strings matching the provided regular expression.
scores only character fields with hypothesis strings matching the provided regular expression.
scores only character fields with alignment lengths equal to the provided number.
scores only character fields with reference lengths equal to the provided number.
scores only character fields with hypothesis lengths equal to the provided number.
scores all character fields in the scoring profile.
scores no character fields in the scoring profile.

scores al character fields that, based on string alignments with rejections ignored, have a Levenstein distance
equal to the number provided.

scores al character fields that, based on string alignments with rejections ignored, have no substitutions, inser-
tions, or deletions.

scoresall character fieldsthat, based on string alignments with rejectionsignored, have at |east one substitution,
insertion, or deletion.

scoresall character fieldsthat, based on string alignmentswith rejectionsignored, have atotal number of correct
characters equal to the provided number.

scores al character fields that, based on string alignments with rejections ignored, have atotal number of sub-
stitutions, insertions, and deletions equal to the provided number.

scores al character fields that, based on string alignments with rejections ignored, have atotal number of sub-
stitutions equal to the provided number.

scores all character fields that, based on string alignments with rejectionsignored, have atotal number of inser-
tions equal to the provided number.

scores al character fields that, based on string alignments with rejectionsignored, have atotal number of dele-
tions equal to the provided number.

instructs scor e to ignore provided rejection data and generate its own by rejecting hypothesized characters
whose corresponding confidence values are greater than or equal to the specified threshold value.

31

rejline=#

tmin=#
peak_tput=#
tresp=#
tav_base=#
tunavail=#

output=flags

of=file

af=file

cf=file

linebuf

unbuf

instructs scor e to use a specific set of rejection data. The default is to use the data from the first rejection file
included in each set of scoring files during the merge phase. The example shown at the beginning of the scoring
profile section above demonstrates the use of this option.

specifies the minimum time between outputs (in seconds) as outlined in the draft standard.

specifies the peak throughput (in outputs per second) as outlined in the draft standard.

specifies the average time for the first response (in seconds) as outlined in the draft standard.
specifies the base time for which the system was available (in hours) as outlined in the draft standard.
specifies the time the system was unavailable (in hours) as outlined in the draft standard.

specifies what information is printed in the scoring summary. The available output flags are:

al (selects al output flags)

none (selects no output flags)

F (selects character fields)

I (selects ICON fields)

C (selects characters)

t (selects form types)

A (selects alignments)

d (selects miscellaneous draft standard measures)

Thesecond flag, “none”, selects no other output flags, whichisthe default, and isuseful for checking theformats
of merge files and checking for errorsinternal to score. Multiple occurrences of theflag ‘A’ causes only align-
mentswith errors, ignoring all rejections, to be printed instead of printing every alignment in the scoring profile.
If both ‘F and ‘1" are specified, then the scoring results from character fields and ICON fields are combined
when computing performance measures.

sends scoring summary output including the fundamental accumulators to the specified file. The default isto
send the scoring summary to standard output. It isrecommended that output be sent to files when more than one
scoring profile is specified.

sends selected alignments to the specified file. The default is to send the alignments to the same place that the
scoring summary output is sent.

sends basic scoring countsincluding fundamental accumulatorsto the specified file. By default, this datais not
printed.

buffers lines output to any files specified by the above options.

does not buffer lines output to any files specified by the above options.

3. Alignment Options

case
nocase

dir=right

dir=left

treats case mismatches as substitutions during the alignment. Thisis the default.
treats case mismatches as correct identifications during the alignment.

aligns hypotheses to the right in case of ties. Ties can occur when more than one possible alignment have the
same minimum penalty. This option favorsinsertions during backtracking and is the default.

aligns hypotheses to the |eft in case of ties. This option favors deletions during backtracking.

32

4. Notes and Caveats

Linesin any merge files beginning with “#’ are considered comments and are ignored.

If no rejection values are provided or created from confidence val ues from a specified threshold, output that is afunction of rejec-
tions should be assumed to have been generated from no rejections.

If no confidence values are provided, output that is afunction of confidence should be assumed to have been generated from full
confidence.

33

5.3.30crmerge.sh

Ocrmerge.sh isafront-end to mer geimplemented as Bourne Shell script and isrequired for character-based scoring. This utility
takes character-based scoring files (CLS, HY R, CON, and RJX) and creates merge files which then can be processed by score.
Ocrmerge.sh may be invoked as follows:

ocrmer ge.sh [merge-optiong] file. . .

This script executes mer ge with options that instruct it to filter the character-based scoring files into the form-based scoring file
formats prior to creating merge files. The script executes the following command sequence:

XEQ=merge
exec ${ XEQ} \
-0 hame=ocrmerge.sh \
-ono_table a\
-0 noformtypes\
-0 noformids\
-o reffilter=ocrreff.sh \
-0 hypfilter=ocrhypf.sh\
-0 cnffilter=ocrenff.sh \
-o reffilter=ocrrejf.sh \
“ $@n
Ocrmer ge.sh passes along all arguments on its command lineto mer ge. Therefore, for example, either explicit or implicit merge
modes can still be used.

5.3.4 Convref and Convhyp

Convref converts obsol ete form-based reference file formats to the reference file format current with this release of the Scoring
Package. Convhyp converts obsolete form-based hypothesis file formats to the hypothesisfile format current with this release of
the Scoring Package. Prior to conversion, the files provided on the command line are copied to back-up files using the <file>~
naming convention. The old format files are then overwritten by the new format files.

One old format, used in SD2, called for the presence of ICON data to be specified by the string “_ICON_" following the entry
field label. The current format callsfor a‘1’ to be used to specify the presence of ICON datain afield. All old formats, used in
SD2 and SD6, called for the absence of ICON datato be specified by an empty entry field value. The current format callsfora‘0’
to be used to specify the absence of ICON datain afield. All old formats, also used in SD2 and SD6, called for lines beginning
with atab character to be queued and substituted for entry field values whenever Continuation Alpha (CA) fields were incurred.
The current format does not recognize tabbed lines and requires all entry field valuesto be included on the sameline astheir asso-
ciated entry field identifications regardless of the type of field. Convref and Convhyp may be invoked as follows:

convref [optiong] file. . .
convhyp [optiong] file. ..

Options:
-h prints a usage message and exits
-V prints version and exits
-v turns on verbose output

-t table A specifies an associated Table A file

5.4 Fundamental Accumulators

The summary output generated by the Scoring Package contains a section which reports the values compiled for a set of funda-

mental accumulatorstallied at the character level across each of the four forms processing tasks listed in Figure 2. These accumu-
lators are listed in Figure 34. TP represents the total number of correct character classifications assigned by the system prior to

any rejections. FP represents the total number of combined substitution and insertion errors made by the system prior to any rejec-
tions. M representsthe total number of deletion errors made by the system within the character recognition task plusthe total num-
ber of characters missed due to identification errors at either the form or field identification tasks. Notice that M isnot included in
the fundamental accumulator FP. RT isthe subset of correct classificationsin TP which are rejected by the system. RF isthe subset

of incorrect classification in FP which arerejected by the system. RM representsthe total number of characters missed dueto form
or fields being rejected.

TP | Correct Character Classifications

FP | Substituted and Inserted Characters

M Deleted and Missed Characters

RT | Correct Character Classifications Rejected

RF | Substituted and Inserted Characters Rejected

RM | Missed Characters Rejected

Figure 34: Fundamental accumulators reported by the Scoring Package.

Using these fundamental accumulators, the number of correct character classifications remaining after rejection isequal to (TP -
RT), and the number of incorrect character classifications and classifications of non-character images after rejection is equal to
(FP - RF). The total number of rejected charactersis equal to (RT + RF + RM). These accumulators are used to compute the per-
formance measures defined in the draft standard on evaluating character recognition systems.

5.5 Provided Data and Examples

Three groups of example scoring files have been provided with this rel ease of the Scoring Package. All three collections are stored
inthe directory data on the CD-ROM. The datadirectory form containsimages and scoring filesfor acollection of IRStax forms,
the data directory char contains a collection of referenced images of isolated characters and associated scoring files, and the data
directory test contains scoring files for a collection of simulated test forms.

5.5.1 Form-Based Scoring

The data directory form contains referenced images and scoring filesfor 11 IRS tax forms, each of which are stored in their own
subdirectory, r0000 to r 0010. The form images are in the IHead format which is defined in Appendix F and stored in files having
an extension of “pct”. The data entered on these forms has been derived by a computer so that the forms do not contain real tax
data. Thefirst five forms, r0000 to r 0004, are the first page of a 1988 1040 form completed with machine-print and are similar to
the formsimages distributed in SD2. The second five forms, r 0005 to r 0009, are the same form face completed with hand-print
and are similar to the forms image distributed in SD6. The final form, r0010, is a 1988 Schedule A form completed with hand-
print. A set of reference, hypothesis, rejection, and confidencefil es are stored with each form image and have the extensions*“fmt”,
“hyp”, “con”, and “rej” respectively. The hypothesis, rejection, and confidence files represent plausible system results from afic-
titiousforms processing system. This collection of scoring files has been provided so that auser of the Scoring Package may exper-
iment with the package's form-based scoring capabilities.

These form-based scoring input files were used by the Scoring Package to produce the example output filesform.sum and form.-
fct inthe directory form. These two output files are included in Appendix C and represent results obtained from scoring all 11 tax
forms collectively. The intermediate merge files used by score areincluded in each of the corresponding form subdirectories and
have the extension “mrg”. For example, the following mer ge options were used to create the merge file in r 0000:

merge -0 formtypes,conf=c,nrej=1 -0 table_a=tabel5/1040_1.tab r0000/r0000_00.{ fmt,hyp,con,rej,mrg}

Upon creating the merge files, the following scor e options were used to create the two scoring output files:

35

5.5.2 Character-Based Scoring

The data directory char contains referenced images and scoring files for a collection of isolated characters similar to those dis-

tributed in SD3. The directory d0000 contains an MIS file of 20 isolated images of digits, the directory u0000 contains an MIS
file of 20 isolated images of upper-case letters, and the directory 10000 contains an MISfile of 20 isolated images of lower-case
letters. The MISfile format is defined in Appendix G, and the MISfiles are stored in files having an extension of “mis’. A set of
classification, hypothesis, rejection, and confidencefiles are stored with each MISfile and have the extensions“cls’, “hyp”, “con”
and “rj0” respectively. This collection of scoring files has been provided so that a user of the Scoring Package may experiment
with the package's character-based scoring capabilities.

These character-based scoring files were used by the Scoring Package to produce example output files which have the extension
“sum” and “fct” stored in each of the three subdirectoriesin char. For example, the two output files 10000.sum and 10000.fct in

10000, which areincluded in Appendix E, represent scores obtained from the scoring input files shown in Appendix D. The inter-
mediate merge file use by scoreisincluded in the file |0000.mr g and was created using the following to ocr merge.sh:

ocrmerge.sh -0 conf=c,nrej=1 -o implicit,refext=cls,hypext=hyp,cnfext=con,rejext=rj0,mrgext=mrg 10000/|0000

Upon creating the merge files, the following scor e options were used to create the two scoring output files:
score -s output=FCItdAA, of=10000/10000.sum,cf=10000/10000.fct 10000/10000.mrg

5.5.3 Installation Testing

Once the Scoring Package has been installed, the provided form-based and character-based scoring files can be used to produce
locally derived scoring outputs. The new output files can be compared with those output files distributed on the CD-ROM in order
to determineif the installation of the Scoring Package has been successful. A third set of scoring files has been included with this
release of the Scoring Package and is found in the data directory test.

Each of the directoriesin test contains asimulated form reference file and simulated system results (hypothesis, confidence, and
rejection files) that have been designed to test specific logic and format aspects of the Scoring Package. The scoring outputs gen-
erated by the Scoring Package for each of these test forms have been stored in files which have the extension “sum” and “fct”.
The scoring output files included in test’s subdirectories were created similarly to the form-based scoring example above except
that each test form was scored independently rather than collectively, and thetest formin of 1 requiresthe use of oldfor matswhen
invoking mer ge. These tests forms can be used to determine if the installation of the Scoring Package was successful, but more

importantly, they can be used to validate the porting of the Scoring Package to other architecturesin which attention to implemen-
tation detailsis critical.

36

6. References

[1] C. L. Wilson and M. D. Garris. Handprinted character database. Technical Report Special Database 1, HWDB, Nationa In-
stitute of Standards and Technology, April 1990.

[2] D. L. Dimmick, M. D. Garris, and C. L. Wilson. Structured Forms Database, Technical Report Special Database 2, SFRS,
National Institute of Standards and Technology, December 1991.

[3] D. L. Dimmick and M. D. Garris. Structured Forms Database 2, Technical Report Special Database 2, SFRS2, National Insti-
tute of Standards and Technology, September 1992.

[4] M. D. Garrisand R. A. Wilkinson. Handwritten segmented characters database. Technical Report Special Database 3,
HWSC, National Institute of Standards and Technology, February 1992.

[5] R. A. Wilkinson. Handprinted segmented characters database. Technical Report Test Database 1, TST 1, National I nstitute of
Standards and Technology, April 1992.

[6] M. D. Garris, et a. Massively parallel implementation of character recognition systems. In Conference on Character Recog-
nition and Digitizer Technologies, volume 1661, pages 269-280, San Jose California, February 1992. SPIE.

[7] H. P. Graf, C. Nohl, and J. Ben. Image segmentation with networks of variable scale. J. Moody, S. Hanson, and R. Lippmann,
editors, Advances in Neural Information Processing Systems, volume IV, pages 480-487. Morgan Kaufmann, Denver, De-
cember 1991.

[8] M. D. Garrisand C. L. Wilson. A neural approach to concurrent character segmentation and recognition. In Southcon 92
Conference Record, pages 154-159, Orlando, March 1992. |IEEE.

[9] G. L. Martin. Centered-object integrated segmentation and recognition for visual character recognition. J. Moody, S. Hanson,
and R. Lippmann, editors, Advances in Neural Information Processing Systems, volume |V, pages 504-511. Morgan Kauf-
mann, Denver, December 1991.

[10] J. D. Keeler and D. E. Rumelhart. Self-organizing segmentation and recognition neura network. J. Moody, S. Hanson, and
R. Lippmann, editors, Advancesin Neural Information Processing Systems, volume IV, pages 496-503. Morgan Kaufmann,
Denver, December 1991.

[11] R. A. Wilkinson, et a. The first Census optical character recognition system conference. Technical Report NISTIR 4912,
National Institute of Standards and Technology, July 1992.

[12] H. G. Zwakenberg. Inexact Alphanumeric Comparison. The C Users Journal, pages 127-131. May 1991.

[13] Department of Defense, “Military Specification - Raster Graphics Representation in Binary Format, Requirements for, MIL-
R-28002,” 20 Dec 1988.

[14] CCITT, “Facsimile Coding Schemes and Coding Control Functions for Group 4 Facsimile Apparatus, Fascicle V11.3 - Rec.
T.6,” 1984.

37

Appendix A: Form Template Files

38

£1040

Department of the Trcl;ury-—'nhmﬂ Revenue Service

U.S. Individual Income Tax Return

1988| .

1040 1 L H3 V1

For the yaar Jan.-Dec. 31, 1988, or other tax year beginning 1040 1 L H1 V1, 1988, ending 1040 1 L H2 V1 ,19

| OMB No. 1545-0074

Label L { Your first name and initial (if joint return, aiso give spouse's name and initial) Last name ") Your social security number
o | 1040_1_L H1_V2 1040_15L_H2 \2
&‘::23;:“'- E Present home address (number, street, and apt. no. or rural route). (H » P.Q. Box, see page 6 of instructions.) Spouse's soclal security number
please print or w | 10401 L HI V3 1040_1;L_H2 V83
type. = City, town or post office, state, and ZIP code 1040 1 L H2 V5 For Privacy Act and Paperwork
LN 1040_1 L H1 V4 NG Reduction Act Notice, see Instructions.
Presidential ’ Do you want $1 to go to this fund? ,1040_1 | H1 V5.~ | Yes / /_ No |WNote: Checkng ‘Yes wik
Election Campaign If joint return, does your spouse want $1 to go to this fund? ves V//} No reduce your refund.
1040 1 1
Filing Status | Single 1040 1 2 1040_1_L_H1_V6 1040_1_L_H2_ V6
ng Status 2 Mamed filing joint return (even if only one had income)
1040_1 3 H1 Married filing separate return. Enter spouse’s social security no. above and full name here. 1040_1 3 H2
Check only g
one box. 4 Head of household (with qualifying person). (See page 7 of Instructions.) if the qualifying person is your child but not
- 104014 H1 your dependent, enter child’s name here. 10401 4 H2
1040_1.5 H1 —5—i®» | Qualifying widow(er) with dependent child (year spouse died »19 4). (See page 7 of Instructions.)
1040_1_6a Yourseif it someone (such as your parent) can claim you as a dependenl do not check box 6a.
. No. of bonss
[umphons But be sure to check the box on fine 33b on page 2. “ 10401 5°HZ . cheched on 62 0
1040_1_6b_H1 —dE] Spouse . S L] we 1020 1% 2
Instructions ¢ De : 2) Chack (5) No. of months
pendents: (3) 1 age S or older, t's R | No. of your
on page 8.) (1) Name (fist, iniial, and last name) s O el vty m () Matomshp [t e Chiken on b
. . ’ 1040_1_6c_H6_V1
1040 _1 6¢c H1 V1 H2 {H3 : H4 H5 o lived with you
1040 _1_6C_HI_V2 H2 :H3 ; H4 H5 o gl with
i more than 6 1040_1_6c_H1 V3 H2 i H3 : H4 H5 T VoS 10_1_c_Ho 2
dependents, see 1040_1 6¢c_H1 V4 H2 tH3 § H4 H5
Instructions on 1040_1 6¢c_H1 V5 H2 it H3 3 H4 H5 Mls listed
. : : 1040 1 6¢_H6_V3
page 8 1040_1_6¢_HI_V6 H2 t H3 : H4 H5 on'e 0160
d Hyour child didn't live with you but is claimed as your dependent under a pre-1985 agreement, check here _/’P m“"&";nm - (/
¢_Total number of exemptions claimed . I .1040,1 6d,——Y . linesabove >
7 Wages, salaries, tips, etc. (attach Form(s) W-2) . . 7 § 104017
Income 83 Taxable interest income (also attach Schedufe B if over $400) . . e R 8a | 1040 1 8a
Please attach b Tax-sxempt interest income (see page 11). DON'T include on line Bal._& J 1 1040 1 9
Copy B of your 9 Dividend income (also attach Schedule B if over $400) . e e e L ——
Forms W-2, W-2G, 10 | 1040 1 10
and W-2P here. 10 Taxable refunds of state and local income taxes, if any, from worksheet on page 11 of Instructions . ==
11 Alimony received . e 11 | 1040 1 11
if you do not have 12 | 1040 1 10]
aW-2, see 12 Business income or (loss) (attach Schedule C) 1040—1—13
- 13 Capital gain or (loss) (attach Schedule D) . . 13 | o8t
14 Capital gain distributions not reported on line 13 (see page 11) 14 e
15 Other gains or (fosses) (attach Form4797) O e | 1040_1 15
16a Total (RA distributions . . |16a] 1040 1 16a | 16b Taxabie amount (see page 11) | 16p | 10401 160
17a Total pensions and annuities [17a] 10401178 | 17b Taxable amount (see page 12) | 17b 1040_1 170 S
}__ 18 Rents, royaities, partnerships, estates, trusts, etc. (attach Schedule £) 1040_1 18
19 Farmincome or (loss) (attach Schedule F) . 19 | 1040119 j
20 Unemployment compensation (insurance) (see page 13) . 1040 1 ’i - 20 | 1040 1 20
Please 21a Social security benefits (see page 13) Lzll L a | 1040 1 21b
mm'cnhr check b Taxable amount, if any, from the worksheet on page 13 e e 21b ==
o y i i 1040 1 22 H1 1040 1 22 H2
order here. 22 Otherincome (list type and amount—seepage 13) ___00 L cc 22 —=to
23 Add the amounts shown in the far right column for lines 7 through 22, This is your total Income . B> | 23] 1040 1 23
24 Reimbursed employee business expenses from Form 2106, line 13. | 24 1040_1 24
Ad]ustments 25a Your IRA deduction, from applicable worksheet on page 14 or 15| 258 1040_1_25a
to Income b Spouse's IRA deduction, from applicable worksheet on page 14 o 15| 250 | 1040 1 25b
26 Self-employed health insurance deduction, from worksheet on page 15 . | 26 }1040 1 26
27 Keogh retirement plan and self-employed SEP deduction. 27 |1040 1 27
(See 28 Penalty on early withdrawal of savings . 28 11040 1 28
:’nnstructlggs) 29 Alimony paid (recipient’s last name 1040 1 29 Vl :]
page 13 and social security no. 11040 1129 H1 V2 y | 29]1040 1 29 H2 V4
30 _Add lines 24 through 29. These are your total adjustments . » | 30 | 1040130
ldjus(ed 31 Subtract line 30 from line 23. This is your adjusted gross Income. if thls Ime is less than
$18,576 and a child lived with you, see “Earned Income Credit” (line 56) on page 19 of 1040 1 31
QQSS Income the Instructions. If you want IRS to figure your tax, see page 16 of the Instructions |31 L

19

PR RRRRRRRRRRRRRRRRPRPRRRRRRRRRRRERRERPRRRRRRRRERRER
oo

R RRR R R

OO

=

1 V1A DATA
2 V1A DATA
_H3 V1A DATA
1 V2A NAME

1 V3 A DATA
2 V3 A SSN

1 V4 A DATA

1 V5I1CON DATA
2 V5I1CON DATA
1 V6 1CON DATA
2 V6 ICON DATA

_H1ICON DATA
_H2 A NAME

- H1 ICON DATA

- H2 A NAME
H1ICON DATA

5 H2 A DATA
_6alCON DATA
_6b_H1ICON DATA
_6b_H2 | DATA

6c H1 V1A NAME
_6c_H2 V1ICON DATA
6c H3 V1A SSN
_6c_H4 V1A DATA
_6c_H5 V11 DATA
_6c_H6_V1I DATA
_6c_H1 V2 A NAME
_6c_H2 V2 ICON DATA
6c H3 V2 A SSN
_6c_H4 V2 A DATA
_6c_H5 V21| DATA
_6c_H6_V2I| DATA
6¢c H1 V3A NAME
_6¢c_H2 V3 ICON DATA
6c H3 V3 A SSN
_6c_H4 V3 A DATA
_6c_H5 V31| DATA
_6c_H6_V3I DATA
_6c_H1 V4 A NAME
_6c_H2 V4 ICON DATA
_6c_H3 V4 A SSN
_6c_H4 V4 A DATA
_6c_H5 V41 DATA

1040_1_6¢_H1 V5A NAME
1040 _1 6¢_H2_V5ICON DATA
1040_1 6¢_H3 V5A SSN
1040_1 6¢_H4 V5 A DATA
1040 1 6¢_H5 V51 DATA
1040 _1 6¢_H1 V6 A NAME
1040 _1 6¢_H2 V6 ICON DATA
1040_1 6¢_H3 V6 A SSN
1040_1 6¢_H4 V6 A DATA
1040 1 6¢_H5 V61 DATA
1040_1 _6d ICON DATA
1040_1 6e| DATA
1040_1 7 F DATA
1040_1_8aF DATA
1040_1_8b F DATA
1040_1 9 F DATA
1040_1_10 F DATA
1040_1 11 F DATA
1040_1 12 F DATA
1040_1 13 F DATA
1040_1 14 F DATA
1040_1_15F DATA
1040_1_16aF DATA
1040_1_16b F DATA
1040 1 _17aF DATA
1040_1 17b F DATA
1040_1 18 F DATA
1040_1 19 F DATA
1040_1_20 F DATA

1040 _1_21aF DATA
1040_1 21b F DATA
1040 _1 22 H1A DATA
1040 _1 22 H2 F DATA
1040_1 23 F DATA
1040_1 24 F DATA
1040_1_25aF DATA
1040_1 _25b F DATA
1040_1 26 F DATA
1040_1 27 F DATA
1040_1 28 F DATA
1040 _1 29 V1A NAME
1040 1 29 H1 V2 A SSN
1040 _1 29 H2 V2 F DATA
1040_1 30 F DATA
1040_1 31 F DATA

Figure 35: Listing of a Table A file corresponding to the form template on the previous page.

Appendix B: Form-Based Files

41

11040

Departmant of the Trsasury—Internal Revenus Service ﬂ 9 8 .
U.S. Individual income Tax Return J ‘ L)
i [Y 1988, .naigﬂuly

1388 | omB No. 15450074

ubﬂ L (_Your first name and initiul,gjoim retum, slso give spouse’s name and initisl) Last name Yous soclat aumber
A B pcunzrd A. & Birskime W. Mitched A,I;??g 1304
g:: .'rkwsi;:b'l' E Present home address (number, street, and apt. no. of rural route). (H 8 P.O. Box, see page 6 of Instructions.) Spouse's soclal sacurity mm;
g::so print or " P05 e SZreer sFio=il 748
) E [City, town or post office, state, and ZiP code - -
H For Privacy Act and Paperwork
(3 Msself 2V o /720 feduction Act Notice, see Instructions.
Presidential . Do you want $1 to go to this fund? X No_|Mote: Checking Ves™ wik
"","".'.' t cha
Election Campaign ’ If joint return, does your spouse want $1 to go to this fund?2. [X No e o,
1 [X | single
Filing Status » Marcied filing joint return (even if only one had income)
Check only 3 Married filing separate return. Enter spouse’s social security no. above and full name here.
one box. 4 Head of household (with qualifying person). (See page 7 of Instructions.) If the qualitying person is your child but not
: your dependent, enter child’s name here.
] Qualifying widow(er) with dependent child (year spouse died 19). (See page 7 of instructions.)

. L] ﬁ Yourseit 1t someone (such as your parent) can claimyou as 2 dependent, do not check box 6a. No. of bowes
Exemptions N sure 1o check the boxonline 33bonpage2. . - . - « + « « « - - { Oeldonbs g
(See b [J Spouse . ————
Instructions ¢ Dependents:) Check .’ (5) No. of months

g 3) 1 age 5 or oldet, t . \3) %0 No. of your
on page 8.) (13 Name (ist, inital, and Last name) ey ambududpiettl @ mmmLJm i s bome cnuqumn &
Hoder reria AT T @ o it S
Hartar Bl o T pleh
—_— 0
g' mar:1 than 6 & 1 l Apr g“mution —
pendents, see
Instructions on mhtesflishd
page 8. ; ; |-— on & —
d H your child didn't live with you but is claimed as your dependent under a pre-1985 agreement, check here . » m.:'&m;“ ”
@ Total number of exemptions claimed . T T S S .. . linesabove P
7 Wages, salaries, tips, etc. (attach Form(s) W-2) . . 7
Income 8a Taxable interest income (alse attach Schedule B if over $400) - - e e e e e L]
Please attach b Tax-sxempt interest income (see page 11). DON'Tinclude on line BaL_&J |
m&’ ou 4, 9 Dividend income (also attach Schedule B if over $400) . e e e e 9
and W-2P here. ' 10 Taxable refunds of state and local income taxes, if any, from worksheet on page 11 of Instructions . 10
H you do not have 11 Alimonyreceived« - - < - . 1 a7
s W-zéﬁe Business income or (10ss) (attach Schedule C). 12
e setions. 13 Capital gain or (loss) (attach Schedule D) - - 13
14 Capital gain distributions not reported on line 13 (see page 11) . 14
1% Other gains of (losses) (attach Form 4797) e e e e e e e e e 15
16a Total (RA distributions . . l16al | 16b Taxable amount (see page 11)
17a Total pensions and annuities L17al | 17b Taxable amount (see page 12) | 170 —
‘__ 18 Rents, royaities, partnerships, estates, trusts, etc. (attach Schedule E)
19 Farmincome or (loss) (attach Schedule F) . .. 19 J
20 Unemployment compensation (insurance) (see page 13) . o e e e e e e s 20
Pleas: heck 21a Social security benefits (see page 13) . R 21a] |
attach chec .
b Taxable amount, if any, from the worksheet on page .. . e v e 21b
or money
order here. 22 Other income (tist type and amount—see page 13) *MCI “’l‘tawa ________ 22 _ﬁze.____.
23 Addthe amounts shown in the far right column for lines 7 through 22. This s you! totalincome . P | 23 S
24 Reimbursed employee business expenses from Form 2106, line 13. 1 24
Adjustments 258 Your IRA deduction, from applcable worksheet on page 14 or 15 sa| 2577
to Income b Spouse’s IRA deduction, from applicable worksheet on page 14 or 15 250
26 Self-employed health insurance deduction, from worksheet on page 15 . |26
27 Keogh retirement plan and self-employed SEP deduction. 27
(See 28 Penalty on early withdrawal of savings . 28
Instructions . . e
29 Alimony paid (recipient’s last name
on page 13.) 4 : ;
and social security no. : :). 29
30 Add lines 24 through 29. These are your totatadjustments o o - :. » | 30 A5 7t/
Miusted 31 gl;%trsa;g lin% 30 f':c;gt’lit; 23';hThis is your E.dl::;eld grossénr:domo.al! thgséine is less Itgan
A and a child tived with you, see "Ear Income it"” (line on [
gross income the Instructions. If you want IRS to figure your tax, see page 16 of the Instructiongage. . . 31 /3 03

19

1 V1duly

2 V1 Jduly

~H3 v188

1 V2 Brainerd A. & Erskine W. Mitchell
2 V2 A1l 88 1304

1 V399225 Lee Street
2 V3 A59 02 1948

1 V4 Russdl, NJ 61920
1V51

2 V50

1Vv61l

2 V60

OHIIIIIIIIIIII

NP
o o

 H10

R I IITITIT
N

c H3 V1A97 20 3760
_6Cc H4 V1 Aunt

_6c H5 V16

_6c H6 V18

_6c H1 V2 Tulane Banks

1040_1 6¢ H5 V4
1040_1 6¢c H1 V5
1040_1 6¢c H2 V50
1040_1 6¢c H3 V5
1040_1 6¢c H4 V5
1040_1 6¢ H5 V5
1040_1 6¢c H1 V6
1040_1 6¢c H2 V60
1040_1 6¢c H3 V6
1040_1 6¢c H4 V6
1040_1 6¢ H5 V6
1040 _1 6d 0
1040 _1 6e9
1040 _1 73878
1040 1 8a
1040 _1 8b
1040 1 9
1040_1 10
1040 1 11
1040 _1 120
1040 1 13
1040 1 14
1040 1 15
1040 1 16a
1040_1 16b
1040 1 17a
1040 1 17b
1040 1 18
1040 1 19
1040 _1 20
1040 1 21a
1040 _1 21b
1040 1 22 H1 Travel alowance
1040 _1 22 H20
1040 _1 233878
1040 1 24
1040 _1 25a2574
1040 _1 25b
1040 _1 26
1040 1 27
1040 _1 28
1040 1 29 V1
1040 1 29 H1 V2
1040_1 29 H2 V2
1040 _1 302574
1040 _1 311303

Figure 36: Listing of areference file corresponding to the form displayed on the previous page.

1 V1duly

2 V1 Jduly

~H3 v188

1 V2 BnairerndA.& ErskinW.Mitchell
2 V2 A11881384

1 V399225 eeStret
2 V3 A59021948

1 V4 Russdll,NJ61920
1V51

2 V50

1Vv61l

2 V60

OHIIIIIIIIIIII

NP
o o

 H10

R I IITITIT
N

c H3 V1 A97203760
_6Cc H4 V1 Aunt

_6c H5 V16

_6c H6 V18

. 6c H1 V2 TulaneBanks

1040_1 6¢ H5 V4
1040_1 6¢c H1 V5
1040_1 6¢c H2 V50
1040_1 6¢c H3 V5
1040_1 6¢c H4 V5
1040_1 6¢ H5 V5
1040_1 6¢c H1 V6
1040_1 6¢c H2 V60
1040_1 6¢c H3 V6
1040_1 6¢c H4 V6
1040_1 6¢ H5 V6
1040 _1 6d 0
1040 _1 6e9
1040 _1 73873
1040 1 8a
1040 _1 8b
1040 1 9
1040_1 10
1040 1 11
1040 1 12
1040 1 13
1040 1 14
1040 1 15
1040 1 16a
1040_1 16b
1040 1 17a
1040 1 17b
1040 1 18
1040 1 19
1040 _1 20
1040 1 21a
1040 _1 21b
1040 1 22 H1 Travelalbewance
1040 _1 22 H20
1040 _1 233878
1040 1 24

1040_1 25a25174
1040 _1 25b
1040 _1 26
1040 1 27
1040 _1 28
1040 1 29 V1
1040 1 29 H1 V2
1040_1 29 H2 V2
1040 _1 302574
1040_1 3103

Figure 37: Listing of a hypothesis file corresponding to the completed form.

1040_1
1040 1 L_H1 V10.850.860.90 0.81

1040 1 L_H2 V10.840.890.940.90

1040 1 L_H3 V10.990.83

1040 1 L_H1 V2 0.830.850.850.84 0.91 0.94 0.90 0.90 0.98
0.92 0.93 0.89 0.87 0.88 0.82 0.80 0.90 0.81 0.99 0.97 0.94 0.83
0.83 0.93 0.96 0.95 0.98 0.81

1040 1 L_H2 V2 0.92 0.92 0.90 0.94 0.87 0.87 0.82 0.81 0.89
1040 _1_L_H1 V30.99 0.80 0.95 0.80 0.84 0.95 0.83 0.88 0.91
0.97 0.92 0.95 0.83

1040 1 L_H2_V30.930.90 0.91 0.90 0.98 0.82 0.84 0.82 0.92
1040_1_L_H1 V40.99 0.98 0.99 0.97 0.87 0.97 0.93 0.94 0.99
0.98 0.89 0.90 0.99 0.90 0.94

1040 1 L_H1 V50.99

1040 1 L_H2 V5091

1040 1 L_H1 V60.88

1040 1 L_H2_V60.92

1040 1 10.82

1040_1 20.83

1040 1 3 H10.98

1040 1 3 H2

1040 1 4 H10.89

1040 1 4 H2

1040 1 5 H10.85

1040 1 5 H2

1040_1 6a0.80

1040 1 6b_H10.91

1040_1 6b_H20.99

1040_1 6¢_H1 V1 0.87 0.89 0.88 0.90 0.83 0.99 0.94 0.92 0.95
0.980.90

1040_1_6¢_H2 V10.80

1040 1 6¢_H3 V10.820.81 0.98 0.87 0.85 0.85 0.84 0.91 0.95
1040_1_6¢_H4 V1 0.94 0.89 0.82 0.99

1040_1_6¢_H5 V10.98

1040_1_6¢_H6 V1 0.89

1040_1_6¢_H1 V2 0.90 0.92 0.91 0.98 0.94 0.84 0.98 0.87 0.87
0.80 0.84

1040 1 6¢_H2 V20.84

1040_1_6¢_H3 V2 0.98 0.99 0.99 0.99 0.93 0.94 0.98 0.99 0.93
1040_1_6¢c_H4 V2 0.830.80 0.78 0.93 0.90 0.92

1040_1 6¢_H5_V20.90 0.91

1040_1_6¢_H6_V2

1040 1 6¢_H1 V30.890.83 0.90 0.94 0.94 0.93 0.99 0.91 0.98
0.80

1040 1 6¢c_H2 V30.88

1040_1_6¢_H3 V30.920.94 0.95 0.92 0.91
1040_1_6¢c_H4 V30.99 0.99 0.03 0.93 0.95 0.99

1040_1_6¢_H5 V30.92

1040_1_6¢_H6_V3

1040 1 6¢c_H1 V4

1040 1 6¢c_H2 V40.93
1040 1 6¢c_H3 V4
1040 1 6¢_H4 V4
1040 1 6¢_H5 V4

1040_1 6¢_H1 V5

1040_1 6¢c_H2 V50.93
1040_1 6¢_H3 V5
1040 1 6¢_H4 V5
1040_1_6¢_H5 V5

1040_1 6¢_H1 V6
1040_1_6¢c_H2 V60.99
1040_1 6¢_H3 V6

1040_1 6c_H4 V6
1040_1_6¢_H5 V6
1040_1_6d 0.99

1040_1 6e0.91
1040_1_70.89 0.89 0.82 0.88
1040_1 8a

1040 1 8b

1040 1 9

1040 1 10

1040 1 11

1040 1 12

1040 1 13

1040 1 _14

1040 1 15

1040_1_16a

1040_1_16b

1040_1 17a

1040 1 17b

1040 1 18

1040 1 19

1040 1 20

1040_1 21a

1040 1 21b

1040_1 22 H10.920.840.850.84 0.800.98 0.92 0.92 0.90 0.95
0.96 0.96 0.98 0.87 0.87
1040 1 22 H20.80
1040_1_230.90 0.81 0.84 0.85
1040_1 24

1040_1_25a0.99 0.93 0.98 0.98 0.82
1040 1 25b

1040 1 26

1040 1 27

1040 1 28

1040 1 29 V1

1040 1 29 H1 V2
1040 1 29 H2 V2
1040_1 30 0.92 0.84 0.84 0.89
1040 1 310.87 0.86

Figure 38: Listing of a confidence file corresponding to the completed form.

45

1040 1
1040 1 L_H1 V10000

1040 1 L_H2 V10000

1040 1 L_H3 V100

1040 1 L_H1 V2000000000000000000000
0000000

1040 1 L_H2 V2000000000
1040 1 L_H1 V30000000000000
1040 1 L_H2 V3000000000
1040 1 L_H1 V4000000000000000
1040 1 L_H1 V50

1040 1 L_H2 V50

1040 1 L_H1 V60

1040 1 L_H2 V60

1040 1 10

1040 1 20

1040 1 3 H10

1040 1 3 H2

1040 1 4 H10

1040 1 4 H2

1040 1 5 H10

1040 1 5 H2

1040 1 6a0

1040 1 6b H10

1040 1 6b_H20

1040 1 6¢c H1 V100000000000
1040 1 6¢c_H2 V10
1040 1 6¢c H3 V1000000000
1040 1 6¢c H4 V10000

1040 1_6¢c_H5 V10

1040 1_6¢c_H6 V10
1040 1 6¢c H1 V200000000000
1040 1_6¢c_H2 V20
1040 _1 6¢c H3 V2000000000
1040 1 6¢c H4 V2001000
1040_1 6¢ H5 V200

1040 _1_6c_H6 V2

1040 1 6¢c H1 V30000000000
1040 1_6¢c_H2 V30

1040 1 6¢c H3 V300000
1040 1 6¢c H4 V3001000

1040_1 6¢_H5 V30

1040 1 6¢_H6 V3

1040 1 _6c_H1 V4

1040 1_6¢c_H2 V40

1040 _1_6c_H3 V4

1040 _1_6c_H4 V4

1040_1_6c_H5 V4
1040 1 _6c_H1 V5
1040 1_6¢c_H2 V50
1040 1 _6c_H3 V5
1040 1 _6c_H4 V5
1040 _1_6c_H5 V5
1040 1 _6c_H1 V6
1040 1_6¢c_H2 V60
1040 1 _6c_H3 V6
1040 _1_6c_H4 V6
1040 _1_6c_H5 V6
1040 1 6d 0
1040 1 6€0
1040 1 70000
1040 1 _8a
1040 1 _8b
1040 1 9

1040 1_10
1040 1 11
1040 1 _12
1040 1 13

1040 _1_14

1040 1_15

1040 1_16a

1040 1_16b

1040 1_17a

1040 1_17b
1040 1 _18
1040 1 19
1040 1 20
1040 1 _21a
1040 1 _21b

1040 1 22 H1000000000000000
1040 1 22 H20
1040 1 230000
1040 1 24
1040 1 25200000
1040 _1_25b
1040 1 26
1040 1 _27
1040 1 28
1040 1 29 V1
1040 1 29 H1 V2
1040 1 29 H2 V2
1040 1 300000
1040 1 3100

Figure 39: Listing of arejection file corresponding to the completed form.

46

C.1 Example Scoring Summary (.sum)

File: r0000/r0000_00.mrg #1
vlen=0

distance=0
REF: ““
HYP: ““

Appendix C: Form-Based Scoring Output

File: r0000/r0000_00.mrg #5
vlen=9

RES: “*
REJ. “*

File: r0000/r0000_00.mrg #2
vlen=0

distance=0
REF: ““
HYP: ““
RES: ““
REJ: “*

File: r0000/r0000_00.mrg #3
vlen=0

distance=0

REF: ““
HYP: ““
RES: ““
REJ: “*

File: r0000/r0000_00.mrg #4
vlen=20

distance=3

REF: “BerryK.&LorasA.Boyle”

distance=0

REF: “A57003582"
HYP: “A57003582"

REJ: “000000000"
CNF: 0.9800
0.9400
0.9800
0.9900
0.9200
0.9300
0.8200
0.8700
0.9400

<Text Removed for Documentation Pur poses>

File: r0010/r0010_00.mrg #43

vlen=22
distance=0
REF: “veredpensioninvestment”
HYP: “BerryK.&LonasA.Boyle” HY P: “veredpensioninvestment”
RES: “------moo- Smeeeee § RES: “--mmmmmmmmcmmmeeee o
REJ: “00000000001000000000” REJ: “0000000000000000000000”
CNF: 0.9700 CNF: 0.9900
0.8900 0.9000
0.9500 0.9800
0.9300 0.8900
0.8900 0.9000
0.9900 0.9200
0.9400 0.9900
0.9800 0.9500
0.9100 0.9500
0.8700 0.9600
0.3000 0.9400
0.8500 0.9200
0.9300 0.9100
0.9900 0.8100
0.9500 0.8200
0.9500 0.8400
0.9200 0.8500
0.9800 0.8200
0.9100 0.9000
0.8300 0.9400
0.9500
confS:r->n 0.9200
47

File: r0010/r0010_00.mrg #44
vlen=0
distance=0
REF: “*
HYP: “*
RES: “*
REJ. “*

File: r0010/r0010_00.mrg #45
vlen=3
distance=0
REF: “247"
HYP: “247"
RES: “---"
REJ: “000”
CNF: 0.9800
0.9300
0.9900

File: r0010/r0010_00.mrg #46
vlen=3
distance=0
REF: “978"
HYP: 978"
RES: “---"
REJ: “000”
CNF: 0.9000
0.9300
0.9200

Summary:
TOTALS (output=FCItdA of=form.sum,cf=form.fct)

Draft standard measures:
Accumulators: TP=1648 FP=43 M=36 RT=45 RF=18 RM=164
Character recognition decision:
accuracy: 88.8410% (1648/1855)
accuracy (formright): 97.4571% (1648/1691)
Character output:
accuracy: 98.4644% (1603/1628)
Fi eld accuracy:
accuracy (including icons): 81.2762% (777 /956)

Character rejection rates:
al: 2.7306% (63/1882)
all hypotheses: 3.7256% (63/1691)
matches; 2.7306% (45/1648)
substitutions: 44.1176% (15/34)
insertions: 33.3333% (3/9)
al (duetoformtype): 8.7141% (164/1882)

Fi el ds (excluding icons):
accuracy: 81.7010% (634/776)
accuracy (with form right): 90.1849% (634/703)
rejected (dueto form type): 9.4072% (73/776)
deleted (dueto formwrong): 0.0000% (0/776)

Flelds (including icons):
accuracy: 81.2762% (777/956)
accuracy (with form right): 89.8266% (777/865)
rejected (due to form type): 9.5188% (91/956)
deleted (dueto formwrong): 0.0000% (0/956)

Characters:

: accuracy: 85.1753% (1603/1882)
accuracy (with form right): 94.7960% (1603/ 1691)
rejected (dueto form type): 8.7141% (164 /1882)
deleted (due to formwrong): 0.0000% (0/1882)

Icons:

: accuracy: 79.4444% (143/180)
accuracy (with formright): 88.2716% (143/162)
rejected (due to form type): 10.0000% (18/180)
deleted (dueto formwrong): 0.0000% (0/180)

Form type identification:
accuracy: 90.9091% (10/11)
failurerate: 9.0909% (1/11)
accuracy (excluding rejected): 100.0000% (10/10)
farlurerate(excludrng rejected): 0.0000% (0/10)
rejected: 9.0909% (1/11)

48

C.2 Example Fact Sheet (.fct)

form type:

count: 11
rejected: 1
not rejected, right: 10
not rejected, wrong: 0

icon fields:
count: 180
form type rejected: 18
form type wrong and not rejected: 0
form type right and not rejected: 162
right: 143
wrong: 19
rejected: 15
not rejected: 147
matches: 157
rejected: 14
not rejected: 143
mismatches: 5
rejected: 1
not rejected: 4
not present / not found: 115
not present / found: 3
present / not found: 2
present / found: 42

character fields:
count: 776
form type rejected: 73
form type wrong and not rejected: 0
form type right and not rejected: 703
right: 634
wrong: 69

characters:
in alignments: 1891
hypothesis: 1691
reference: 1882
form type rejected: 164
form type wrong and not rejected: 0
form type right and not rejected: 1691
rejected: 63
not rejected: 1628
correct: 1648
rejected: 45
not rejected: 1603
substitutions: 34
rejected: 15
not rejected: 19
insertions: 9
rejected: 3
not rejected: 6
deletions: 36

Accumulators; TP=1648 FP=43 M=36 RT=45 RF=18 RM=164

49

C.3 Scoring Summary Description

File: r0000/r0000_00.mrg #1
vlen=0
distance=0
REF: “*
HYP; ““
RES: “*
REJ “*

<text removed for documentation purposes>

File: r0000/r0000_00.mrg #4
vlen=20
distance=3
REF: “BerryK.&LorasA.Boyle’
HYP: “BerryK.& LonasA.Boyle”
RES:; “---------- S 8
REJ: “00000000001000000000"
CNF: 0.9700
0.8900
0.9500
0.9300
0.8900
0.9900
0.9400
0.9800
0.9100
0.8700
0.3000
0.8500
0.9300
0.9900
0.9500
0.9500
0.9200
0.9800
0.9100
0.8300

confS:r->n

<text removed for documentation purposes>

< alignment of the 1st form’s 1<t field >
<length of the alignment >

< Levenstein Distance>

< empty reference string >

< empty hypothesisstring >

< alignment of the 1st form’s 4th field >

< length of alignment >

< Levenstein Distance >

<referencestring >

< hypothesis string >

< alignment results >

<rejected character >

< confidence values for each hypothesized character >

<summary of errors>

50

File: r0010/r0010_00.mrg #46 < alignment of the 11th form’s 46th field >

vlen=3 <length of alignment >

distance=0 < Levenstein Distance >

REF: “978" <referencestring >

HYP: “978" < hypothesisstring >

RES: *---" < alignment results >

REJ: “000” <rejected characters>

CNF: 0.9000 < confidence values for each hypothesized character >
0.9300
0.9200

Summary: < beginning of summary report >
TOTALS (output=FCItdA ,of=form.sum,cf=form.fct) < scoring profile options selected >

Draft standard measures:
Accumulators: TP=1648 FP=43 M=36 RT=45 RF=18 RM=164 < fundamental accumulators >
Character recognition decision:
< eq 6in thedraft standard >
accuracy: 88.8410% (1648/1855)
< eq 6 ignoring rejected charactersdueto rejected form identifications >
accuracy (formright): 97.4571% (1648/ 1691)
Character output:
< eq 7 in the draft standard >
accuracy: 98.4644% (1603/1628)
Fleld accuracy:
<eg.4inthedraft standard: # of fields correctly recognized / # of fieldson all forms>
accuracy (including icons): 81.2762% (777 /956)

Character rejection rates:
< #of rejected characterson correctly identified and not rejected forms/ # of reference characterson all forms>
al: 2.7306% (63/1882)
< # of rejected characterson correctly identified and not rejected forms/ # of hypothesis characterson correctly identified and not
rejected forms >

all hypotheses: 3.7256% (63/1691)

< percentage of correctly recognized charactersrejected >
matches: 2.7306% (45/1648)

< percentage of substituted charactersrejected >

subgtitutions: 44.1176% (15/34)
< percentage of inserted charactersrejected >

insertions: 33.3333% (3/9)
< #of rejected charactersdueto reected form identifications/ # of reference characterson all forms >
al (duetoformtype): 8.7141% (164/1882)

Fields (excluding icons):
< # of correctly recognized character fields/ # of character fieldson all forms >
accuracy: 81.7010% (634/776)

< # of correctly recognized character fields/ # of character fields on correctly identified and not rejected forms >
accuracy (with formright): 90.1849% (634 /703)

<#of rejected character fieldsdueto rejected form identifications/ # of character fieldson all forms>
rejected (dueto formtype): 9.4072% (73/776)

< # of missed character fieldsduetoincorrect and not rejected form identifications/ # of character fieldson all forms>
deleted (due to form wrong): 0.0000% (0/776)

51

Fields (including icons):
< # of correctly recognized character and icon fields/ # of character and icon fieldson all forms>
accuracy: 81.2762% (777/956)
< # of correctly recognized character and icon fields/ # of character and icon fields on correctly identified and not rejected forms >
accuracy (with formright): 89.8266% (777 /865)
<# of rgjected character and icon fields dueto rejected form identifications/ # of character and icon fieldson all forms >
rejected (dueto form type): 9.5188% (91/956)
<# of missed character and icon fields dueto incorrect and not rejected form identifications/ # of character and icon fields on all
forms>
deleted (due to form wrong): 0.0000% (0/956)

Characters:
< # of correctly recognized characters/ # of reference characterson all forms>
accuracy: 85.1753% (1603/1882)

< # of correctly recognized characters/ # of hypothesis characterson correctly identified and not rejected forms>
accuracy (with formright): 94.7960% (1603/ 1691)

< #of rejected charactersdueto rejected form identifications/ # of reference characterson all forms>
rejected (dueto formtype): 8.7141% (164 /1882)

< # of missed charactersdueto incorrect and not rejected form identifications/ # of reference characterson all forms >
deleted (due to form wrong): 0.0000% (0/1882)

Icons:
<#of correctly recognized fields/ # of icon fieldson all forms >
accuracy: 79.4444% (143/180)

< #of correctly recognized icon fields/ # of icon fields on correctly identified and not rejected forms >
accuracy (with formright): 88.2716% (143/162)

< # of rejected icon fields dueto regjected form identifications/ # of icon fieldson all forms >
rejected (due to form type): 10.0000% (18/180)

< # of missed icon fieldsdueto incorrect and not rejected form identifications/ # of icon fieldson all forms >
deleted (due to form wrong): 0.0000% (0/180)

Form type identification:
< #of correctly identified and not rejected forms/ # of all forms>
accuracy: 90.9091% (10/11)
<10 previousvalue >
faillurerate: 9.0909% (1/11)
< #of correctly identified and not rejected forms/ # of all formsnot rejected >
accuracy (excluding rejected): 100.0000% (10/10)
< 1.0- previousvalue >
. failurerate (excluding rejected): 0.0000% (0/10)
<#of form identificationsrejected / # of all forms>
rejected: 9.0909% (1/11)

52

C.4 Fact Sheet Description

form type: < form-level accumulators >
count: 11 <#of formsscored >
rejected: 1 < #of formsrejected >
not rejected, right: 10 < # of formsnot rejected and correctly identified >
not rejected, wrong: 0 < #of formsnot rejected and incorrectly identified >
icon fields: <icon field accumulators>
count: 180 <#of icon fields scored >
<indented counts are subsets of all icon fields scored >
form type rejected: 18 < # of icon fieldsrejected due to form identification rejected >

form type wrong and not rejected: 0 < #of icon fields on formsincorrectly identified and not rejected >
form type right and not rejected: 162 < # of icon fields on forms correctly identified and not rejected >
<indented counts are subsets of all forms correctly identified and not rejected >

right: 143 < # of correct icon fields after rejection >

wrong: 19 < # of incorrect icon fields after rejection >

rejected: 15 <#of icon fieldsrejected >

not rejected: 147 < # of icon fields accepted >

matches: 157 < #of correct icon fieldsignoring rejection >
<indented counts are subsets of all correct icon fieldsignoring rejection >
rejected: 14 <# of correct icon fieldsrejected >
not rejected: 143 < # of correct icon fields accepted >

mismatches. 5 < # of incorrect icon fieldsignoring rejection >
<indented counts are subsets of all incorrect icon fieldsignoring rejection >
rejected: 1 < #of incorrect icon fields rejected >
not rejected: 4 <# of incorrect icon fields accepted >

not present / not found: 115 < # of empty icon fields detected correctly >

not present / found: 3 < # of empty icon fields detected incorrectly >

present / not found: 2 < # of non-empty icon fields detected incorrectly >

present / found: 42 < # of non-empty icon fields detected correctly >

character fields: < character field accumulators >
count: 776 < # of character fields scored >
<indented counts are subsets of all character fields scored >
form type rejected: 73 < # of character fieldsrejected dueto form identification rejected >

form type wrong and not rejected: 0 < #of character fieldson formsincorrectly identified and not rejected >
form type right and not rejected: 703 < # of character field on forms correctly identified and not rejected >
<indented counts are subsets of all character fields on forms correctly identified and not rejected >

right: 634 < # of correct character fields after rejection >
wrong: 69 < # of incorrect character fields after rejection >
characters: < character-level accumulators>
<indented counts are subsets of all character scored >
in aignments: 1891 < # of character alignment positions >
hypothesis: 1691 < # of hypothesized characters>
reference: 1882 < # of reference characters >
<indented counts are subsets of all reference characters scored >
form type rejected: 164 < #of charactersrejected dueto form identification rejected >

form typewrong and not rejected: 0 < # of characterson formsincorrectly identified and not rejected >
form type right and not rejected: 1691 < # of characterson forms correctly identified and not rejected >
<indented counts are subsets of all reference characterson forms correctly identified and not rejected >
rejected: 63 < # of character rejected >
not rejected: 1628 < # of charactersaccepted >

53

correct: 1648 < # of correct charactersignoring rejection >
<indented counts are subsets of all correct charactersignoring rejection >

rejected: 45 < #of correct charactersrejected >

not rejected: 1603 < # of correct charactersaccepted >
substitutions: 34 < # of substituted charactersignoring rejection >

<indented counts are subsets of all substituted charactersignoring reection >

rejected: 15 < # of substituted charactersrejected >

not rejected: 19 < # of substituted character s accepted >
insertions: 9 < # of inserted charactersignoring reection >

<indented counts are subsets of all inserted charactersignoring rejection >

rejected: 3 < #of inserted charactersrejected >

not rejected: 6 < #of inserted characters accepted >
deletions: 36 < # of deleted characters>

Accumulators; TP=1648 FP=43 M=36 RT=45 RF=18 RM=164 < fundamental accumulators>

Appendix D: Character-Based Files

55

b
S
M
£
Id
Classification Hypothesis Confidence Rejection
w File File File File
q 20 20 20 20
62 62 0.83 0
, 73 73 0.90 0
I 6d 6d 0.85 0
66 66 0.89 0
2 63 65 0.78 0
77 77 0.82 0
71 71 0.85 0
£ 69 69 0.85 0
61 61 0.92 0
, 6b 6b 0.87 0
72 6e 0.38 1
65 65 0.90 0
e 7a 73 0.08 1
70 70 0.83 0
2 6c 69 0.11 1
6e 6e 0.93 0
76 76 0.89 0
P 78 78 0.80 0
64 64 0.83 0
| 79 78 0.58 0
n
v
X
d
X

Figure 40: Isolated hand-print images and listings of corresponding character-based scoring files.

56

Appendix E: Character-Based Scoring Output

E.1 Example Scoring Summary (.sum)

File: 10000/10000.mrg #5
vlen=1
distance=3
REF: “c”
HYP: “¢
RES: “S’
REJ. “0”
CNF: 0.7800

confS.c->e

File: 10000/10000.mrg #11
vlien=1

distance=3

REF: “r”

HYP: “n”

RES: “S’

REJ “1”

CNF: 0.3800

confS:r->n

File: 10000/10000.mrg #13
vien=1
distance=3
REF: “z"
HYP: “s’
RES. “S’
REJ. “1”
CNF: 0.0800

confS:z->s

File: 10000/10000.mrg #15
vlen=1
distance=3
REF: “I”
HYP: “i”
RES: “S’
REJ “1”
CNF: 0.1100

confSiI->i

File: 10000/10000.mrg #20
vlien=1
distance=3
REF: “y”
HYP: “x”
RES: “S’
REJ: “0”
CNF: 0.5800

confS:y->x

Summary:

TOTALS (output=FCItdAA,of=10000/I0000.sum,cf=10000/10000.fct)

Draft standard measures:
Accumulators: TP=15 FP=5 M=0 RT=0 RF=3 RM=0
Character recognition decision:
accuracy: 75.0000% (15/20)
accuracy (formright): 75.0000% (15/20)
Character output:
accuracy: 88.2353% (15/17)
Fi eld accuracy:
accuracy (including icons): 75.0000% (15/20)

Character rejection rates:
al: 0.0000% (3/20)
all hypotheses: 15.0000% (3/20)
matches. 0.0000% (0/15)
substitutions: 60.0000% (3/5)
insertions: 0.0000% (0/0)
al (dueto formtype): 0.0000% (0/20)

Fi el ds (excluding icons):
accuracy: 75.0000% (15/20)
accuracy (with form right): 75.0000% (15/20)
rejected (due to form type): 0.0000% (0/20)
deleted (dueto formwrong): 0.0000% (0/20)

F|e|ds (including icons):
: accuracy: 75.0000% (15/20)
accuracy (with form right): 75.0000% (15/20)
rejected (due to form type): 0.0000% (0/20)
deleted (dueto formwrong): 0.0000% (0/20)

Characters:

: accuracy: 75.0000% (15/20)
accuracy (with form right): 75.0000% (15/20)
rejected (due to form type): 0.0000% (0/20)
deleted (dueto formwrong): 0.0000% (0/20)

Icons:

: accuracy: 0.0000% (0/0)
accuracy (with form right): 0.0000% (0/0)
rejected (due to form type): 0.0000% (0/0)
deleted (dueto formwrong): 0.0000% (0/0)

Form type identification:
accuracy: 100.0000% (1/1)
failurerate: 0.0000% (0/1)
accuracy (excluding rejected): 100.0000% (1/1)
faJIure rate (excluding rejected): 0.0000% (0/1)
rejected: 0.0000% (0/1)

57

E.2 Example Fact Sheet (.fct)

form type:

count: 1
rejected: 0
not rejected, right: 1
not rejected, wrong: 0

icon fields:
count: O
form type rejected: O
form type wrong and not rejected: 0
form type right and not rejected: 0
right: O
wrong: 0
rejected: O
not rejected: 0
matches: 0
rejected: O
not rejected: 0
mismatches: 0
rejected: O
not rejected: 0
not present / not found: 0
not present / found: 0
present / not found: 0
present / found: 0

character fields:
count: 20
form type rejected: O
form type wrong and not rejected: 0
form type right and not rejected: 20
right: 15
wrong: 5

characters:
in aignments: 20
hypothesis: 20
reference: 20
form type regjected: 0
form type wrong and not rejected: 0
form type right and not rejected: 20
rejected: 3
not rejected: 17
correct: 15
rejected: 0
not rejected: 15
substitutions: 5
rejected: 3
not rejected: 2
insertions: 0
rejected: 0
not rejected: 0
deletions: 0

Accumulators; TP=15 FP=5 M=0 RT=0 RF=3 RM=0

58

Appendix F: IHead File Format

Imagefileformats and effective data compression and decompression are critical to the usefulness of image archives. Each binary
image distributed in the referenced databases produced by NIST have been digitized at 12 dots per millimeter and 2-dimensionally
compressed using CCITT Group 4.[13][14] These raster images are digital encodings of light reflected from discrete points on a
scanned form. The 2-dimensional area of theform isdivided into discrete | ocations according to the resol ution of a specified grid.
Each cell of thisgrid isrepresented by asingle bit value 0 or 1 called apixel; O representsacell predominately white, 1 represents
acell predominately black. This 2-dimensional sampling grid is then stored as a 1-dimensional vector of pixel valuesin raster
order, left to right, top to bottom. Successive scan lines (top to bottom), contain the values of asingle row of pixelsfrom the grid
concatenated together.

After digitization, certain attributes of an image are required to be known to correctly interpret the 1-dimensional pixel dataasa
2-dimensional image. Examples of such attributes are the pixel width and pixel height of theimage. These attributes can be stored
in amachine readable header prefixed to the raster bit stream. A program which is used to manipulate the raster data of an image,
isableto first read the header and determine the proper interpretation of the data which followsit. Figure 41 illustrates thisfile
format.

A header format named IHead has been developed for use as an image interchange format. Numerous image formats exist; some
arewidely supported on small personal computers, others supported on larger workstations; most are proprietary formats, few are
public domain. The IHead header is an open image format which can be universally implemented across heterogeneous computer
architectures and environments. Both documentation and source code for the IHead format are publicly available and included

with SD2 and SD6. IHead has been designed with an extensive set of attributesin order to adequately represent both binary and
gray level images, to represent images captured from different scanners and cameras, and to satisfy the image requirements of

diversified applicationsincluding, but not limited to, image archival/retrieval, character recognition, and fingerprint classification.

IHead has been successfully ported and tested on several systemsincluding UNIX workstations and servers, DOS personal com-
puters, and VM S mainframes. The attribute fieldsin IHead can be loaded into main memory in two distinct ways. Since the
attributes are represented by the ASCII character set, the attribute fields may be parsed as null-terminated strings, an input/output
format commoninthe‘C’ programming language. IHead can also be read into main memory using record-oriented input/output.
Thefixed length of the header is prefixed to the front of the header as shown in Figure41. The IHead structure definition aswritten
inthe‘C’ programming language islisted in Figure 42.

Record Length

ASCII Format |mage Header

Binary Raster Stream
000000010000010000011111110 . . .

* Representing the digital scan acrossthe
page left to right, top to bottom.

* ‘0’ - Represents awhite pixel.

* ‘1’ - Represents a black pixel.

* 8 Pixels are packed into asingle byte
of memory.

Figure 41: Anillustration of the IHead raster file format.

59

/***

File Name: IHead.h

Package: NIST Internal Image Header

Michagl D. Garris
2/08/90

Author:
Date:

***/

/* Defines used by the ihead structure */

#define IHDR_SIZE 288
#define SHORT_CHARS 8
#define BUFSIZE 80
#define DATELEN 26

typedef struct ihead{
char id[BUFSIZE];
char created DATELEN];
char width[SHORT_CHARS];
char heightf SHORT_CHARS];
char depth[SHORT_CHARS];
char density[SHORT_CHARS];
char compress§SHORT_CHARS];
char complen[SHORT_CHARYS];
char align[SHORT_CHARS];
char unitsizef SHORT_CHARYS];
char sigbit;
char byte order;
char pix_offsetf SHORT_CHARS];
char whitepix[SHORT_CHARS];
char issigned;
char rm_cm;
char tb_bt;
char Ir_rl;
char parentBUFSIZE];
char par_x[SHORT_CHARS];
char par_y[SHORT_CHARS];
}HEAD;

* len of hdr record (always even bytes) */
[* # of ASCII charsto represent a short */
* default buffer size*/

[* character length of data string */

[* identification/comment field */

[* date created */

/* pixel width of image */

/* pixel height of image */

/* bits per pixel */

[* pixels per inch */

/* compression code */

/* compressed data length */

/* scanline multiple: 8]16|32 */

/* bit size of image memory units*/
/* 0->sighit first | 1->sigbit last */

/* 0->highlow | 1->lowhigh*/

/* pixel column offset */

/* intensity of white pixel */

/* 0->unsigned data | 1->signed data */
/* 0->row maj | 1->column maj */
/* 0->top2bottom | 1->bottom2top */
[* 0->left2right | 1->right2left */

[* parent imagefile*/

/* from x pixel in parent */

/* fromy pixel in parent */

Figure 42: IHead C language definition.

Figure 43 lists the header values from an IHead file corresponding to the structure members listed in Figure 42. This header infor-
mation belongsto the isolated box image displayed in Figure 44. Referencing the structure memberslisted in Figure 42, thefirst
attribute field of IHead isthe identification field, id. Thisfield uniquely identifies the imagefile, typically by afile name. The
identification field in this example not only contains the image’s file name, but al so the reference string the writer was instructed
to print in the box. The reference string is delimited by double quotes.

60

IMAGE FILE HEADER

| dentity : box_03.pct “0123456789"
Header Size : 288 (bytes)
Date Created : Thu Jan 4 17:34:21 1990
Width : 656 (pixels)
Height : 135 (pixels)
Bits per Pixel 01
Resolution : 300 (ppi)
Compression : 2 (code)
Compress Length : 874 (bytes)
Scan Alignment ;16 (bits)
Image DataUnit : 16 (bits)
Byte Order : High-Low
MSBit D First
Column Offset : 0 (pixels)
White Pixel :0
Data Units : Unsigned
Scan Order : Row Mgjor,

Top to Bottom,

Left to Right
Parent : hsf_0/f0000_14/f0000_14.pct
X Origin 1192 (pixels)
Y Origin 1 732 (pixels)

Figure 43: The IHead values for the isolated subimage displayed in Figure 44.

0/12345¢799

Figure 44: An IHead image of an isolated box.

The attribute field, created, isthe date on which the image was captured or digitized. The next three fields hold the image’s pixel
width, height, and depth. A binary image has a pixel depth of 1 whereas a gray scale image containing 256 possible shades of
gray has apixel depth of 8. The attribute field, density, contains the scan resolution of theimage; in this case, 300 dots per inch.
The next two fields deal with compression.

In the IHead format, images may be compressed with virtually any algorithm. The IHead header datais always uncompressed,
even if theimage datais compressed. Thisenables header interpretation and manipul ation without the overhead of decompression.
The compressfield is an integer flag which signifies which compression technique, if any, has been applied to the raster image
data which follows the header. If the compression code is zero, then the image datais not compressed, and the data dimensions:
width, height, and depth, are sufficient to load the image into main memory. However, if the compression code is nonzero, then
the complen field must be used in addition to the image's pixel dimensions. For example, the image described in Figure 43 has a
compression code of 2. This signifiesthat CCITT Group 4 compression has been applied to the image data prior to file creation.
In order to load the compressed image datainto main memory, the value in complen isused to load the compressed block of data
into main memory. Once the compressed image data has been loaded into memory, CCITT Group 4 decompression can be used

61

to produce an image which hasthe pixel dimensions consistent with those stored initsheader. Using CCITT Group 4 compression
and this compression scheme on images of tax forms, a compression ratio of 10.1 to 1 has been achieved.

The attribute field, align, stores the alignment boundary to which scan lines of pixels are padded. Pixel values of binary images
are stored 8 pixels (or bits) to a byte. Most images, however, are not an even multiple of 8 pixelsin width. In order to minimize
the overhead of ending a previous scan line and beginning the next scan line within the same byte, anumber of padded pixelsare
provided in order to extend the previous scan line to an even byte boundary. Some digitizers extend this padding of pixels out to
an even multiple of 8 pixels, other digitizers extend this padding of pixels out to an even multiple of 16 pixels. Thisfield stores

the image's pixel alignment value used in padding out the ends of raster scan lines.

The next three attribute fieldsidentify binary interchanging issues among heterogeneous computer architecturesand displays. The
unitsize field specifies how many contiguous pixel values are bundled into asingle unit by the digitizer. The sigbit field specifies
the order in which bits of significance are stored within each unit; most significant bit first or least significant bit first. The last of
thesethreefieldsisthe byte order field. If unitsizeisamultiple of bytes, then thisfield specifies the order in which bytes occur
within the unit. Given these three attributes, binary incompatibilities across computer hardware and binary format assumptions
within application software can be identified and effectively dealt with.

The pix_offset attribute defines a pixel displacement from the |eft edge of the raster image data to where a particular image’'s sig-
nificant image information begins. The whitepix attribute defines the value assigned to the color white. For example, the binary
image described in Figure 43 is black text on awhite background and the value of the white pixelsis 0. Thisfield is particularly
useful to image display routines. Theissigned field is required to specify whether the units of an image are signed or unsigned.
This attribute determines whether an image with a pixel depth of 8 should have pixel values interpreted in the range of -128 to
+127, or 0to 255. The orientation of the raster scan may also vary among different digitizers. The attributefield, rm_cm, specifies
whether the digitizer captured theimage in row-major order or column-major order. Whether the scan lines of animage were accu-
mulated from top to bottom, or bottom to top, is specified by thefield, tb_bt, and whether left to right, or right to | eft, is specified
by thefield, rl_Ir.

Thefinal attributesin IHead provide a single historical link from the current image to its parent image; the one from which the
current image was derived or extracted. In Figure 43, the parent field contains the full path name to the image from which the
image displayed in Figure 44 was extracted. The par_x and par_y fields contain the origin point (upper left hand corner pixel
coordinate) from where the extraction took place from the parent image. These fields provide a historical thread through succes-
sive generations of images and subimages. The IHead image format contains the minimal amount of ancillary information
required to successfully manage binary and gray scale images.

62

Appendix G: MISFile Format

Based on experience gained from creating and manipulating large on-line image databases, NIST has developed a number of
diversified fileformats. One such fileformat has been devel oped to manage large volumes of segmented character images. Storing
character imagesin individual files has proven to be very inefficient especially when databases of several hundred thousand char-
acters are being devel oped.

Devoting aseparate file node for each character image creates enormousfile system overhead. Unreasonably large directory tables
must be allocated. Rarely are experiments conducted on only a single character image in isolation. Rather, most experiments
require alarge sample of characters. Experience has shown that the gathering of alarge sample of characters from afile system
where the images have been stored in individual files greatly burdensthe disk controller. This resultsin slow experiment loading
times aswell as limiting the access of other applications to data stored on the same storage device.

In addition to creating large directory tables, storing segmented character imagesin individual files resultsin sparse usage of the
storage device. This sparseness is even more exaggerated when the images are compressed. For example, segmented character
imagesin SD3 and SD7 have been centered within a 128 by 128 binary pixel image. The resulting image size is 2,344 bytes, 296
bytesfor the |Head header and 2,048 bytes of image data. These fileswhen CCITT Group 4 compressed average 360 bytesin size,
296 bytesfor the IHead header and only 64 bytes of compressed image data. Storing these compressed image files onto CDROM
for example, which uses a 2,048 block size, would be extremely wasteful. Only 18% of each block containing image data would
be used.

In light of these observations, NIST has developed a Multiple Image Set (MI1S) file format. The MIS format allows multiple
images of homogeneous dimensions and depth to be stored in one file. MIS is a simple extension or encapsulation of the IHead
format described in Appendix F. It can be seenin Figure 45 that the IHead structure isincluded as amember in the M1 S definition.

/***

Filename: Mis.h
Author: Michael D. Garris
Date: 7/18/90
***/
typedef struct misstruct{
IHEAD *head,;
unsigned char * data;
int misw;
int mish;
int entw;
int enth;
int ent_num;
int ent_alloc;
} MIS;

Figure 45: MIS C language definition

An MISfile containsone or moreindividual images stacked vertically within the same contiguous raster memory, thelast scanline
of the previousimage concatenated to first scanline of the next image. The individual images which are concatenated together are
referred to asMISentries. The resulting contiguous raster memory isreferred to asthe MISmemory. The MIS memory containing
one or more entries of uniform width, height, and depth is stored using the IHead header format. The IHead attribute fields are
sufficient to describe the MIS memory. The IHead structure’ swidth attribute specifiesthe width of the MIS memory, and likewise
the IHead structure’sheight attribute specifies the height of the MIS memory. In thisway, the M1S memory can be stored just like
any normal raster image including possible compression.

Due to the uniform dimensions of MIS entries, the IHead structure’s width attribute al so specifies the width of the entriesin the
MIS memory. What is lacking from the original IHead definition is the uniform height of the MIS entries and the number of MIS

63

entriesin the MIS memory. Realize that given the uniform height of the MIS entries the number of entriesin the MIS memory
can be computed by dividing the entry height into the total MIS memory height. The interpretation of two of the IHead attribute
fields, par_x and par_y, changes when the IHead header is being used to describe an MIS memory. The par_x field is used to
hold the uniformwidth of the MISentries, and thepar _y field isused to hold the uniform height of the MIS entries. In other words,
width and height represent MIS memory width and M1S memory height respectively, whilepar_x and par_y represent MIS entry
width and MIS entry height respectively. Using this convention, an MISfileistreated like an IHead file.

Figure 45 lists the MIS structure definition written in the *C' programming language. The structure contains an IHead structure,
head, and an MIS memory, data. In addition, there are 6 other attribute fields which hide the details of the IHead interpretation
from application programsthat manipulate M1S memories. The M1 S attributes misw and mish specify thewidth and height of the
MIS memory. These values are the same as the width and height attributes contained in the IHead structure pointed to by head.
TheMI S attributes entw and enth specify the uniform width and height of the MIS entries. These valuesarethe same asthepar_x
and par _y attributes contained in the IHead structure pointed to by head. The MIS attribute, ent_alloc, specifies how many MIS
entries of dimension entw and enth have been allocated to the MIS memory data. The MIS attribute, ent_num, specifies how
many entries out of the possible number allocated are currently and contiguously contained in the M1S memory data.

Appendix H: Source Code Documentation for IHead and MISfiles

Source codefor 8 different programs: decomp, dumpihdr, fragmis, htoc, ihdr 2sun, sunalign, xtrctclsand xtr ctmisareincluded
within the source code directory image in this release of the Scoring Package. These programs, their primary supporting subrou-
tines, and associated file names are described below. These routines are provided as an example to software devel opers of how
IHead and MIS images may be manipulated.

H.1 decomp <IHead filein> <IHead file out>

The program decomp decompresses an image in |Head format. The output file specified will be an image in IHead format with
itsimage data uncompressed. The main routine for decomp isfound in decomp.c and calls the external functionsreadihdrfile()
and writeihdrfile().

The procedurereadihdrfile() isresponsiblefor loading an IHead image from afile into main memory and isfound in thefileload-
ihdr.c. This routine reads the image's header data returning an initialized IHead structure by calling readihdr (). In addition, the
image'sraster dataisreturned to the caller uncompressed. Theimagesin thisrelease have been 2-dimensionally compressed using
CCITT Group 4, therefore readihdrfile() invokes the external procedure grp4decomp() which decompresses the raster data.
Upon completion, readihdrfile() returns an initialized |Head structure, the uncompressed raster data, and the image's width and
height in pixels. Grp4decomp() was devel oped by the CAL S Test Network [13][14] and adapted by NIST for usewith thisrelease
and isfound in the file g4decomp.c.

The function readihdr () is responsible for loading an image’s IHead data from afile into main memory. This routine all ocates,
reads, and returns the header information from an open imagefile in aninitialized IHead structure. This function is found in the
fileihead.c. The IHead structure definition is listed in the fileihead.h.

H.2 dumpihdr <IHead file>

The program dumpihdr reads animage’s |Head datafrom the given file and formats the header datainto areport which is printed
to standard output. The main routine for dumpihdr isfound in the file dumpihdr.c and calls the external function readihdr ().

H.3 fragmis <misfile> <roothame>

The program fragmis takes the concatenated M 1S entries contained in asingle M1Sfile and writes each entry to a separate IHead
imagefile. The program is given the M1Sfile to be fragmented and the root name to be used in creating the resulting IHead image
files. A sequential index and an extension pct will be added to the specified root name in order to create unique file names. The

main routine for fragmisis found in fragmis.c and calls the external function fragmis().

H.4 htoc <hex value>

The program htoc is a program which takes a hexadecimal value as input and returns to standard output the ASCII character that
the value represents. This program is useful for determining the ASCI I character a character classification value represents when
examining CLSfiles. The main routine for htoc isfound in htoc.c.

H.5 ihdr2sun <IHead file>

The program ihdr 2sun converts an image from NIST IHead format to Sun rasterfile format. 1 hdr 2sun loads an IHead formatted
image from afileinto main memory and writesthe raster datato a new file appending the datato a Sun rasterfile header. The main
routine for this program is found in the file ihdr 2sun.c and calls the external function readihdrfile().

H.6 sunalign <Sun rasterfile>

The program sunalign is a program which ensures the Sun rasterfile input has scanlines of length equal to an even multiple of 16
bits. It has been found that some Sun rasterfile applications assume that scanlines end on an even word boundary. |Head images
may contain scanlineswhich do not conform to thisassumption. Therefore, it may be necessary to run sunalign on animagewhich
has been converted using ihdr 2sun. The main routine for this program is found in the file sunalign.c.

65

H.7 xtrctcls-[c,h] <clsfile> <index>

The program xtrctclsis used to copy aspecific class item from a CL Sfile. The copied item isreturned via standard output in one
of two formats, hexidecimal (the ‘-h’ option) or character value (the ‘-¢’ option). Theinput to xtrctclsisthe CLSfile to be used
and the index to the item to be copied. The index is zero-oriented. The main routine for xtrctclsisfound in xtrctcls.c.

H.8 xtrctmis <misfile> <outfile> <index>

The program xtrctmis copies a specified MIS entry into a separate IHead image file. The inputs are the MISfile to be used, the
filein which the MIS entry isto be stored, and the index of the MIS entry to be copied. Once again theindex is zero oriented. The
main routine for this program isin xtrctmis.c and calls the external routine xtrctmis().

66

	sp-title
	sp-toc
	sp-doc

