Methods for Evaluating the
Performance of Systems
Intended to Recognize
Characters from Image Data
Scanned from Forms

Michael D. Garris

U.S. DEPARTMENT OF COMMERCE
Technology Administration

National Institute of Standards
and Technology

Computer Systems Laboratory
Advanced Systems Division
Gaithersburg, MD 20899

February 1993

U.S. DEPARTMENT OF COMMERCE
Ronald H. Brown, Secretary
NATIONAL INSTITUTE OF STANDARDS

AND TECHNOLOGY
Raymomd G. Kammer, Acting Director

Methods for Evaluating the Performance of Systems Intended to Recognize Characters from Image
Data Scanned from Forms

Michael D, Garris
Natignal Enstitute of Standards and Technology
Gaithersburg, MD 20899

1. Introduction

The concepts presented in this paper were developed to establish a uniform method of evaluating the recognition of optical char-
acter readers used to process the information on farms which receive information as a bit stream directly or indirectly from scan-
pers. Many large data entry systems are being designed to collect data from specified areas of farms, some of which may be
multipart and completed with machine-printed or hand-printed characters. As this technology continues to advance, the number
of commercially available products is increasing. Multiple products are emerging, all of which are designed to solve optical char-
acter recognition (OCR) applications. Improved recognition algorithms have enabled the accuracy of these products to steadily
imcrease, but each product is based on a different, often proprietary, set of algorithms. This presents potential users of QCR tech-
nology with many different choices and options and leads to a series of significant questions: How does a person determine when
the technology has matured enough to make it economically advantageous to deploy? How does a potential user determine which
product is best for his or her specific needs? How can a system developer, who has the ability to choose from a large variety of
diverse algorithmic approaches, intelligently choose and then track progress when developing OCR systems? The answer to these
questions lies in objective system performance measurement This is the motivation behind this paper.

Section 2 discusses referenced image databases and how they are used to test recognition systems. Section 3 introduces the general
principles of form-based scoring. Section 4 demonstrates how form-based scoring is applied to a specific OCR application, and
fundamental ideas related to dynamic string alignment are presented in Appendix A.

2. Testing Recognition Systems Using Referenced Image Databases

Application requirements germane to a specific OCR problem are embodied ir a representative set of referenced images. Associ-
ated with each reference image is the ASCII textual information that is to be recognized in the image. The reference information
in these databases serves as ground truth for measuring recognition performance. The images are presented to a recognition sys-
tem, and the system’s results are returned. This includes hypothesized text of what the system located and recognized. NIST has
mmplemented these methods in the form of a Scoring Package that reconciles the hypothesized text with the reference text, accu-
mulating statistics used to compute perfonmance measures.[1] The NIST Scoring Package was used to compute the results from
the First Census Optical Character Recognition System Conference sponsored by the Bureau of the Census and hosted at NIST.[2]
Figure 1 illustrates the use of referenced images and the NIST Scoring Package to assess the performance of a recognition system.

Recognition
Form Images System Hypothesized Strings
Referenced

Ima

e Database Scoring
» Package

:

Performance Analysis

Reference Strings

Figure 1: Testing paradigm for recognition systems using referenced images.

The model in Figure 1 has several advantages. First, knowledge of the internal details of a system being tested is not required.
This is critical when testing systems comprised of proprietary functionat components. Secoad, the performance measures are com-
puted in an automated way without any human inspection. This is extremely important when assessing the performance of OCR
technology, especially large-scale character recognition systems. An example is the NIST massively parallel model recognition
system whose character recogniion component is capable of classifying character images up to 1000 characters per second[3].
This system is capable of processing 2,100 pages of forms containing 130 hand-printed digits per form for a total of 273,000 digits
in approximately 4 hours. The visual inspection of the system output from a single 4-hour processing session took a technician 6
months. In order to conduct tests in a reasonable amount of time, the compiling and computing of performance measures must be
automated.

Separate tests must be performed for each application of OCR technology because the results of tests performed on one application
cannot be assumed to apply to another application. Using the system testing paradigm in Figure 1, potential users of character
recogaition technology must design a collecticn of referenced images representative of their specific needs. The set of images can
then be presented to different candidate systems, and using these methods, performance measuares can be computed from the out-
put of each system for the purpose of system comparison. Likewise, a system developer can take a set of referenced images and
present them to several variations of a single system. For example, one system configuration may use algorithm A for character
segmentation, whereas another system configuration may use algorithm B. By presenting the same set of referenced images to
both system configurations, performance measures can be camputed and used to compare the two algorithms within the context
of a fully operational system.

NIST has produced three referenced image databases of digitized forms which are available to the public and distributed through
NIST’s Standard Reference Data Division on CD-ROM. NIST Special Database 1 (SD1)[4] contains 2,100 digitized pages of a
hand-print collection form completed by 2,100 different writers geographically distributed across the United States. Figure 2
shows an example of one of these forms. Each full-page image in the database is a form comprised of 33 entry fields. Each entry
field is demarcated by a separate box on the form. These fields include 28 numeric fields totalling 130 hand-printed digits, 1 alpha-
betic field containing the 26 lower-case letters, I alphabetic field containing the 26 upper-case letters, and a text paragraph field
containing the first sentence from the Preamble to the Comstitution of the United States. NIST Special Database 2 (SD2)[5] con-
taims 5,590 digitized tax forms from the IRS 1040 Package X for the year 1988 completed with machine-print. These include
Farms 1040, 2106, 2441, 4562, and 6251 together with Schedules A, B, C, D, E, F, and SE. NIST Special Database 6 (SD6)[6]
contains 5,595 digitized tax forms from the same list completed with hand-print. The information provided on these tax forms has
been generated by a camputer and does not represent real people or real tax data.

Two other referenced databases are available to the public from NIST. They contain images of isolated characters that are useful
for testing in isolation the character classification components of full-scale recognition systems. NIST Special Database 3
(SD3)[7] contains 313,389 images of segmented characters from the 2,100 writers in SD1. SD3 contains 223,125 digits, 44,951
upper-case letters, and 45,313 lower-case letters. These images have been verified to contain correctly segmented characters and
do not include images of split or merged characters. Associated with every character image in this database is a reference value
specifying the class of the character in the image. A second character image database, NIST Special Database 7 (SD7)[8], was
mtended to be used primarily for testing hand-print character classifiers. SD7 contains hand-print from 500 writers and has
approximately 83,000 isolated character images including 59,000 digits and 24,000 upper-case and lower-case letters. Because
SD7 was a testing database, the reference classifications far the character images are distributed on floppy disk separately from
the character images which are distributed an CD-ROM.

BANDWRITING SAMPLE FORM

DATE _STATE ZIP

g J23/99] [Leomms‘rer MA 01453 |

This smpknfhmdwrﬂmgnbemgmﬂededhrtmmtahngeompummhmdhmd printed numbers
and letters. Please print the following characters in the baxes that sppear below.
01234568789 0123456789 0123456789

0123456789 | (0123456787 [01234567%9 |
a7 508 4188 13183 763004
07| |508| |4i1e%| [13183 | 793094
407 4298 T2478 831465 2
[#07] [#ag9¢] [7247% 931465 | (23]
2567 87516 492935 36 600
2567 | %7516 492935 | [36] [Goo]
25649 274951 173 238 - 1838
25649 Q7495 02| [236] [r83¢%
035006 16 953 9458 87117
035000 lb| [953 a45%| 67117

shbergtladjwnfkxaymipouveg

zhbergtladiwnfKxsymi Pouvcg
WPZBKIIJFGROMCXQLDUEASHYNVT

WPZBKIJFGROMCXQLZDL(EASHYNVT

Plensc print the following text in the bax below:

We, the People of the United States, in order to form a more perfect Union, eatablish Justice, inoure domestic
Treaquility, provide for the common Defenme, promote the general Welfare, sod secure the Blessings of Liberty to
curselves and our posterity, do ardain und establish thuCONSTI‘I‘UTIONIottMUnMSMofAm

We, the Beople ofthe United S‘iq{‘es) In ovder to form
a vnore Perrﬁc'i' Uhlon establisl, Juc'f’tce nsure

ld te Tranguilif provnde-Far‘qu common
D:}:;ss; ’pl’ow?o ‘ ‘fae ?ehev‘a’ Welfare, and secure
¥

{ b o ourselves ond our
;\":S;Be‘:a?'s‘?os ;icfameqnd es’fablrsh this CON -
STITU JIOI\I -For e United States a‘FAmeHCO.

Figure 2: Example of a form comprised of entry fields completed with hand-print.

3. Concepts of Form-Based Scoring

Form-based scoring methods have been developed to measure the performance of character recognition systems, and mare spe-
cifically, automated form processing systems. Many large data entry systems must collect data from specified areas of forms, some
of which may be multipart and completed with machine-printed or hand-printed characters. Figure 2 shows an image of a form
from SD1 containing hand-print. The first entry field on the form has been blanked out to make the writer of the form anonymous.
Other examples of forms include documents such as Census forms, IRS tax forms, credit card slips, checks, etc.

This section describes the procedures necessary to assess the performance of automated form processing systems. Choosing an
OCR application is the first step required to design a recognition system test, Once an application is selected, the recognition tasks
embodied in the application and the interactions between tasks that impact system performance are identified. Based on these tasks
and their interaction, a scoring flow is derived. Scaring accumulators designed to capture system performance statistics are defined
within the scaring flow. Finally, recognition performance measures that use the scoring accumulators as input are defined.

3.1 Performance Assessment Based on Target Applications

A recognition system test is developed by first targeting a specific OCR application. Target applications are defined by two prin-
cipal components. The first component is a testing set comprised of imaged forms. These images must be representative of the
types of forms and the types of infarmation to be captured by the recognition system. The second component is a collection of
reference system respanses. Typically, the types of forms included in the testing set dictate which form processing tasks are
embodied within the target application. A separate reference response must be recorded for each of the tasks to be perfarmed on
each form in the testing set. In general, a target applicatica that includes form identification requires a reference form identification
for each form in the testing set, a target application that includes field identification requires a reference field identification for
each field in the testing set, a target application that includes field recognition requires a reference field value for each field in the
testing set, and a target application that includes character recognition requires a reference character value for each character in
the testing set. These tasks are described below.

Together, the form images and the reference responses represent a referenced image database like those discussed in Section 2.
Hypothesized system responses are generated by presenting the imaged forms to the recognition system. System performance is
then measured by compiling statistics based on comparing the hypothesized system responses to the reference system responses.
By defining a target application in this manner, performance assessment can be viewed as a test. The imaged forms represent the
test’s questions, the hypothesized systern responses represent the student’s answers, and the reference system responses represent
the teacher’s answer sheet.

3.2 Form Processing Tasks

Figure 3 illustrates four different form processing tasks addressed by this paper. These tasks include form identification, field iden-
tification, field recognition, and character recognition. Different target applications may require the scoring of other tasks, but
these four tasks embody the primary functions that distinguish form processing from other OCR application domains such as read-
ing free-formatted correspondence. Also notice that these tasks in no way limit the implementation of a form processing system
by dictating a presumed set of algorithmic procedures. For example, traditional character recognition systems conduct character
segmentation priar to character classification.[3][9] Methods of combining segmentation and classification into a single concur-
rent process have recently been developed.[10][11]1(12] Regardless of the algorithm used, both types of systems produce character
classifications that can be analyzed and compared, and both systems can be analyzed based on their character recognition perfor-
mance.

In general, the first step to processing a form requires proper ideatification of the form type. By establishing form identification
as the first task, the methods of performance assessment presented in this paper do not address system issues such as pages missing
from a multiple-page document, and other page handling issues. Based on the identified form type, fields may be located through
the use of a spatial template. If fields cannot be unambiguously identified by position alane, then other contexts may be required
such as reading the labe] printed on the form next to each field. This is referred to as field identification. Once a field has been
located and identified, it then can be recognized. The task of reporting a single response for an entire field is referred to as field
recognition, whereas the task of reporting single responses, one for each character in a field, is referred to as character recognition.

Form Identification

Field Identification

Field Recognition

Character Recognition

Figure 3: Four tasks of a generic form processing system.

Form Identification

/\

Correct Form Incorrect Form
Identification Identification
Field Identification
Correct Field Missed Field Incorrect Field
Identification Identification
Field Recognition
Correct Field Incorrect Field
Recognition Recognition

Character Recognition

/\

Correct Character Missed Character Incorrect Character
Recognition Recognition

Figure 4: The possible outcomes resulting from each of the four form processing tasks.

A more detailed diagram of the form processing tasks is shown in Figure 4, This figure illustrates the possible outcomes resulting
from each of the four tasks. Form identification can either result in a correctly identified form or an incorrectly identified form.
Likewise, field identification can either result in a correctly identified field, an incorrectly identified field, or a missed field. Field
recognition can result in an entire field being recognized correctly ar incorrectly, while character recognition can result in a char-
acter being comrectly recognized, incorrectly recognized, or missed. Incorrectly recognized characters include both substituted and
inserted characters. Characters are frequently missed due to errors during segmentation. Performance measurements can be com-
puted by compiling statistics at each of these possible cutcomes.

Up to this poiant, the effects of system rejections on scoring have not been addressed. Systems have the potential to reject the out-
comes from all four of the form processing tasks. This is illustrated in Figure 5. For example, a system may choose to reject the
hypothesized form type assigned to a specific form image, or a system may choose to reject the hypothesized classification
assigned to a segmented character image. Rejecting outcomes gives a system the ability to flag low confidence decisions as
unknown, so that they may be verified by human inspection. Figure 6 illustrates how the performance of a recognition system'’s
rejection decisions can be analyzed.

The first diagram measures the system'’s ability to perform the task, while the second diagram measures the system’s ability to
reject or accept system responses accurately. In order to conduct the analyss in Figure 5, the reference responses must correspond
to the appropriate task outcome. The analysis represented in Figure 6 requires reference responses that correspond to appropriate
system decisions to accept or reject identification or recognition results.

Form Processing Task
Accepted Rejected
Task Response Task Response
Accepled Tasks Rejected Tasks
Incorrect Incorrect
'lhsk Raponse Task Response "Ihsk Rcsponse Jask Response
Incarrect Tesks Correct Tasks Incorrect Tasks

Figure 5: Measuring system task performance based on a system’s decisian to reject responses.

Form Processing Task
Accepted Rejected
Task Response Task Response
Accepled Tasks Rejecied Tasks
Incorrect Incorrect
Acceptance Acceptance Rejecuon Rejection
Incorrectly Correctly
Acoepted Responses Accepted Rmpons&s Regcted Responses Re]ecle.d Respmses

Figure 6: Measuring the perfarmance of a system's rejection decisions,

3.3 Task Interactions and Scoring Flow

The diagrams in Figure 4, Figure 5, and Figure 6 should not be mistaken as a model for implementing form processing systems.
They should be viewed as a flexible framework by which form processing systems can be analyzed and compared. A specific form
processing application is assumed to contain one or more of the form processing tasks listed in Figure 3. Those tasks not included
in the target application, for example a system may not conduct field identification, are not included in the analysis of recognition
system performance. A scoring flow is thereby defined according to the presence of these tasks and their inferactions between each
other.

Task interactions of interest are those that impact system performance. For example, it may be determined that within an applica-
tion a system rejectian of a form’s identification should result in all characters on the form being tallied as missed. In this case, a
decision made within the form identification task influences performance within the character recognition task (characters are
missed). A common task interaction is to analyze system responses at subsequent tasks only when the recognition system’s
response at the current task has been accepted by the system and the response is correct (equal to the reference system response).
For example, only fields on forms that have been accepted and correctly identified should be analyzed at the field identification or
recognition tasks. Scaring flows are defined through this process of identifying tasks and defining their performance-based inter-
actions.

3.4 Scoring Accumulators and Performance Measures

Ongce the scoring flow has been defined, scoring variables must be defined in order to accumulate system performance statistics.
Variable names are defined by one or more letters representing a type of recognition system decision and/or scoring outcome.
These letters include recognition system decisions to accept (4) or reject (R) system results. They also include scoring outcomes
that determine if the recognition system’s decisions were correct (C) or incomrect (f) or whether information was missed (M) by
the recognition system. Performance statistics may be accumulated at the form, field, and character levels and may be represented
as the variable subscripts form, field, and char respectively. The form processing task contributing to a particular statistical accu-
mulatar is denoted by the variable’s superscript. Statistics accumulated for forms identification may be denoted as frmid, field
identification as fidid, field recognition as fldrec, and character recognition as chrrec. Other names for subscripts and superscript
may be required depending on the target OCR application chosen.

Using this nomenclature, variable accumulators used to compute system performance measures can be defined. For example, the
variable RCf mid can be used to represent the total number of correctly identified forms rejected by the recognition system. Like-

O?'H'I

wise, a variable representing the total mmber of characters missed during character recognition may be ME7e¢_Several other

accumulators are also required for scoring. They include the total mmber of forms processed foral,, .. the total mmber of fields
processed totaly,;, . and the total number of reference characters on the forms processed fotal ..y, .

Different elements of recognition system performance are critical to different form processing applications. For example, one
farm processing application may require a very high acceptance rate providing a high level of automated throughput, and the
application may be tolerant of a moderate level of error. Another form processing application may require very low error rates at
the expense of a very low acceptance rate. The methods presented in this paper have been designed to accumulate performance
statistics at a fundamental level. These statistics can then be combined and used in complex measures designed to capture the
attributes of system performance relevant to a specific application. The performance measures discussed in this paper assess the
accuracy of character recognition systems and do not have associated with them any direct notion of cost. Of course, scaring accu-
mulators can be used as inputs to cost models, but the assessment of performance-based cost is not covered in this paper

4. Case Study

This section demonstrates how form-based scoring can be applied to a specific application. By following the general guidelines
presented above, an OCR application is described, the relevant recognition tasks are identified, interactions between the tasks are
defined, scoring flows are derived, scoring accumulators are defined, and performance measures are presented. Based on the
designed test, a recognition system is presented all the imaged forms in the testing set and all the system's respanses for each of
the tasks are recorded. The hypothesized responses are then entered into the scoring flow and compared against the reference sys-
tem responses. Scoring accumulators are incremented according to all task interactions for all hypothesized responses. Once all
bypothesized system responses have been scored, the accumulators are combined to compute system performance measures that
are analyzed to assess the realized system performance,

4.1 The Application

The application studied in this example is the antomatic processing of different structured form types, where each farm contains
multiple hand-printed character fields, fields containing box check marks, and fields containing signatures. The forms are struc-
tured so that the number, type, and locatian of each entry field remains consistent across all forms of the same type. The recogni-
tion system is required to recognize the type of each form processed and recognize every field on the form. If the field contains
characters, it is referred to as 2 character-field, and the system is required to report recognition responses character by character.
If the field contains non-character information, it is referred to as an icon-field, and the recognition system is required to determine
if the field contains information or not. If the icon-field is a signature field, the recognition system is required to determine if the
field has a signature present_ If the icon-field is a box to be checked off, the recognition system is required to determine if the field
has a check mark in it. Finally, the recognition system has the ability to reject form identifications, entire field responses, and indi-
vidual character classifications.

4.2 Relevant Form Processing Tasks

This structured form processing application embodies three of the tasks listed in Figure 3. From the application description above,
two of the tasks are obvious. They are form identification and character recognition. The task of field identification is not included
becanse the location of entry fields is directly dependent on the identification of the form’s type. This is true when, based on the
type of the form, a spatial template can be applied to the image to isolate the entry fields in the image. The third task included
indirectly in the application description is field recognition, The processing of icon-fields falls within this task, and character-field
recognition responses can be inferred fram the responses generated within the character recognition task. Please note that inferring
character-field recognition responses from individual character recognition responses would be avoided if the application required
character-field level responses to be reported separately. In this case, the system’s character-field recognition responses would be
matched directly to reference character-field recognition respanses.

4.3 Task Interactions and Scoring Flows

With the three form processing tasks identified, the interactions between tasks must be defined and a scoring flow derived. Begin-
ning with the form identification task, if the type of a form is correctly identified, then the form is tallied as correctly identified
and scoring continues at the field recognition task. If form identification is incarrect, the scoring of outcomes from any subsequent
tasks is discontinued. The form is tallied as incarrectly identified and the fields and characters on the form are tallied as missing,
These interactions are illustrated in Figure 7.

Given the application description, character-field recognition is dependent on the outcomes from character recognition so that
character recognition analysis is conducted first. The inferring of character-field recognition responses from the character recog-
nition task is represented in the scoring flow shown in Figure 8 with the character recognition task nested within the field recog-
nition task. For each field on a correctly identified form, the hypothesized characters generated by the recognition system when
reading the field are reconciled with the reference string describing what was entered in the field. This is done through the use of
the dynamic string alignment algorithm discussed in Appendix A. The alignments produced are used to tally the number of cor-
rect, incorrect (substituted and inserted), and missing characters. These character recognition task results are then used to infer
character-field recognition task responses,

Form Identification
I Accepted Rejected
Form Identification Form Identification
Rejected Form ID's
Correct Incorrect Missed Char. Fields
Form Identification Form Identification Missed Characters
Missed [con-Fields

Correct Form ID's

Incorrect Form ID's
Missed Char. Fields

Missed Characters
Missed Icon-Fields

Figure 7: Scoring of form identifications based an a system's ability to reject results.

Character-Field Recognition
Accepted Rejected
Field Recognition Field Recognition
Incorrect
Field Rejection
Comect Character-Fields Incorrect Character-Fields
Missed Characters
Character Recognition
Accepted Rejected
Char. Recognition Char. Recognition

Char. Recogpition

Correct
Char. Rec Chah Recognition
Chaix, Recognition
Correct Incorrect Correct Incorrect
Cl'mrT:ters Characters Characters Characters
I

Correct Incorrect

Field Recognition Field Recognition
Correct Incorrect

Character-Fields Charactier-Fields

Figure 8: Scoring of character-field and character recognitions based on a system's ability to reject results.

The application description included recognition system rejection decisions at the form identification task, field recognition task,
and character recognition task. If the hypothesized identificaticn of a form is rejected, then ali the fields and characters on the form
are tallied as being missed. Only those fields belonging to forms whose identification is accepted canfinue to be analyzed at the
field recognition task, Upon acceptance of a farm’s identification, the recognition system may decide to reject the field due to poor
recognition of the contents within the field. For example, the confidence values of the individual characters recognized in the field
may be too low to place confidence in the successful reading of the entire field. Alternatively, the recognition application may
require the recognition and matching of a word in a given field to a predetermined list of words in a dictionary, and the characters
recognized in the field may not match any of the words. In both examples, the recognition system determines that the entire field
should be rejected.

In the character recognition task. any classification resulting from the recognition of a segmented image may be rejected. It is
desirable for a system to reject classifications associated with incorrectly segmented images such as split or merged characters and
images of noise. These segmentation errors result in characters being missed (deletion errors) and in erroneous additional classi-
fications being made (insertion emrors). It is also desirable to reject incorrect classifications associated with correctly segmented
character images. These represent the substitution etrors in the system. Unfortunately, rejection mechanisms are not perfect, so
that occasionally, correctly classified character images are also rejected. Having described the variouns instances of character level
rejections, a character-field is considered correctly recognized only if every character in the field's reference string has been cor-
rectly classified with no characters missed and there are no additional (inserted) classifications remaining after rejection.

The recognition system is also required to detect the presence or absence of non-character information in icon-fields. In this paper,
icon-fields include information such as check marks, signatures, and mark-sensed fields. For the application studied in this section,
only fields containing check marks and signatures exist on the forms. The scoring flow for the recognition of icon-fields is illus-
trated in Figure 9. The analysis is simplified because the recognition system only detects the presence or absence of icon-field
information and does not have to further recognize the contents of the icon-field,

Icon-Field Recognition
Rejected
Field Recognition

Accepted
Ficld Recognition

Correct Incorrect
Icon R ecognition
Correct Incorrect Carrect Incorrect
Icon-Fields Icon-Fields Icon-Fields Icon-Fields

Figure 9: Scaring of icon-fields based on & system's ability to reject results.

4.4 Scoring Accumulators

Given the scoring flows in Figure 7, Figure §, and Figure 9, scoring variables are defined using an adapted version of the variable
nomenclature described in Section 3.4. These variables are used to accumulate recognition system performance statistics within
the scoring flows. For this application, variable names may contain one or more letters representing a type of recognition system
decision and/or scaring outcome. These letters include recogniticn system decisions to accept (A) or reject (R) system results.
They also include scoring outcomes that determine if the recognition system's decisions were correct (C) or incorrect (1) or
whether infermation was missed (M) by the recognition system. Performance statistics are accumulated at the form, character-
field, icon-field, and character levels and are represented as the variable subscripts form, chrfld, icofid, and char respectively.
Notice that the field recognition task contains two separate sets of accumulators, cne for character-fields and one for icon-fields.
The form processing task contributing to a particular statistical accumulator is denoted by the variable’s superscript. Statistics
accummulated for forms identification are denoted as frmid, field recognition as fidrec, and character recognition as chrrec. Notice

10

that the field identification task is not represented by a superscript because the task is not embodied by the target application
description and is not included in the scoring flows above.

Using this adapted nomenclature, the variable accumulators used for this application are shown in Figure 10, Figure 11, and Figure
12. For example, the variable RCﬁﬁZ’f‘ represents the total number of correctly recognized characters rejected by the recognition
system. Likewise, the variable representing the total pumber of character-fields missed due to the recognition system accepting
incorrectly assigned form identifications is AM”;r+,,. These scoring accumulators are summarized in the table shown in Figure 13.
Several other accumulators are also required for scoring this application. They include the total number of forms processed
toral,, . the total number of character-fields processed total,,, q,. the total mumber of icon-fields processed rotal;, . . and the

erm?

total number of reference characters on the forms processed toral, ., .

Form Identification

frmid frmid id id
R orm RMc;:r}ld RM‘E‘Er RM{EZ_‘;M

id id id id id
ACI A AT, AMITE MR

form orm char

Figure 10: Scoring accumulatars for form identifications.

11

Character-Field Recognition
A

fldrec fldrec Idrec
R Cchrﬂd RF chrfid R char

Character Recognition
R
chrrec
char
C I
chrrec chrrec chrrec chrrec
ACchar Alchar RCchar RIchar
| |
i
I
C I
fldrec ldrec
AChrid A

Figure 11: Scoring accumulators for character-field recognitions and character recognitions.

Icon-Field Recognition

fldrec Idrec fldrec Idrec
ACicona Alicona RCiona REicopa

Figure 12: Scoring accumulators for icon-field recognitions.

12

Totals

1. toralform
2. total g
3. Ioralicoﬂd

4. toralrefchr

forms process
character-fields processed
icon-fields processed

reference characters on all forms processed

Form Identification

5. achmid
6. AR
. R
Character-Fields

id
8. AMIn

9. AMy
10. RMI,
1. Ry
Icon-Fields

12. AMITH,
13. RMITIE

Field Recognition

Character-Fields
14. ACHS
15. AL
16. RCeE
17. REES
18. RMILres

accepted correctly identified forms
accepted incorrectly identified forms

rejected form identifications

missed character-fields due to accepted incorrectly identified forms
missed characters due to accepted incorrectly identified forms
missed character-fields due to rejected form identifications

missed characters due to rejected form identifications

accepted missed icon-fields due to accepted incorrectly identified forms

missed icon-fields due to rejected form identifications

accepted correctly recognized character-fields
accepted incorrectly recognized character-fields
correctly rejected character-field recognitions
incorrectly rejected character-field recognitions

missing characters due to incorrectly rejected char. field recognitions

13

Field Recognition Cont’d
Icon-Fields

19.
20.
21.
22.

A C{ﬁ;‘;"j accepted correctly recognized icon-fields
A ,-i‘f,}fg accepted incorrectly recognized icon-fields
RC[S%S rejected correctly recognized icon-fields

R ié‘i}‘f; rejected incorrectly recognized icon-fields

Character Recognition

23.
24,
25.
26.
27.

ACElTee accepted correctly recognized characters

char

AISEree accepted incorrectly recognized characters
MEhrree missing characters

RCER™ rejected correctly recognized characters
}elchrrec

char rejected incorrectly recognized characters

Figure 13; Table of scoring accumulators and their definitions.

14

4.5 Performance Measures

This section presents various performance measures that can be computed from the scoring accumulators defined in Figure 13.
The following equations are examples of various recognition system performance measurements and are summarized in the table
shown in Figure 14.

4.5.1 Form-Based Performance Measures

frmid

_ form
FORMI1 = oral lﬂ)m)

A rmid+ rmid

FORM?2 = form form 2)
tozalform
A Cfrmid
FORM3 = frmidform frmid @
AC orm +AI orm
]frmid
FORMA4 = T @)
d d
AT+ ATl
frmid
_ orm
FORMS = T Iform (5)
4.5.2 Character-Field Based Performance Measures
fldrec
CHRFLD] = 114 ©)
roralchrﬂd

15

Cﬂdrec

453 Icon-Field Based Performance Measures

CHRFLD2 = chrfld
14, 1d
AC{}:&%Z“‘A hrfld

CHRFLD3 = ¢4
toral chrfld

AMfrmid

CHRFLD4 = .. chfid
mtalchrfld

Acﬂdrec

ICOFLD1 = — <!

ICOFLD2 =

total icofid

ld
A C{c o}?g

i

1d id d
ACLofid + Allcofia + RClgria

ICOFLD3 =

ICOFLDA =

16

rmid
R M’iccoﬂd

totaly o4

rmid
AMofia
total;, ofld

ldrec
+ R]{coﬂd

™)

(8)

®

(10)

(11)

(12)

(13)

4.5.4 Combined Field-Based Performance Measures

1d 1d
C};hr’ﬁg t4 C{co}?g

FIELD1 =
totalchrﬂd+ toraliwﬂd

id. Id
FIELD? = Ac{h;};fi*' AC{COS’?;

(14)

(15)

fldrec ldrec fldrec ldrec fldrec fldrec
ACeurpia+ Afppia+ RCohpa+ REcopg + Alicona t RCopg

rmid rmid
RMprsia+ RMcof14
IOIalchrfld-'- toralicoﬂd

FIELD3 =

rmid rmid
AMZhrﬂd +AM; o1

FIELD4 =
rotalchrﬂd+ roml‘-coﬂd

4.5.5 Character-Based Performance Measures

A Cchrrec + RCchrrec

+R

Idrec
icofld

(16)

a7

(18)

CHAR1 = char char

char char char char char

Acchrrec +Rcchrrec

char char
ACchrrec +A1chrrec +Rcchrrec +Rlchrrec

char char char char

CHAR2 =

A Cchrrec
CHAR3 = char

chrrec hrrec
ACchar + Alihar

17

Acchrrer: +A1chrrec +Rcchrrec +R]chrrec +RMfrmid+RMf[drec

char

(19)

(20)

Rcchrrec + R[chrrec

har char
CHAR4 = —¢
total pop,
aes - RCEpar™ + RIGH
ACGEe + AIGTE + RCIIEE + RIGHTES
R Cchrrec
CHARG6 = chrrecChar chrrec
ACchar +Rcchﬂf

id

CHART = %

total e,

ACchrrec

CHARS = —_char

mmlrefchr

A Cchrrec

CHARY = chrrec i]chrrecCh‘;Cchrrec R]chrrec
Acchar AL per T char T char

frmid

CHAR10 = ——char_

rOmlﬁ'efchr

18

(21)

(22)

(23)

(24)

(25)

(26)

27

Form-Based
(1) FORMI
(2) FORM2
(3) FORMS3
(49) FORM4
(5) FORMS5

fraction of all forms accepted and correctly identified
fraction of all forms not accepted end correctly identified
fraction of accepted forms correctly identified

fraction of accepted forms incorrectly identified

fraction of all form identifications rejected

Character-Field Based

(6) CHRFLDI
(7) CHRFLD2
(8) CHRFLD3
(9) CHRFLD4

Icon-Field Based
(10) ICOFLD1
(11) ICOFLD2

(12) ICOFLD3
(13) ICOFLD4

fraction of all character-fields accepted and correctly recognized
fraction of accepted character-fields correctly recognized

fraction of all character-fields missed due to rejected form identifications
fraction of all character-fields missed due to accepted incorrect form
identifications

fraction of all accepted and correctly recognized icon-fields
fraction of accepted and correctly recognized icon-fields from all
accepted icon-field identifications

fraction of all icon-fields missed due to rejected form identifications
fraction of all icon-fields missed due to accepted incorrect form
identifications

Combined Field-Based
(14) FIELD1 fraction of all fields accepted and correctly recognized
(15) FIELD2 fraction of accepted and correctly identified fields correctly recognized
(16) FIELD3 fraction of all fields missed due to rejected form identifications
(17) FIELD4 fraction of all fields missed due to accepted incorrect form
identifications
Character-Based
(18) CHARI1 fraction of correctly recognized characters including characters missed
due to rejection
(19) CHAR2 fraction of correctly recognized characters from all accepted field recognitions
(20) CHARS3 fraction of accepted correctly recognized characters
(21) CHAR4 fraction of all character recognitions rejected
(22) CHARS fraction of characters rejected from all accepted field recognitions
(23) CHARG fraction of correctly recognized characters rejected
(24) CHAR7 fraction of characters missed due to rejected form identifications
(25) CHARS fraction of all accepted and correctly recognized characters
(26) CHARS fraction of accepted and correctly recognized characters from all accepted
field recognitions
(27) CHARI10 fraction of all characters missed due to accepted incorrect field

identifications

Figure 14: Table of recognition system performance measures and their definitions.

19

5. Conclusions

A standard method for measuring the recognition performance of automated form processing systems has been presented. The
method requires the specification of a target OCR application, the identification of relevant form processing tasks, the definition
of interactions between tasks, the development of a scoring flow, and the definition of scoring accumulators and performance mea-
sures. A referenced image database is required that contains both images of typical forms and reference system responses for each
of the tasks to be performed on each of the forms. The imaged farms in the database are presented to the recognition system and
the system’s hypothesized responses are recorded for each of the tasks specified in the application. The hypothesized respanses
are then processed accarding to the scoring flow and scoring accumulators are tallied. Once all hypothesized responses are scored,
the scoring accumulators are input into performance measures for analysis. This paper presented the general concepts to form-
based scoring and demonstrated how they can be applied to a specific application. The methods contained in this paper can be
tailored to a wide variety of OCR applications and recognition systems.

6. References

[1] M. D. Garris and S. A. Janet. NIST Scoring Package User’s Guide Release 1.0. Technical Repart NISTIR 4950, National In-
stitute of Standards and Technology, October 1992.

[2] R. A. Wilkinson, et al. The first Census optical character recognition system conference. Technical Report NISTIR 4912, Na-
tional Institute of Standards and Technology, July 1992.

[3] M. D. Garris, et al. Massively parallel implementation of characier recognition systems. In Conference on Character Recog-
nition and Digitizer Technologies, volume 1661, pages 269-280, San Jose California, February 1992. SPIE.

[4] C. L. Wilson and M. D. Garris. Handprinted character database. Technical Report Speciat Database 1, HWDB, National In-
stitute of Standards and Technology, April 1990.

[5] D. L. Dimmick, M. D. Garis, and C. L. Wilson. Structured Forms Database, Technical Report Special Database 2, SFRS,
National Institute of Standards and Technology, December 1991.

[6] D. L. Dimmick and M. D. Garris. Structured Forms Reference Set 2, Technical Report Special Database 6, SFRS2, National
Instimite of Standards and Technology, September 1992.

[7] M. D. Garris and R. A. Wilkinson. Haodwritten segmented characters database. Technical Report Special Database 3,
HWSC, National Institute of Standards and Technology, February 1992.

[8] R. A. Wilkinson. Handprinted segmented characters database. Technical Report Test Database 1, TST1, National Institute of
Standards and Technology, April 1992,

[9]1 H. P. Graf, C. Nohl, and J. Ben. Image segmentation with networks of variable scale. J. Moody, S. Hanson, and R. Lippmann,
edlt%resr, Jilg;izrmes in Neural Information Processing Systems, volume IV, pages 480-487. Morgan Kaufmann, Denver, De-
cem .

[10] M. D. Garris and C. L. Wilson. A neural approach to concurrent character segmentation and recognition. In Southcon 92
Conference Record, pages 154-159, Orlando, March 1992. IEEE.

[11] G. L. Martin. Centered-object integrated segmentation and recognition for visual character recognition. J. Moody, S. Han-
son, and R Lippmann, editors, Advances in Neural Information Processing Systems, volume IV, pages 504-511. Morgan
Kaufmann, Denver, December 1991.

[12]). D. Keeler and D. E. Rumelhart. Self-organizing segmentation and recognition neural network. J. Moody, S. Hanson, and
R. Lippmann, editors, Advances in Neural Information Processing Systems, volume IV, pages 496-503. Morgan Kaufmann,
Denver, December 1991.

[13] H G. Zwakenberg. Inexact Alphanumeric Comparison. The C Users Journal, pages 127-131. May 1991.

20

Appendix A: Dynamic String Alignment

The importance of automating the performance assessment of large scale character recognition systems was emphasized in Sec-
tion 2. The automation of performance assessment methods can be realized through the use of a dynamic string alignment algo-
rithm. This algorithm is responsible for determining how errors occurring in the character recognition task should be assessed.
The alignment algorithm reconciles the reference string (what was entered in a field) with the hypothesized string generated by
the recognition systern. String alignment concepts are discussed in this appendix.

Several different examples are presented in order to demonstrate how string alignments can be used to automatically assess the
performance of character recognition systems. The dynamic string alignment algorithm used in the NIST Scoring Package has
been adapted from the Levenstein Distance algorithm.[13] This algorithm uses dynamic programming to find the minimum dis-
tance between two strings given penalties for character substitutions, deletions and insertions. The algorithm was modified to
return the information needed to construct aligned reference and hypothesis strings.

A familiar system error is a substitution error in which the recognition system assigns an incorrect classification to a segmented
character image. Figure 15 displays an alignment produced by the Scoring Package of a substituticn error cansed by an ambiguous
character, a ‘3’ classified as an *8’. The hand-printed ‘3’ is malformed so that it really does look ambiguously like an ‘8’ when
read by a human. The top image in the figure is an isolated field containing the five hand-printed digits ‘0’, ‘1°, ‘2’, ‘3", and ‘4",
The second line of images are the result of segmenting the isolated field into separate images. one character per image. The third
line in the figure lists the reference string of what truly was printed in the field. The fourth line lists the hypothesis string corre-
sponding to the assigned classifications generated by the recognition system. The last line in the figure marks the substitution
errors identified by the Scoring Package with a ‘1’ representing a substitution error made by the recognition system. As shown in
the figure, the segmented character image containing the malformed ‘3’ is classified by the recognitian system as an ‘8’ and is
identified as a substitution error by the Scoring Package by reconciling the hypothesis string with the reference string.

Isolated Field Image /A F ed
S ted Charact
egmen Ir‘:) ag%arac er a / L ' q
Reference String O 1 2 3 4
Hypothesis String O]. 2 8 4
Ali t of Substituti
1gnmen(1(; sug) stitutions O O 0 1 0

Figure 15: Scoring Package alignment of a substitution error caused by a malformed character.

Another source of character recognition errors comes from incorrectly segmeated character images. Most character classifiers are
designed to recognize characters one character image at a time. With uncoustrained hand-print, characters frequentdy touch or
overlap making the clean separation of characters difficult. Unfartunately, characters are not always segmented correctly. This
results in isolated images containing partial characters, multiple characters, and noise. These segmented images are in turn passed
to the system’s character classifier. Typical segmentation failures result in the insertion of character-like images into, and the dele-
tion of legitimate character images from, the recognition system. This is demonstrated in the examples shown in Figure 16 and
Figure 17.

Figure 16 shows an example alignment produced by the Scoring Package of an insertion error caused by a segmentation failure.
The top image is an isolated field containing the four hand-printed digits ‘3’, ‘4", *5°, and ‘6’. The second line of images is the

21

result of segmenting the isolated field into separate images, which are assumed to be one character per image. Notice the ‘4" has
been incorrectly separated into two pieces resulting in two isolated images with two strokes forming a right angle in the left image
and a vertical stroke in the right image. This is an example of a segmentation failure, the splitting of a character into multiple
images. The third line in the figure lists what was printed in the field. The fourth line lists the hypothesis string corresponding to
the assigned classifications generated by the recognition system.

Isolated Field Image 3 L{ 5 L

Segmented Character
Images

L

Reference String

O O ww | (W
@)

O = A=

© O vy

OO N |~

Hypothesis String
Alignment of Insertions 1
(1= Ins)
Alignment of Substitutions O 1
(1= Sub)

Figure 16: Scoring Package alignment of an insertion error caused by a segmentation failure and resulfing in a substitution error.

Due to the segmentation failure, the character classifier in the recognition system is presented the two pieces of the ‘4’ rather than
one complete character. The result can be seen in the hypothesis string where the first piece of the ‘4’ is classified as a ‘6’ and the
second piece of the ‘4’ is classified as a *1". The fifth line in the figure marks the insertion error identified by the Scoring Package
with a ‘1’ representing the inserted classification of a *6’. Often, a single segmentation failure introduces multiple errors into the
system. This can be seen by the last line in the figure which marks a substitution error at the position of the second piece of the
‘4", the vertical stroke. If segmentation failures go undetected, then the character classifier assumes the resulting isolated images
are correct and the classifier will assign a classification to each isolated image it is permitted to see. By reconciling the reference
string to the hypothesis string, the Scaring Package labeled the second piece of the ‘4’ as a substitution error, knowing that a ‘4’
was truly printed in the field.

Figure 17 shows an example alignment produced by the Scaring Package of a deletion error caused by a segmentation failure. The
top image is an isolated field containing the five digits ‘4", *5°, ‘6’, ‘7, and ‘8'. The second line of images is the result of segmen-
ing the isolated field into separate images, which are assumed to be one character per image. Notice the ‘5’ and ‘6' have been
merged into a single isolated image. This is another example of a segmentation failure, the merging of multiple characters into a
single segmented image. The third line in the figure lists the reference string of what truly was printed in the field. The fourth line
lists the hypothesis string corresponding to the assigned classifications generated by the recognition system.

Due to the segmentation failure, the character classifier in the recognition system is presented a single image caontaining two char-
acters rather than two separate images each containing one character. This is another example of how, if a segmentation failure
goes undetected, the character classifier will assign a classification to each isolated image it is permitted to see. The result can be
seen in the hypothesis string where the number of assigned classifications is one less than the length of the reference string, and
the merged image containing the ‘5’ and ‘6’ is classified as a ‘7”. The fifth line in the figure marks the deletion error identified by
the Scoring Package with a ‘1’ representing the position of the deleted character. The last line in the figure marks the substitution
error resulting from the merged character image being incorrectly classified. By reconciling the reference string to the hypothesis
string, the Scoring Package located the position of the deleted character and labeled the classification assigned to the merged char-
acter image as a substitution erree.

22

Isolated Field Image sz ; k
Segmenltrt:::l gélaracter y S‘Z
4 5
2l 7
0 0

7 &

Reference String 6 7 8
Hypothesis String 7 8
Alignme(rlli %t; :))eletions 1 O O
Alignment 1o=f SSl]lll:)bstitutions 0 1 §) 0 0

Figure 17; Scoring Package alignment of a deletion error caused by a segmentation failure and resulting in a substitution error.

The examples in Figure 16 and Figure 17 demonstrate how system errors have a cascading effect, resulting in multiple errors being
introduced into a single hypothesis string. The alignment examples shown are, by design, easy to understand and are easily
derived. In practice, multiple errcrs frequently occur in a single hypothesis string resulting in many different possible alignmeats.
The Scoring Package analyzes each candidate alignment and chooses the one that assesses the least amount of penalty. The Scor-
ing Package does this in a consistent and logical way so that, when given the same hypothesis string and reference string, the Scor-
ing Package will always generate the same alignment. As multiple errors are introduced into the hypothesis string, it becomes
increasingly more difficult for the Scoring Package to unambiguously distinguish insertion errors from substitutions errors. This
distinction often requires human inspection which would compromise the degree to which the Scoring Package is automated.
Therefore, the Scoring Package does not distinguish substitution errors from insertion errors and lumps them together into a single
categary called false positives.

23

