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ABSTRACT

The National Institute of Standards and Technology (NIST) has devel oped a standard reference form-based
handprint recognition system for evaluating optical character recognition. NIST is making this recognition system
freely available to the general public on CD-ROM. Thisis a source code distribution written primarily in C with two
additional utilities having FORTRAN components. Library utilities are provided with the recognition system for con-
ducting formregistration, formremoval, field isolation, field segmentation, character normalization, feature extraction,
character classification, and dictionary-based postprocessing. A host of data structures and low-level utilities are also
provided. These utilities include the application of spatial histograms, L east-Squares fitting, spatial zooming, con-
nected components, Karhunen Loeve feature extraction, Probabilistic Neural Network classification, multiple-key
sorting, dynamic string alignment, and dictionary matching. The recognition system has been successfully compiled
and tested on a host of UNIX workstations including computers manufactured by Digital Equipment Corporation,
Hewlett Packard, IBM, Silicon Graphics Incorporated, and Sun Microsystems. A CD-ROM can be obtained free of
charge by sending aletter of request to NIST. This report documents the system in terms of itsinstallation, organiza-
tion, and functionality.

1. INTRODUCTION

The National Institute of Standards and Technology (NIST), has devel oped a standard reference form-based
handprint recognition system for evaluating optical character recognition (OCR). NIST is making thisrecognition sys-
tem freely available to the general public on CD-ROM. This report documents the system in terms of its installation,
organization, and functionality. The standard reference recognition system is designed to run on UNIX workstations
and has been successfully compiled and tested on a Digital Equipment Corporation (DEC) Alpha, Hewlett Packard
(HP) Model 712/80, IBM RS6000, Silicon Graphics Incorporated (SGI) Indigo 2, SGI Onix, SGI Challenge, Sun
Microsystems (Sun) IPC, Sun SPARCstation 2, Sun 4/470, and a Sun SPARCstation 10.” The standard reference rec-
ognition system runs on computerswith aslittle as 8 Megabytes of memory, but thisis not recommended asthe system
iS computer resource intense.

The source code for the main system, hsfsys, iswrittenin C (traditional K& R not ANSI) and is organized into
11 libraries. In all, there are approximately 19,000 lines of code supporting more than 550 subroutines. Source codeis
provided for form registration, form removal, field isolation, field segmentation, character normalization, feature
extraction, character classification, and dictionary-based postprocessing. A host of data structures and low-level utili-
ties are also provided. These utilities include the application of CCITT Group 4 decompressi on2, IHead file mani p-
ulation®*, spatial histograms, L east-Squaresfitting®, spatial zooming, connected components, K arhunen Loeve feature
extraction®, Probabilistic Neural Network classification’, multiple-key sorting, Levenstein distance dynamic string
alignment®, and dictionary matching®.

Two other programs are provided that generate data files used by the recognition system. The first program,
mis2evt, computes a covariance matrix and generates el genvectors from a sample of segmented character images. The
second program, mis2pat, produces prototype feature vectors for neural network training and classification.

* Specific hardware and software products identified in this paper were used in order to adequately support the development of the technology
described in this document. In no case does such identification imply recommendation or endorsement by the National Institute of Standards and
Technology, nor doesit imply that the equipment identified is necessarily the best available for the purpose.



Thesefeature vectorsare computed using segmented character images and el genvectors. Unlikethe recognition system
which iswritten entirely in C, these two programs contain FORTRAN 77 components. To support these programs, a
training set of 168,365 segmented and label ed character imagesis provided in the distribution. About 1000 writers con-
tributed to this training set.

A CD-ROM distribution of this standard reference system can be obtained free of charge by sending a letter
of request to Michael D. Garris at the address above. Requests made by electronic mail will not be accepted. Theletter,
preferably on company letterhead, should identify the requesting organization or individuals. This system or any por-
tion of this system may be used without restrictions because it was created with U.S. government funding. Redistribu-
tion of this standard reference system is strongly discouraged as any subsequent corrections or updates will be sent to
registered recipients only. This software was produced by NIST, an agency of the U.S. government, and by statute is
not subject to copyright in the United States. Recipients of this software assume all responsibilities associated with its
operation, modification, and maintenance.

Hsfsys processes the Handwriting Sample Formsdistributed with NI ST Special Database 1 (SD1)° and NIST
Soecial Database 3 (SD3)™L. NIST Soecial Database 1 contains 2,100 full page images of handwriting samples printed
by 2,100 different writers geographically distributed across the United States with a sampling roughly proportional to
population density. The writers used in this collection were permanent Census field representatives experienced in fill-
ing out forms. NI ST Special Database 3, aCD-ROM containing 313,389 segmented and |abeled character images, was
extracted from SD1 and contains the original HSF forms as well. The forms were scanned at 12 pixels per millimeter
(300 dots per inch - dpi) binary and contain entry fields demarcated by boxes, one box for the entire field value.

Each of the 2,100 formsin SD1 is an image of a structured form filled in by aunique writer. A single field
template specifying the number of entry fields, their size and location, was used. An image of acompleted formis
shown in Figure 1. The form is comprised of 3 identification boxes, 28 digit boxes of varying length, arandomly
ordered lower case a phabet, arandomly ordered upper case a phabet, and a handprinted text paragraph containing the
Preambleto the U.S. Constitution. Notice that thefirst field, the namefield, has been covered with black pixels making
the writer of each form anonymous. Hsfsys has been designed to read al but the first 3 identification fields.

There are 10 HSF forms provided with this distribution. In addition, thereis one blank form provided both in
Latex and PostScript formats that can be printed, filled in, scanned, and then recognized by hsfsys. For additional HSF
forms, SD1 and SD3 may be purchased by contacting:

Standard Reference Data
NIST

221/A323

Gaithersburg, MD 20899
voice: (301) 975-2208
FAX: (301) 926-0416
email: srdata@enh.nist.gov

Section 2 givesinstallation instructions and discusses the organization, compilation, and invocation of the hsf-
sys system. Section 3 documents the functionality of the provided software. Section 4 presents some performance and
timing results, and Section 5 contains afew final comments. This report also has three Appendices. Appendix A doc-
uments the invocation and functionality of mis2evt, while Appendix B documents the invocation and functionality of
mis2pat. Appendix C comparesthe NIST standard reference recognition system to the resultsreported from the Second
Census Optical Character Recognition System Conference.'?



HANDWRITING SAMPLE FORM

DATE CITY STATE ZIP
g-7- 89 IH)lendale Mz 9440

This sample of handwriting is being collected for use in testing computer recognition of hand printed numbers
and letters. Please print the following characters in the boxes that appear below.

0123456789 0123456789 0123456789
0123456789 0123456789 O 123456789
14 542 3309 54308 467077
E SHa I 3309 SH308 Y67077
16 1293 62346 857238 12
/69 /273 G 2346 s 7a38 /2
9588 71711 034264 74 274
2588 717 034204 74 274
29279 286106 85 505 3597
29279 AP /06 8s s 3597
485069 30 063 0589 18160
Y 25969 Fo 063 059 18160
:vmgtic‘eyaskhouwdpnbqufjr
2vmgticeyaskhouwd pn bxg!Fyr
XZQURPCAEFBTVDOKILIYSHGWMN
XZQURPCAREFBTVDoKkISLIYSHGWMN

Please print the following text in the box below:

We, the People of the United States, in order to form a more perfect Union, establish Justice, insure domestic
Tranquility, provide for the common Defense, promote the general Welfare, and secure the Blessings of Liberty to
ourselves and our posterity, do ordain and establish this CONSTITUTION for the United States of America.

wﬂ-, The Peop)e o? The Uh;fec' STafes, ih order 'f'o F‘or\m & hore
perfect Union establish Justiee, jhsure domestic
Than?u.f“fyl Prov{de for The Ccommon 'D(.FQ;"S‘, P"O_m"TQ the
3enev~al u,)d(?arc’ and Secure ‘l".}\e B’GSSMjS’ ok L:éeﬂ/ to
ourselves Qand Cur PFBS posterity, do oroain and estabhsh
Fhis CONSTITUTION For The UniTed States oF America

Figure 1. Completed Handwriting Sample Form from SD1.
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2. INSTALLATION INSTRUCTIONS

2.1 Installing from CD-ROM

Hsfsysis distributed on CD-ROM in the 1SO-9660 data format.® This format is widely supported on UNIX
workstations, DOS personal computers, and VM S computers. Therefore, the distribution can be read and downl oaded
onto these various platforms. Keep in mind that the source code has been developed to run on UNIX workstations. It
isthe responsibility of the recipient to modify the distribution source code so that it will execute on their particular
computer architectures and operating systems.

Upon receiving the CD-ROM, load the disc onto your computer using a CD-ROM drive equipped with a
device driver that supports the | SO-9660 data format. You may need to be assisted by your system administrator as
mounting afile system usually requires root permission. Then recursively copy the disc contents into a read-writable
filesystem. Theentire distribution requires approximately 150 M egabytes upon compilation. Thetop-level distribution
directory doc contains just under 72 Megabytes of PostScript reference documents. These files are not necessary to
compile and run the standard reference recognition system. Therefore, they do not have to be copied off of the CD-
ROM if disk spaceislimited on your computer, in which case, the entire distribution requires approximately 80 Mega-
bytes upon compilation. For example, the CD-ROM can be mounted and the entire distribution copied with the fol-
lowing UNIX commands on a Sun SPARCstation:

# mount -v -t hsfs -o ro /dev/srO /cdrom
# mkdir /usr/local/hsfsys

# cp -r /cdrom /usr/local/hsfsys

# umount -v /cdrom

where /dev/srQ is the device file associated with the CD-ROM drive, /cdrom represents the directory to which the CD-
ROM is mounted, and /usr/local/hsfsys is the directory into which the distribution is copied. If the distribution is
installed as the root user, it may be desirable to change ownership of the installation directory using the chown com-
mand. CD-ROM is aread-only media, so copied directories and files are likely to retain read-only permissions. The
file permissions should be changed using the chmod command so that directories and scripts within the copied distri-
bution are read, write, and executable. All catal og files should be changed to be read-writable. In general, source code
files can remain read-only. Section 2.2 identifies the location of these various file types within the distribution. Specif-
ically, the file bin/catal og.csh must be assigned executable permission, and files with the name catal og.txt under the
top-level src directory must be assigned read-writable permission.

By default, the distribution assumes the installation directory to be /usr/local/hsfsys. If thisdirectory is used,
the software can be compiled directly without any path name modifications. To minimize installation complexity, the
directory /usr/local/hsfsys should be used if at all possible. If insufficient space existsin your /usr/local file system, the
installation can be copied elsewhere and referenced through a symbolic link from /usr/local/hsfsys.

If you decidetoinstall thisdistribution in some other directory, then editing anumber of source codefileswill
be necessary prior to compiling the programs. Edit the line “PROJDIR = /usr/local/hsfsys’ in the file makefilemak in
the top-level installation directory, replacing /usr/local/hsfsys with the full path name of the installation directory you
have chosen. Likewise replace all referencesto /usr/local/hsfsysin the files histgram.h, hsfsys.h, and invbytes.h found
in the top-level directory include. Remember, to make these file modifications, the permission of these files will have
to be changed first. Once these edits are made, follow the instructionsin Section 2.3 for compilation.



2.2 Hierarchical Directory Structure

<installation directory>

bin data dict doc include lib lut src tmplt train  weights

Figure 2. The top-level directory structure in the software distribution.

Thetop-level directoriesin thisdistribution are shownin Figure 2. Thefirst directory bin holdsall distributed
shell scripts and locally compiled programs that support the recognition system. The full path name to this directory
should be added to your environment’s search path prior to compilation. Upon successful compilation, the programs
hsfsys, mis2evt, and mis2pat areinstalled in the top-level bin directory. Theinvocation of hsfsysis discussed in Section
2.4, while the invocation of mis2evt and mis2pat are discussed in the appendices. The directory bin also contains the
file catalog.csh that must be assigned executable permission. Thisfileisa C-shell script that is used to automatically
catalog programs and library routines, which is discussed in Section 2.3.

The directory data contains 10 subdirectories f0000_14 through fO0O09_06 containing completed formsfrom
SD1. Each subdirectory holds the form imagein an IHead format®* file with extension pct, areferencefile with exten-
sionref listing the valuesthe writer wasinstructed to enter in each field, and two system output files generated by hsfsys
running at NIST.28 The first output file, a hypothesis file, has an extension of nhy and lists the system'’s recognized
valuesfor each field. The second output file, a confidence file, has an extension of nco and lists the corresponding con-
fidence values for each character classification reported in the hypothesisfile. The format of thesefilesis presentedin
Section 3.2.3.

The directory dict contains the dictionary file const.mfs listing in alphabetical order all the words present in
the Preamble to the U.S. Constitution. The directory include holds al the header files that contain constants and data
structure definitions required by the system source code. Thedirectory lib holdsall locally compiled object code librar-
ies used in compiling the distribution programs. The directory lut contains two lookup tables, bitcount.lut and
inv_byte.lut. The file bitcount.lut contains alookup table used to determine the number of black pixelsin given byte
of binary image data. Thefileinv_byte.lut contains alookup table used to reverse the bit pattern within a given byte of
data. The directory src contains al the source code files (excluding the header filesin top-level directory include) pro-
vided with the recognition system distribution. The organization of src subdirectoriesis discussed Section 2.2.1.

This software distribution provides a number of PostScript reference documents contained in the top-level
directory doc. The PostScript file for this specific document is hsfsys.ps. All the other filesin this directory are papers
and reports published by NIST that are referenced within this document. These files have been assigned names accord-
ing to their reference numbers listed on pages 58 and 59. All but three files in doc are PostScript documents ending
with the extension ps. Thefilesref _05.tar and ref_27.tar were created with the UNIX tar command, and they contain
multiple PostScript files. For example, the PostScript files contained in thefileref_05.tar can be extracted into the cur-
rent working directory using the following command:

# tar xvf ref_05.tar

Thefilesref 12 1.psandref 12 2.z contain the Second Census Optical Character Recognition Systems Conference
report. Thefirst part is a PostScript file, whereas the second part isa UNIX compressed tar file. To extract the Post-
Script filesarchived inref_12 2.z, use the following the command. Warning, extracting these files requires alarge
amount of disk space.

#zcat <ref_12 2.z |tar xvf -



The directory tmplt contains files pertaining to HSF forms. A blank HSF form is provided in both Latex and
PostScript formats. The Latex file hsf_0.tex or the PostScript file hsf_0.ps can be printed, filled in, scanned at 12 pixels
per millimeter (300 dpi), and then recognized by hsfsys. The points used to register an HSF form are stored in thefile
hsfreg.pts, and the points defining the location of each HSF entry field are stored in the file hsftmplt.pts. A registered
blank HSF form image from which these points have been extracted is stored in the file hsftmplt.pct, and a dilated ver-
sion of thisform used in form removal is stored in the file hsftmplt.d4.

A large sample of training data is provided in the top-level directory train. As mentioned earlier, there are
168,365 segmented and labeled handprint characters contained in this directory. In all there are 119,740 images of
handprint digits, 24,205 lower caseletters, and 24,420 upper caseletters. The handprint from about 1000 different writ-
ersare represented in this set of character images, which is divided among two subdirectoriestdl and td3. These two
subdirectories are further subdivided into groups of 25 writers. The images of segmented characters are stored in the
Multiple Image Set (M1S) file format, which was used to distribute character imagesin SD3.11 Each MISfileendswith
the extension mis. Those files beginning with d contain data related to handprint digits, files beginning with | corre-
spond to lower case letters, and files beginning with u correspond to upper case letters. The four digit number embed-
ded in each file name is an index identifying the writer. For each MISfile in the training set, there is an associated
classification file containing the identity of each character contained in the M1Sfile. These classification files end with
the extension cls. Thefirst line in a classification file contains the number of character images contained in the corre-
sponding MISfile. All subsequent lines store the identity (in hexadecimal ASCII representation) of each successive
character image. M1Sfiles containing images of lower caseletters have asecond classification file associated with them
that ends with the extension cus. These files store the identity of each lower case letter as their corresponding upper
case equivalent. For example, an image of athe lower case character k is stored in aclsfile as 6b, whereasit is stored
inacusfile as 4b (the hexadecimal ASCII representation for the upper case character K). The labelling of lower case
letters as upper case is used when classifying characters in the Constitution box.

Thelast top-level directory weights holds the files associated with feature extraction and character classifica-
tion. Thefileswith the extension evt contain el genvector basisfunctions used to compute Karhunen L oeve coefficients.
The pattern (or prototype) files with the extension pat contain training sets of Karhunen Loeve prototype vectors and
a search tree used by the Probabilistic Neural Network. Another type of file in this directory contains class-based
median vectors computed from the prototypes stored in the corresponding pat file. Median vector files end with the
extension med.

Theewvt fileswere computed using mis2evt discussed in Appendix A, and both the pat and med fileswere com-
puted using mis2pat discussed in Appendix B. Thefilestd13 |.ewt, td13 |.pat, and td13_|.med were computed from
24,205 lower caseimagesin both train/td1 and train/td3 and are used to compute features and classify |ower case char-
acters. Thefilestd13 u.ewvt, td13_u.pat, and td13_u.med were computed from 24,420 upper case imagesin both train/
td1 and train/td3 and are used to compute features and classify upper case characters. Thefilestd13_ul.ewvt, td13 ul.-
pat, and td13_ul.med were computed from 48,625 images of both lower and upper case in train/td1 and train/td3 and
are used to compute features and classify charactersfor lower and upper case combined. Thefilestd3_d.evt, td3_d.pat,
and td3_d.med were computed from 61,094 images of digitsin train/td3 and are used to compute features and classify
segmented images of digits. Two additional pairs of evt, pat, and med files are provided so that computers with limited
memory of at least 8 Megabytes are able to execute all options of the recognition system. The filestd3_ul_s.evt,
td3_ul_s.pat, and td3_ul_s.med were computed from 24,684 images of both lower and upper case only in train/td3,
whereastd3_d s.evt, td3_d s.pat, and td3_d_s.med were computed from 21,293 images of digitsin train/td3. In gen-
eral, recognition accuracy decreases asthe number of prototypesisdecreased. Therefore, thelarger pattern files should
be used when possible.

2.2.1 Source Code Subdirectory

The organization of subdirectories under the top-level directory srcis shown in Figure 3. The subdirectory
src/bin contains all program main routines. Included in this directory is a catalog.txt file providing a short description
of each program provided in this distribution. In this distribution there are three programs and therefore three directo-
ries src/bin/hsfsys, sre/bin/mis2evt, and src/bin/mis2pat. Thefirst directory containsthe recognition system’s main rou-
tine in thefile hsfsys.c and a number of different architecture-dependent compilation scripts used by the UNIX make



utility. The use of the make utility isdiscussed in Section 2.3. The second directory contains the main routine and com-
pilation scripts for the program mis2evt. The third directory contains the main routine and compilation scripts for the
program mis2pat. The programs mis2evt and mis2pat have FORTRAN components, therefore their corresponding
source directories also contain FORTRAN source code files ending with the extension f. These two directories, src/
bin/mis2evt and src/bin/mis2pat, contain the only FORTRAN filesin the entire distribution. If your computer does not
have a FORTRAN compiler, you won't be able to compile these two supporting programs. However, al you need isa
C compiler to be ableto compile all thelibrariesin src/lib and run the recognition system hsfsys. Upon successful com-
pilation, the directories under src/bin will contain compiled object files and adevel opment copy of each program’s exe-
cutable file. Production copies of these programs are automatically installed in the top-level directory bin.

src
|

|

bin lib

| | |
hsfsys mis2evt mis2pat dict

[ I | .
mis |phrase| util

hlsf ‘ im!age

fet ihead mfs nn stats

Figure 3. Directory hierarchy under the top-level directory src.

The subdirectory src/lib contains the source code for all the recognition system’s supporting libraries. This
distribution has 11 libraries each represented as a subdirectory under src/lib. Each library contains a suite of C source
code files designated with the extension ¢ and a set of different architecture-dependent compilation scripts designated
with the root file name makefile. Also included in each library subdirectory is a catalog.txt file providing a short
description of each routine contained in that specific library. Upon successful compilation, each library subdirectory
under src/lib will contain compiled object files (with file extension 0) and adevelopment copy of each library’sarchive
file (with file extension a). Production copies of the library archive files are automatically installed in the top-level
directory lib.The dict library holds routines responsible for dictionary manipulation and matching. Thefet library is
responsible for manipulating Feature (FET) structures and files. The hsf library isresponsible for form processing with
respect to HSF forms. Theihead library is responsible for manipulating IHead structures and files. Theimage library
contains general image manipulation and processing routines. The mfslibrary isresponsible for manipulating Multiple
Feature Set (MFS) structures and files. Themislibrary isresponsible for manipulating Multiple Image Set (MIS) struc-
turesand files. Thenn library contains general feature extraction and neural network routines. The phraselibrary holds
routines responsible for processing the segmented text from a multiple-line field like the Constitution box on HSF
forms. The stats library contains general statistics routines. Lastly, the util library contains a collection of miscella-
neous routines. These various structure definitions and file formats are defined in Section 3.

2.3 Automated Compilation Utility

Before compiling the recognition system distribution, the full path name to the top-level directory binin the
installation directory must be added to your shell’s executable search path. For example, if the distribution isinstalled
in/usr/local/hsfsys, your search path should be augmented to include /usr/local/hsfsys/bin. It may also be necessary to
edit the path names contained in a number of files as discussed in Section 2.1.

Source code compilation of the recognition system distribution is controlled through a system of hierarchical
compilation scripts used by the UNIX make utility. Each one of these scriptsis contained in afile with the root name
makefile. This automated compilation system isresponsible for installing all architecture-dependent source code files
and compilation scripts, clearing all compiled object files and development copies of libraries and programs, automat-
ically generating source code dependency lists, and installing production versions of libraries and programs. One
makefile.mak file exists in the top-level installation directory, and one makefile.mak file existsin each of the src, src/
bin, and src/lib subdirectories. These compilation scripts are architecture independent and contain Bourne shell com-
mands.



Man. Model 0.S. #Proc.” | RAM | arch
DEC Alpha OSF/1V13 1 32 Mb osf
HP Model 712/80 HP-UX 9.03 1 64 Mb hp
IBM RS6000 AlX 3.25 1 128 Mb aix
SGl Challenge (1P19) IRIX 5.2 8 512 Mb sgi
SGl Indigo 2 (IP22) IRIX 4.0.5H 1 128 Mb sgi
SGl Onyx (IP19) IRIX 5.1.1.3 4 512 Mb sgi
Sun SPARCserver 4/470 Sun0S4.1.1 1 32 Mb sun
Sun SPARCstation IPC Sun0S 4.1.2 1 8 Mb sun
Sun SPARCstation 2 Sun0S4.1.3 1 64 Mb sun
(Weitek 80OMHz CPU)

Sun SPARCstation 10 Sun0S 4.1.3 1 32 Mb sun
Sun SPARCstation 10 SunOS 5.2 (Solaris) 2 128 Mb sol

Figure 4. Tableof different computers on which the standard reference recognition system has been successfully ported
and tested, and for which architecture-dependent files are provided in the distribution.
"All computers, including those with multiple processors, were compiled and tested serially.

There are anumber of architecture-dependent compilation scripts found within each program directory under
src/bin and each library directory under src/lib. This standard reference recognition system has been successfully
ported and tested on computers running various versions and releases of the UNIX operating system. These machines
are listed in the table shown in Figure 4. The table from left to right lists each computer’s manufacturer, model, oper-
ating system, number of processors, amount of main memory, and an architecture identifier. There are numerous dif-
ferences between these different computers and their operating systems. Common discrepanciesinclude differencesin
the syntax of compilation scripts and built in macro definitions; some operating systems require manually building the
symbol tablein archived library files, while other systems update these symbol tablesautomatically; every one of these
operating systems has an install command, but each seems to require its own special set of arguments; finally, each
manufacturer’s compilers have different options and switches for controlling language syntax and optimization. To
account for these variations, there are architecture-dependent compilation scripts provided for each program and
library in the distribution. These compilation scripts have the root file name makefile and end with an extension iden-
tifying their corresponding architecture. The right column in Figure 4 lists the set of extensions used to identity archi-
tecture groups for the computers and operating systems tested.

There are also a number of architecture dependent source code files provided in the distribution. These files
share the same root file name and end with an architecture-identifying extension consistent with those used for com-
pilation scripts. Architecture-dependent source code files exist in mis2evt and mis2pat to support the calling of FOR-
TRAN subroutines from C. Some compilers require the C-side caller to include an underscore after the FORTRAN
subroutine name, whereas other compilers require no underscore be present. There are other architecture-dependent
source codefiles provided to support DEC-like machinesthat use adifferent byte order to represent unformatted binary
data. All unformatted binary datafiles provided in thisdistribution were created on machines using the M otorol a-based
byte order. When these files are read by a machine using an Intel-based byte order, the bytes must be swapped before
the data can be used. The overhead of swapping the bytesin these datafiles can be avoided by regenerating them with
locally compiled versions of mis2evt and mis2pat on your computer according to the instructions provided in the
appendices.

It was stated earlier that the automated compilation systemisresponsiblefor installing all architecture-depen-
dent source code files and compilation scripts, clearing all compiled object files and development copies of libraries



and programs, automatically generating source code dependency lists, and installing production versions of libraries
and programs. These tasks are initiated by invoking the make command at the top-level installation directory. All sub-
seguent lower-level makefile.mak scriptsareinvoked automatically in aprescribed order, and the 19,000 lines of source
code are automatically maintained and object files kept up to date. The make command can be invoked from the loca-
tion of any lower-level makefile.mak file and thereby isolate specific portions of the source code for recompilation.
However, the details of doing this are slightly involved and left to the installer to pursue on his own.

The standard reference recognition system in src/bin/hsfsys, and its supporting libraries under src/lib, are all
codedin C. Two other utilitieslocated in src/bin/mis2evt and src/bin/mis2pat have FORTRAN componentsthat require
aFORTRAN 77 compiler. The software distribution has been organized so that you can compile the recognition system
even though your computer may not have an installed FORTRAN compiler. To remove mis2evt and mis2pat from the
hierarchical compilation, edit the file src/bin/makefile.mak, removing mis2evt and mis2pat from the assignment to the
variable “SUBS’.

Assuming the installation directory is/usr/local/hsfsys, the following steps are required to compile the distri-
bution for the first time on your computer:

# cd /usr/local/hsfsys

# make -f makefilemak instarch INSTARCH=<arch>
# make -f makefile.mak bare

# make -f makefile.mak depend

# make -f makefile.mak install

The first make invocation uses the instarch option to install architecture-dependent files required to support
the compilation and execution of the distribution’s programsand libraries. The actual architectureis defined by replac-
ing the argument <arch> with one of the extensionslisted in Figure 4. For example, “INSTARCH=sun” must be used
to compile the distribution on computers running SunOS 4.1.2. If you are installing this software on a machine not
listedin Figure 4, you first need to determine which set of architecture-dependent filesis most similar to those required
by your particular computer. Invoke make using the instarch option with INSTARCH set to the closest known archi-
tecture. Then, edit the resulting makefile.mak files in the subdirectories under src/bin and src/lib according to the
requirements of your machine. One other hint, if you are compiling on aSolaris (SunOS 5.?) machine using the parallel
make utility, you may have to add a“-R” option prior to the “-f” option for each of the make invocations.

The bare option causes the compilation scripts to remove all temporary, backup, core, and object files from
the program directories in src/bin and the library directories in src/lib. The depend option causes the compilation
scripts to automatically generate source code dependency lists and modify the makefile.mak files within the program
and library directories. Your C compiler may not have this capability, in which case you may want to generate the
dependency lists by hand. Theinstall option builds source code dependency lists as needed, compiles all program and
library source codefiles, and installs compiled libraries and programsinto their corresponding production directories.
Compiled librariesareinstalled in the installation top-level directory lib. Compiled programs areinstalled in theinstal -
lation top-level directory bin.

One other capability, the automatic generation of catalog files, has been incorporated into the hierarchical
compilation scripts. A formatted comment header isincluded at the top of every program and library source codefile
in the recognition system distribution. When the install option is used, the low-level makefile.mak files invoke the C-
shell script bin/catal og.csh. The script catal og.csh extracts all source code headers associated with all the programs or
aspecific library in the distribution and compiles acatalog.txt file. A catalog.txt file exists in the subdirectory src/bin,
and one catal og.txt file existsin each of thelibrary directoriesinsrc/lib. Thisprovidesaconvenient and quick reference
to the source code provided in the distribution.



2.4 System Invocation

This section describes how the recognition system program hsfsysis invoked and controlled from the com-
mand line. Once you have successfully compiled the software distribution on your computer, the recognition system
can be tested on the HSF forms provided in the top-level installation directory data.

Therecognition systemisrunin batch mode with imagefileinputsand ASCI| text file outputs, and the system
contains no Graphical User Interface. The command line usage of hsfsysis as follows:

# hsfsys
Usage:
hsfsys [options] <hsf file> <output root>
-d process digit fields
-l process lower case fields
-u process upper case fields
-c nodict process Constitution field without dictionary
-cdict process Constitution field using dictionary
-m small memory mode
-S silent mode
-V verbose mode
-t compute and report timings

The command line arguments for hsfsys are organized into option specifications, followed by an input file
name specification, and an output file name specification. The options can be subgrouped into three general types (field
type options, memory control options, and message control options).

Field type options:

designates the processing of the digit fields on an HSF form.
designates the processing of the lower case field on an HSF form.
designates the processing of the upper case field on an HSF form.

designates the processing of the Constitution field on an HSF form. This option requires an argument.
If the argument nodict is specified, then no dictionary-based postprocessing is performed and the raw
character classifications and associated confidence values are reported. If the argument dict is speci-
fied, then dictionary-based postprocessing is performed and matched words from the dictionary are
reported without any confidence values.

The options -dluc can be used in any combination. For example, use only the -l option to process the lower
case field, or use only the -d option to process all of the digit fields. If processing both lower case and upper
case fields, then specify both options -| and -u (or an equivalent syntax -lu). The system processes all of the
fields on the form if no field type options are specified, and dictionary-based postprocessing is performed on
the Constitution field by default.

Memory control options:

-m

specifiesthe use of alternative prototypefilesfor classification that have fewer training patterns, so that

machines with limited main memory may be ableto completely processall thefields on an HSF form.
In general, decreasing the number of training prototypes reduces the accuracy of the recognition sys-
tem’s classifier. It is recommended that this option be used only when necessary.
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M essage control options:

-s specifies that the silent mode isto be used and all messages sent to standard output and standard error
are suppressed except upon the detection of afatal internal error. Silent mode facilitates silent batch

processing and overrides the verbose mode option. By default, the system postsits recognition results
to standard output as each field is processed.

-V specifiesthat the verbose modeisto be used so that messages providing afunctional trace through the
system are printed to standard error.

-t specifies that timing datais to be collected on system functions and reported to atiming file upon sys-
tem completion.

File name specifications:

<hsf file> specifies the binary HSF image in IHead format that is to be read by the system.

<output root> theroot file name that isto be appended to the front of each output file generated by the
system. Upon completion, the system will create a hypothesis file with the extension hyp
and a confidence file with the extension con. If the -t option is specified, atiming file with
the extension timwill also be created.

For example, to run the system in verbose mode on all the HSF fields on the form in data/f0000_14 and store
the system results in the same location with the same root name as the form, the following commands are equivalent
(assuming theinstallation directory is/usr/local/hsfsys). In each case, the files created by the system will be/usr/local/
hsfsys/data/f0000_14/f0000_14.hyp and /usr/local/hsfsys/data/f0000_14/f0000_14.con.

# hsfsys -v /usr/local /hsfsys/data/f0000_14/f0000_14.pct /usr/local/hsfsys/data/f0000_14/f0000_14

# hsfsys -v /usr/local/hsfsys/data/f0000_14/f0000_14.{ pct,}

# (cd /usr/local /hsf/datalf0000_14; hsfsys -v f0000_14.pct ./f0000_14)

To run the system in silent mode on only the digit and upper case fields on the same form with results includ-
ing timing dataall stored in /tmp with the root name foo, the following command can be used. In thisexample, thefiles
created by the system will be /tmp/foo.hyp, /tmp/foo.con, and /tmp/foo.tim.

# hsfsys -stdu /usr/local/hsfsys/data/f0000_14/f0000_14.pct /tmp/foo
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3. SOFTWARE DOCUMENTATION

This section documents the overall functionality of the hsfsys program. Each subsection describes one of the
many steps conducted by the standard reference recognition system. Included with each subsection heading isthefile
and subroutine within the software distribution responsible for carrying out the steps described therein. Figures such
as Figure 6 have been organized in order to provide atop-down functional road map through the source code whichin
turn is cross-referenced to the documentation in this section.

The main routine is located in the distribution file src/bin/hsfsys/hsfsys.c. Figure 5 depicts the main routine
divided into five functional groups. Thefirst group “DO HSF FORM” isresponsible for processing an HSF form
image, dividing the image into separate fields. To accomplish this, the HSF form has to be registered so that any dis-
tortion due to reproduction and scanning is removed. Once the image is registered, the pixel information comprising
the HSF form is removed. Thisinvolves erasing the black pixelsin the image that comprise the form’s boxes and
instructions. The other four groups listed in Figure 5 represent field-level processing. These functions are respectively
responsiblefor reading the values handprinted in the digit fields, lower casefield, upper casefield, and the Constitution
box on an HSF form. The final step of writing the system results to output filesis not included in the figure.

3.1 DO HSF FORM; src/lib/hsf/form.c; do_hsf_form()

Two processing steps are conducted on the input HSF form image. The HSF form isfirst registered and then
theform itself isremoved from the image. Upon completion, the handprinted characters within each field on the form
areready to be processed. Figure 6 lists the steps used to process the HSF form. The figure is divided into two parallel
lists. Theleft list contains functional titles assigned to each step, whereastheright list provides source code references
that cite the file and subroutine names within the software distribution. Both lists contain the section numbers corre-
sponding to where each topic is discussed in this document. For example, the topic “ Transform Form Image” isdis-
cussed in Section 3.1.2.1.4 and is performed by the subroutinef_fit_param3_image2() found in the file src/lib/image/
fitimage.c. The overall processing of the HSF form image is divided into an initialization step and a processing step.

3.1.1INITIALIZE FOR HSF FORM; src/lib/hsf/form.c; init_form()

Initializing the system to process an HSF form image involves reading two files, afile of an HSF form image
that has been filled in and afile containing a spatial field template. The HSF form image file is specified on the com-
mand line when hsfsysisinvoked. The field template file is defined internal to the source code and is provided in the
file tmplt/hsftmplt.pts. The field template defines the location of each entry field on the form. The formats of these two
files are discussed below.

3.1.1.1 READ FORM IMAGE; src/lib/image/readrast.c; ReadBinaryRaster()

Hsfsys expectsinput imagesto bein the IHead file format. Image file formats and effective data compression
are critical to the usefulness of these types of image recognition systems. HSF form image files must be digitized in
binary at 12 pixels per millimeter (300 dpi), must be 2560 pixels wide and 3300 pixels high, and can be 2-dimension-
ally compressed using CCITT Group 4. These are the same file format conventions used with the distribution of SD1
and SD3.

In this application, araster image isadigital encoding of light reflected from discrete points on a scanned
form. The 2-dimensional area of the form is divided into discrete locations according to the resolution of a specified
grid. Each cell of thisgrid is represented by a single bit value O or 1 called a pixel; O represents a cell predominately
white, 1 represents a cell predominately black. Pixels are scanned from the 2-dimensional sampling grid, and they are
then stored as a 1-dimensional vector of bit valuesin raster order; left to right, top to bottom (row major). Upon scan-
ning, certain attributes such asimage width and height are required to accurately interpret the 1-dimensional vector of
pixels as a 2-dimensional image.

12



3. HSFSYS

3.1 DO HSF FORM

3.1.1INITIALIZE FOR HSF FORM
3.1.2 PROCESS HSF FORM

/~3.2DO DIGIT FIELDS N\

3.21INITIALIZE FOR FIELDS

For Each Digit Field
3.22PROCESSDIGIT FIELD
3.23 STORE FIELD RESULTS

End Loop

k3.2.4 DEALLOCATE FOR FIELDS /

/" 33DOLOWERCASE FIELD

3.21INITIALIZE FOR FIELDS
3.3.1 PROCESSALPHABETIC FIELD
3.2.3STORE FIELD RESULTS

k3.2.4 DEALLOCATE FOR FIELDS /

/3.4 DO UPPER CASE FIELD N\

3.21INITIALIZE FOR FIELDS
3.3.1 PROCESSALPHABETIC FIELD
3.2.3STORE FIELD RESULTS

k3.2.4 DEALLOCATE FOR FIELDS /

/7 35DO CONSTITUTIONFIELD

3.21INITIALIZE FOR FIELDS

3.5.1 PROCESS CONSTITUTION FIELD
3.2.3STORE FIELD RESULTS

k3.2.4 DEALLOCATE FOR FIELDS /

Figure 5. Functionality of the system’s main routine src/bin/hsfsyshsfsys.c.
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Figure 6. Steps to process the HSF form.

14



NIST has designed a header structure called IHead to hold these attributes and has developed afile inter-
change format based on this header. Numerousimage formats exist; some are widely supported on small personal com-
puters, others supported on larger workstations; most are proprietary formats; few are public domain. IHead isan
attempt to design an open image format which can be universally implemented across heterogeneous computer archi-
tectures and environments. |Head has been successfully ported and tested on several systems including: UNIX work-
stations and servers, DOS personal computers, and VM S mainframes. |Head has been designed with an extensive set
of attributesin order to: adequately represent both binary and gray level images; represent images captured from dif-
ferent scanners and cameras; and satisfy the image requirements of diverse applications, including but not limited to,
image archival/retrieval, character recognition, and fingerprint classification.

/*************************************************************

File Name: IHead.h

Package: NIST Interna Image Header
Author:  Michad D. Garris

Date:  2/08/90

*************************************************************/

* Defines used by the ihead structure */

#define IHDR_SIZE 288 /* len of hdr record (always even bytes) */
#define SHORT_CHARS 8 /* # of ASCII charsto represent a short */
#define BUFSIZE 80 [* default buffer size*/
#define DATELEN 26 [* character length of date string */
typedef struct ihead{

char id[BUFSIZE]; [* identification/comment field */

char created[ DATELEN]; [* date created */

char width[SHORT_CHARS]; [* pixel width of image */

char heightfSHORT_CHARYS]; * pixel height of image */

char depth[SHORT_CHARS]; [* bits per pixel */

char density[SHORT_CHARS]; [* pixelsperinch*/

char compress{SHORT_CHARS];  /* compression code */
char complenfSHORT_CHARYS]; * compressed data length */

char align[SHORT_CHARYS]; * scanline multiple: 8|16|32 */

char unitsizef SHORT_CHARS); [* bit size of image memory units*/
char sigbit; [* O->sighit first | 1->sigbit last */
char byte_order; /* 0->highlow | 1->lowhigh*/

char pix_offsetf SHORT_CHARS];  /* pixel column offset */
char whitepix[SHORT_CHARS]; * intensity of white pixel */

char issigned; [* 0->unsigned data | 1->signed data*/
char rm_cm; [* 0->row mgj | 1->column maj */
char th_bt; [* 0->top2bottom | 1->bottom2top */
char Ir_rl; [* O->left2right | 1->right2left */
char parent{BUFSIZE]; [* parent image file */
char par_x[SHORT_CHARS]; * from x pixel in parent */
char par_y[SHORT_CHARS]; /* fromy pixel in parent */

}HEAD;

Figure 7. C structure definition for the IHead header.

The IHead structure definition written in C and stored in include/ihead.hislisted in Figure 7, while Figure 8
lists the header values from an IHead file corresponding to these structure members. This header information belongs
to the isolated box image displayed in Figure 9 (scaled up 2X). Referencing the structure members listed in Figure 7,
the first attribute field of IHead isthe identification field, id. Thisfield uniquely identifies the image file, typically by
afilename. The attributefield, created, isthe date on which theimage was captured or digitized. The next threefields
hold the image's pixel width, height, and depth. A binary image has a pixel depth of 1 whereas agray scale image
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containing 256 possible shades of gray has apixel depth of 8. The attribute field, density, contains the scan resolution
of theimage; in this case, 12 pixels per millimeter (300 dpi). The next two fields deal with compression.

In the recognition system distribution, input IHead images can be uncompressed or compressed using CCITT
Group 4. Whether the image is compressed or not, the IHead header is always uncompressed. This enables header
interpretation and manipulation without the overhead of decompression. The compressfield is an integer flag which
signifies which compression technique, if any, has been applied to the raster image data which follows the header. If
the compression codeis zero, then theimage datais not compressed, and the data dimensions; width, height, and depth,
are sufficient to load the image into main memory. However, if the compression code is nonzero, then the complen
field must be used in addition to the image's pixel dimensions. For example, the image described in Figure 8 has a
compression code of 2. By convention, thissignifiesthat CCITT Group 4 compression has been applied to the image
data prior to file creation. In order to load the compressed image datainto main memory, the value in complen isused
to load the compressed block of datainto main memory. Once the compressed image data has been loaded into mem-
ory, CCITT Group 4 decompression can be used to produce an image which has the pixel dimensions consistent with
those stored in its header. A compression ratio of 20 to 1 istypically achieved using CCITT Group 4 compression on
the HSF form images provided in this distribution.

IMAGE FILE HEADER

| dentity : box_03.pct

Header Size : 288 (bytes)

Date Created : Thu Jan 4 17:34:21 1990
Width : 656 (pixels)

Height : 135 (pixels)

Bits per Pixel 1

Resolution : 300 (ppi)

Compression : 2 (code)

Compress Length : 874 (bytes)
Scan Alignment 16 (bits)
Image DataUnit  : 16 (bits)

Byte Order : High-Low

MSBit : First

Column Offset : 0 (pixels)

White Pixel :0

Data Units : Unsigned

Scan Order : Row Mgjor,
Top to Bottom,
Left to Right

Parent : data/f0000_14/f0000_14.pct

X Origin : 192 (pixels)

Y Origin : 732 (pixels)

Figure 8. Contents of an IHead header listed in aformatted report.

vV A

0/12345¢799

Figure 9. Image belonging to the header listed in Figure 8.
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Theattributefield, align, storesthe alignment boundary to which scan lines of pixelsare padded. Pixel values
of binary images are stored 8 pixels (or bits) to abyte. In general, images are not an even multiple of 8 pixelsin width.
In order to minimize the overhead of ending aprevious scan line and beginning the next scan line within the same byte,
anumber of padded pixels are provided in order to extend the previous scan line to an even byte boundary. Some dig-
itizers extend this padding of pixels out to an even multiple of 8 pixels, other digitizers extend this padding of pixels
out to an even multiple of 16 pixels. Thisfield stores the image’s pixel alignment value used in padding out the ends
of raster scan lines.

The next three attribute fields identify binary interchanging issues among heterogeneous computer architec-
tures and displays. The unitsize field specifies how many contiguous pixel values are bundled into asingle unit by the
digitizer. The sigbit field specifies the order in which bits of significance are stored within each unit; most significant
bit first or least significant bit first. The last of these three fieldsis the byte _order field. If unitsize is amultiple of
bytes, then thisfield specifiesthe order in which bytes occur within the unit. Given these three attributes, binary incom-
patibilities across computer hardware and binary format assumptions within application software can be identified and
effectively dealt with.

The pix_offset attribute defines a pixel displacement from the |eft edge of the raster image data to where a
particular image’s significant image information begins. The whitepix attribute defines the val ue assigned to the color
white. For example, the binary image described in Figure 8 is black text on awhite background and the value of the
white pixelsis 0. Thisfield is particularly useful to image display routines. The issigned field is required to specify
whether the units of an image are signed or unsigned. This attribute determines whether an image with a pixel depth
of 8, should have pixels valuesinterpreted in the range of -128 to +127, or 0 to 255. The orientation of the raster scan
may also vary among different digitizers. Theattributefield, rm_cm, specifieswhether the digitizer captured theimage
in row-major order or column-major order. Whether the scan lines of an image were accumulated from top to bottom,
or bottom to top, is specified by thefield, tb_bt, and whether left to right, or right to left, is specified by thefield, rl_Ir.

Thefinal attributesin IHead provide a single historical link from the current image to its parent image; the
one from which the current image was derived or extracted. In Figure 8, the parent field contains the full path name
to theimage from which theimage displayed in Figure 9 was extracted. The par_x and par_y fields contain the origin,
upper left hand corner pixel coordinate, from where the extraction took place from the parent image. These fields pro-
vide a historical thread through successive generations of images and subimages.

We believethat the |Head image format contains the minimal amount of ancillary information required to suc-
cessfully manage binary and gray scaleimages. The IHead format isextremely diverseinitsability to represent awide
variety of images. However, hsfsysrequires apredetermined set of attributesto be used inthe |Head structure. All HSF
form images must be 2560 by 3300 pixelsin dimension. Theimages must be binary, one bit per pixel with O represent-
ing white and 1 representing black. Theimages can be either uncompressed or compressed using CCITT Group 4. The
binary raster datais assumed to be in a high-low byte order with the most significant bit first in a byte of pixel data.
The pix_offset attribute is not used, so all pixel datain theimage is processed by hsfsys. Finally, the data units are
assumed to be unsigned and the scan order is left-to-right and top-to-bottom.

Thefileformat isillustrated in Figure 10. Each IHead image file is divided into an IHead header followed by
the image'sraster data. Preceding the header is an 8-byte record containing the length of the IHead header. Both the
value of the length record and the header values themselves are represented in ASCII. The raster data following the
header isin the binary format described by the attribute values in the header and may be compressed. In this way, the
header portion of the IHead image always remains uncompressed and can be interpreted by heterogeneous computer
architectures. Applications that intend to manipulate the raster data of an IHead image are ableto first read the ASCI|
header containing the image's attributes and determine the proper interpretation of the data that followsiit.
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Header Length (8 bytes)

ASCII Format | mage Header
(288 bytes)

Binary Raster Stream
000000010000010000011111110 .. . .

* Representing the digital scan across the
page |eft to right, top to bottom.

* ‘0" - Represents awhite pixel.

* ‘1’ - Represents ablack pixel.

* 8 Pixels are packed into asingle byte
of memory.

Figure 10. lllustrated IHead file format for an uncompressed image.

3.1.1.2 READ FIELD TEMPLATE; src/lib/hsf/hsftmpilt.c; read_hsftmplt()

The spatial field template defines the location of each entry field on aregistered HSF form. A registered form
isaform that has no distortion and the location of the pixels comprising the form is known. The field template fileis
an ASCII filein which the first line contains the number of fields represented in the file. Each subsequent linein the
template file represents an independent field on the form. In all, there are 34 entry fields on an HSF form. All but the
first 3fields are processed by hsfsys. All ASCII files used by hsfsys were generated and designed to run on UNIX com-
puters so the end of each lineis represented by the single line feed character with decimal representation 10 and hexa-
decimal representation OA (Ox0A in C). Thisisdifferent from ASCII fileson DOS computers that represent the end of
each line with two characters, aline feed character OxOA followed by a carriage return character 0xOD. Each field is
represented as arectangular region in the template file by aline comprised of 8 numbers. These 8 numbers represent
four (X, y) vertex pairs. Thefirst pair represents the upper-left corner, the second pair represents the upper-right corner,
the third pair represents the lower-left corner, and the fourth pair represents the lower-right corner. Each number on a
lineis separated by a space character 0x20 or atab character 0x09.

Thefield template provided with this distribution isin tmplt/hsftmplt.pts. The field regions stored within this
file were measured from the blank registered form image tmplt/hsftmplt.pct.

3.1.2 PROCESS HSF FORM; src/lib/hsf/form.c; process form2()

To process an HSF form, the image isfirst registered to remove any distortion introduced from reproduction
or scanning, then the pixels comprising the form’s boxes and instructions are removed, leaving only the handprinted
data entered inside of each field in the image.

3.1.2.1 REGISTER FORM IMAGE; src/lib/hsf/reghsf.c; register_hsf2()

The HSF forms distributed with SD1 and SD3 were type-set on acomputer and originally produced on paper
using alaser printer. Multiple copies of each form were then reproduced on alarge photocopier. The copies were
bifolded into legal-size envel opes, mailed out, filled in by Census representatives, mailed back to NIST in business
return envel opes, and finally digitized through an automated document feeder on ascanner. This process produces sev-
eral sources of distortioninthefinal image. The distortion includesrotation, translation, scale, and fold distortions that
must be accounted for in order for the recognition system to reliably locate the data entered in each field on aform.
These types of distortions are detected and removed through a process known as form registration.
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Hsfsys uses a registration technique based on Linear Least SquarasM where a set of predefined registration
marksin an input HSF form image are matched to marks on an ideal undistorted template. Global estimates of rotation,
tranglation, and scale are automatically computed and applied so that the input image istransformed to line up aswell
aspossible in aleast squares sense with the ideal template.

3.1.2.1.1 Read Reference Points; src/lib/mdg/readmfs.c;p readmfsint2()

A set of registration marksis needed in order to estimate the amount of distortion in an input image. These
registration marks correspond to structures easily detectable within an image of aform. These may be actua fiducial
marks or they may be structures embedded within the form itself. Six points were measured from the blank registered
HSF form tmplt/hsftmplt.pct. These points are stored in the file tmplt/hsfreg.pts and correspond in order to the top-left
corner of the leftmost O through 9 digit box, the top-left point on the H in the form’stitle“HANDWRITING SAMPLE
FORM?”, the top-right corner of the CITY-STATE-ZIP box, the top-left corner of the Constitution box, the bottom-left
corner of the Constitution box, and the bottom-right corner of the Constitution box. These registration points are anno-
tated on the HSF form shown in Figure 11 (scaled 0.5X).

2
HANDWRITING SAMPLE FORM . 3
DATE CITY STATE _ ZIP /
N [cE e

This sample of handwriting is being collected for use in testing computer recognition of hand printed numbers
and letters. Please print the following characters in the boxes that appear below.
0123456789 0123456789 0123456789

[orasvserer | [c1a39scres | [ 0123950789

RN

542 3309 54 077
|54;| 3309 IJ‘JJD«)’ | Je7077

1

>

,_m_l 857238
169 | 6 2346 | | 857338 ]

s
9588 71711 034264 74 274
2587 7090 [ osvacy |
20279 286106 85 505 97
29279 Caseroe | 3597
30 083 0589 18160
[y2s9es | 063 0559 18160

svmgticeyaskhouwdpnbxqlfjr

[ 2vmgric eyaskhouwdpnbxglFyr

]

XZQURPCAEFBTVDOKILIYSHGWMN
| X2QURPCAFFBTVDOKISLIYSH Gom N |

4 Please print the following text in the box below:

We, the People of the United States, in order to form a more perfect Union, establish Justice, insure domestic
‘Tranquility, provide for the common Defense, promote the general Welfare, and secure the Blessings of Liberty to
ourselves and our posterity, do ordain and establish this CONSTITUTION for the United States of America.

We, The People of The United States, in order To form & more
perfect .Um'oh/ establish Justiee, jhsure domestic
Tr-an?u.:’nffl Proch for The Common D(.FQ,\_“’ Promole the
seneral Welfare, and Secure the Blessings oF Liberty to
ourselves Qand Cur oS P"-‘re"fy’, do ordain and estabhsh
Fhis CONSTITUTION For The UniTed States oF America

Figure 11. Registration marks on an HSF form.
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The six registration marks on the HSF form were selected so that they are distributed across the entire form
with a slight concentration of pointsin the top-left portion of the form. This concentration is due to hsfsys exhibiting
sensitivities to the top-left of the form when conducting form removal. Some of this sensitivity is known to be caused
by local distortions in the image where the form was folded when it was sent through the mail.

Thefile tmplt/hsfreg.ptsisin ageneral NIST file format known as a Multiple Feature Set (MFS) file. MFS
filesare editable ASCII files designed to contain lists of single or multi-column data where the data valuesresiding on
the same line are strongly associated with each other. Thefirst line in the file contains the number of subsequent lines
in thefile. In the case of the reference pointsfile, there are 6 subsequent lines in tmplt/hsfreg.pts, each containing an
(x, y) coordinate pair of numbers. A space or tab character is used to separate values within the sameline, and lines
are terminated with the line feed character OXOA. The library src/lib/mfs contains a suite of routines designed to read
and write MFS files and manipulate MFS structures.

Figure 12 lists the C definition of the MFS structure that is stored in include/mfs.h. The structure contains
three members. Values references an array of character strings, alloc holds the number of allocated positions within
values, and num holdsthe number of contiguous positions currently holding information in values. Each line after the
firstin an MFSfileisread into asingle string, which in turn is stored in the next available position within values. Mul-
tiple items on a single MFSfile line are appended together in asingle string. It is the responsibility of an application
to parse the independent items from the strings stored in the values array. In the case of tmplt/hsfreg.pts, thefileisread
into an MFS structure and then the x and y coordinates are parsed into two separate integer arrays. The MFSfile con-
vention providesacommon I/O interface when manipulating editablelistsof ASCII values. Theitemslistedinan MFS
file can be integers, floating point numbers, names, and/or any sequence of printable ASCII characters.

typedef struct mfsstruct{
int aloc;
int num;
char **values;

} MFS;

Figure 12. C definition for the MFS structure.

3.1.2.1.2 L ocate Hypothesized Points; src/lib/hsf/hsfpoint.c; hsfpoints()

The amount of discrepancy between the registration marks on an ideal undistorted form and the position of
the corresponding marksin aninput form image are used to estimate the amount of distortion in theinput image. Hsfsys
uses spatial histogram projectionsto locate the position of these registration marks within the input HSF form image.
The spatial histograms represent black pixel densities aggregated across an image region either in ahorizontal or ver-
tical orientation.

Figure 13 contains an image region containing the second registration mark in tmplt/hsfreg.pts, the top-left
point on the H in the form’s title “HANDWRITING SAMPLE FORM”. The top image in the figure shows the
sequence of subimages on which spatial histograms are computed in order to locate the registration mark. Each sub-
image has been assigned a number that corresponds to one of the spatial histograms displayed below the top image.

Horizontal histogram 1 isfirst computed on the entire image region. There are two bands of black in the his-
togram. The top band representsthe charactersin the form’stitle. Vertical histogram 2 is computed on a subimage that
is centered about the top of thetitle determined from histogram 1. Histogram 2 is used to locate the | eft end of thetitle.
Horizontal histogram 3 is computed on a subimage that begins at the left edge of the title determined by histogram 2
and extends approximately the width of a single character. Histogram 3 is used to determine where the top the H, the
first character in thetitle, begins. Vertical histogram 4 is computed on a subimage that begins at the top of the letter H
and extends downward approximately the height of a single character. Thisfinal histogram is used to determine the
left edge of the letter H, at which point the registration mark is located.
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Figure 13. Locating a registration mark using spatial histograms.
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Asanimageisincreasingly rotated, the peaks in the histograms become shorter and they spread out wider
making them decreasingly reliable and increasingly inaccurate. Therefore, the technique deployed in hsfsys carefully
reduces the scope of successive histogram projections, alternating between horizontal and vertical projections, until
the desired structure is accurately isolated. Hsfsys has been engineered and tested to tolerate up to 5 degrees of rotation
in combination with 1.27 cm (0.5 inches) of trandlation.

3.1.2.1.3 Compute Distortion Parameters; src/lib/stats/Isg3.c; chknfindparam3()

Once the registration marks are located on aform, parameters estimating the amount of rotation, translation,
and scale can be computed. The estimation of distortion parameters is embedded in atechnique for detecting form reg-
istration failures. This section first describes how distortion parameters are used to detect form registration failures and
then presents a method for deriving these distortion parameters using Linear Least Squares (LSQ).

Figure 14 contains pseudocode for an algorithm that detects form registration failures. The technique deter-
mines when registration points from within an input form image are incorrectly located. The recognition system can
confuse or miss registration points for a number of different reasons. For example, aform may be so distorted that it
cannot be corrected by the registration process. More frequently, an input form image has noise such as extraneous
marks or writing in the vicinity of aregistration mark, or worse yet, this noise may occlude the registration mark alto-
gether. In the case where only one or two registration points are missed, if they can be detected, they can be removed
from the LSQ computation. In most cases, using the remaining located registration pointsis sufficient for successful
form registration.

input: located registration points - hyp_pts,
ideal registration points - ref_pts
while (# hyp_pts>rm_limit)
params = compute distortion parameters (hyp_pts, ref_pts)
for each ptin hyp pts
trans_pt = apply distortion transformation (pt, params)
errorg[i] = distance (trans_pt, ref_ptdi])
end for
max_pt = find maximum error point (errors)
max_err = find maximum error (errors)
if (max_err > err_limit) then
remove max_pt from hyp_pts
else
break from while
endif
end while
if (#hyp_pts<rm_limit) then
output: “form registration failed”
else
output: “form registration successful”, params
endif

Figure 14. Pseudocode for chknfindparam3(), which detects form registration failures.

Walking through the algorithm in Figure 14, the procedure accepts as input the set of located registration
points (hypothesis points) from an input form image. The procedure accepts a second set of corresponding points (ref-
erence points) extracted from the position of the registration marks on an ideal undistorted form. While the number of
hypothesis points remaining in the analysisis more than agiven threshold, in this case 3 points, the analysis continues.
For each pass through the while loop, distortion parameters are computed from the remaining hypothesis points and
their corresponding reference points. Then, using the new distortion parameters, each hypothesis point istransformed.
If the parameters are a good estimate of the actual distortion, the transformed points will be very close to their corre-
sponding reference points. An error distanceis computed between each hypothesis and reference point pair. If the max-
imum error distance from all the points exceeds a given threshold, the hypothesis point contributing to the maximum
error isremoved from the analysis, and new distortion parameters are computed from the remaining hypothesis points.
This process continues until either there are too few hypothesis points remaining to accurately compute distortion
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parameters, or the maximum error distances from all the remaining pointsfalls below a specified threshold. If too few
points remain, the form registration is determined to have failed. Otherwise, form registration is determined to be suc-
cessful, and the last set of distortion parameters computed are used to transform the entire input form image. Hsfsys
uses an error threshold of 4, which was derived empirically from a set of independent studies.

The procedure chknfindparam3() is an encapsulation of alower level procedure findparam3() also located in
src/lib/stats/lsg3.c. Thislower level procedure is responsible for computing distortion parameters given the recogni-
tion system’slocated hypothesis points and their corresponding reference points. These distortion parameters are esti-
mated using a method of L SQ and account for rotation, translation, and scale. A pair of linear equationsusing 3
unknowns can be defined to account for these distortions.

Xp = AX+ M, X +m, Y, 1)

Yo = Ay+myy, +my x ")

Equation (1) is used to estimate the tranglation, rotation, and scale in x using the three unknown quantities
AX, m , and m_. Equation (2) is used to estimate the translation, rotation, and scale in y using the three unknown
quantities Ay, m, , and m, . In the first equation, the hypothesized x-coordinate, Xy, is linearly dependent on the ref-
erence x-coordinate, Xps and the reference y-coordinate Y- The sameistrue for the hypothesized y-coordinatesin the
second equation. Here, reference pointsrefer to the registration marks stored in the file tmplt/hsfreg. pts corresponding
to the blank registered form tmplt/hsftmplt.pct. The reference points are where the marks should be located if theinput
image has absolutely no distortion whatsoever. Hypothesized points refer to the registration marks located within the
input HSF form image using spatia histograms.

Applying the method of LSQ on Equation (1), the equation expands into the following system of three linear
equations.

n n n
th=nAx+mXXZxr+meZyr ©)
i=1 i=1 i=1

n n n n

Y XX, = Axer+mXXZxr2+meZxryr (4)

i=1 i=1 i=1 i=1

n n n n

D XYy = AX DY M Y XYt m DY ®)

i=1 i=1 i=1 i=1

This system of three simultaneous linear equations is represented in matrix form as:

B = AP ©
where:
[ n ] [ n n ]
.Elxhi n Y X D Ve, A
i= i=1 i=1 X
byy n a1 8yp 843 n n n p- Pu _Im
B= b21 = Z Xhixri A= 8y 8gp A3 = Z Xri 2 Xri2 2 Xriyri P21 mXx
i “ “ L
by |~ 83 g gy |!71=h 0=t &
z Xhiyri Z yri Z Xriyri z yri2
li=1 i i=1 i=1 i=1 |
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Solving for P, the following equation is derived:
P=A"'B @)

The inverse of the matrix A is defined to be:

_ 1 .
Al = _—_AdjA ®
detA J
The determinant of A is defined to be:
detA = a;;8y,853 + 87,8y385) + 813851 83) — 8g1 8813~ grBy381; ~ Bg38 8y,
Using cofactors, the adjunct of A is defined to be;
(8833 = 8y383y) (383~ 81p833) (81853~ A1385)
AdjA = | (ayag — 8, 855) (81833~ a1383)) (8138, — ay9ap)

(8183 = 8y851) (15851 —81383)) (81385) — A1585)

Multiplying A"t by B, using Equation (8) to compute A™%, yields:

( Dy (B85 — 8y383,) + by (84385, — 858453) + 03y (81,853~ 81385))
811857833 T 81585383) T 813851 83; ~ 831855873~ Agp8y381; ~ 833851

)

Pp_Alp - ( D11 (83831 — 81 8g3) + Dy (811833~ 81385) + Dy (8138 — 1482) )
2

2)

P21
Ay185p833 T 81589383 T 813871837 ~ 83189813 ~ 83p85387) ~ 838578

P31

( D1y (Bn185; — 8xp85) + Dy (81585 —a1185,) + 05 (87585, — 81,85)

ay185p833 T 81589383 T 813891837 ~ 83189813 ~ 83p85387) ~ 8z38 &y

The LSQ parameter estimates for Equation (1) are derived by substituting the elements of A and B into the
equations for P. The parameter estimates for Equation (2) are derived by substituting the following matrix elements.

n n n
2 Vi nooX VX%

i=1 i=1 i=1 Ay

by, n a1 8yp 843 n n n P - P = |m,

B = b21 - Z Y ¥ri A = 8y) 8y 8y3| = 2 Yri 2 yri2 2 X ¥ri P21 ’
by, i=1 8q) A5 Agg =1 i=1 i=1 P31 m,

n n n n
z yhixri Z Xri Z Xriyri z Xri2
_ Li=1 i=1

=1 i=1

This LSQ method computes alinear mapping that minimizesthe total discrepancy (error) between all the ref-
erence points on aregistered form and their corresponding hypothesi zed points measured on an input form containing
distortion. Assuming that all points are reliably detectable, the error at any one point is decreased as the number of
points used in the Least Squares calculation increases, causing the registration quality to improve.

3.1.2.1.4 Transform Form Image; src/lib/image/fitimage.c; f_fit param3_image2()

Using the method of Linear Least Squares, the parameter estimates AX, m, , m, , Ay, m, ,and m, aresub-
stituted back into Equations (1) and (2) and the pixelsin theinput HSF form are transformed by computing (X, Y)-
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Each black pixel in theinput imageis mapped or pushed to a new position within an initially blank output image. This
approach is efficient because it only computes a transformation for those pixelsin the image that are black. A trade-
off to this approach isthat the resulting output image may contain small amounts of speckle noise within dense black
pixel regions. The small white pixel voids are caused by round-off when converting real-valued transformation
addressesto discrete pixel locations. An alternativeto pushingispulling. Inthiscase, aninversetransformationiscom-
puted for every pixel position in the output image, and pixels are pulled from the input image to the output image. This
approach ensures compl ete coverage across the output image, and the speckle noise is avoided. Unfortunately, atrans-
formation is computed for every pixel in the image making this approach computationally more expensive. In light of
this, hsfsys uses the efficient pushing approach. Upon completion, the input HSF form has been transformed to fit the
blank registered form tmplt/hsftmplt.pct and its spatial field template tmplt/hsftmplt.pts.

3.1.2.2 REMOVE FORM; src/lib/hsf/rmform.c; remove_form()

One approach to isolating the handprint entered on aform is to first remove the pixels comprising the form
itself. Then, all that remainsin the image is handprinted data in the presence of some amount of noise. Upon registra-
tion, the pixels making up the form in the input image are known to correspond to the pixels in tmplt/hsftmplt.pct.
Therefore, the image in tmplt/hsftmplt.pct can be used as a mask so that, when laid over the registered input image,
each pixel corresponding to ablack pixel in the mask is erased from the input image.

3.1.2.2.1 Read Form Mask Image; src/lib/image/readrast.c; ReadBinaryRaster()

The LSQ method for form registration minimizes error, but does not absolutely remove all error. Detection
of aregistration mark even within an undistorted input image may be somewhat inaccurate and thereisalwaysacertain
amount of discrete round-off error when implementing pixel-based transformations. Therefore, there will waysbe a
small amount of discrepancy between aregistered input image and the ideal mask. To compensate for these small
amounts of error, the blank registered form image tmplt/hsftmplt.pct has been dil ated™® four times and stored in tmplt/
hsftmplt.d4. Thisbroadensall form structuresin the blank form image so that coverageisimproved when overlaid with
the registered input image. Thefile tmplt/hsftmplt.d4 isabinary IHead image and isloaded into hsfsys using the same
routine ReadBinaryRaster () asis used to load the input HSF form image.

3.1.2.2.2 Subtract Form Pixels; lib/image/binlogop.c; nandbinimage()

Theform is erased from the registered input image by applying the dilated blank form as amask. A logical
NAND (NOT followed by an AND) is used. For each pixel in the input image, an output pixel value is computed as
follows:

o=r& (~m) 9

where 0 isthe output pixel, r isthe pixel from the registered input image, and mis the corresponding pixel from the
mask. In thisway, oisset to black only when r isblack and miswhite. Remember that a black pixel hasvalue 1 and
awhite pixel hasvalue 0.

Upon image subtraction, characters in the registered input image may be left with holes and discontinuities.
This occurswhen the characterswritten in afield overlap with information already printed on the form or when strokes
of characters extend acrossthe form’slines or instructions. At the time of this softwarerelease, NIST hasnot yet devel-
oped a complete solution to reconstructing disjoint strokes and holes in characters. However, initial experiments have
been conducted to study thisissue, and further research is required.

3.2DO DIGIT FIELDS; src/lib/hs/field.c; do_digit_fields()

This section describes how fields containing handprinted digits are processed by the standard reference rec-
ognition system. First, information must be loaded into the system to support feature extraction and the recognition of
handprinted digit images. The handprint within a particular field is then extracted, segmented, size-normalized, and
dant-normalized. Features are extracted from each segmented character image, and the features are classified. The
results from the classification are stored field by field and include both the hypothesized digit i dentifications and their
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associated confidence values. Figure 15 lists the steps used to process digit fields, and the figure cross-references the
steps to the software distribution according to file and subroutine name.

3.21INITIALIZE FOR FIELDS; src/lib/hsf/field.c; init_field()

Threefiles are necessary to process fields that contain handprinted digits. The first file contains a set of basis
functions that are used to compute feature coefficients from each segmented digit image. Hsfsys uses the Karhunen
Loeve (KL) transform to compute these features.® KL basis functions have been computed off-line and stored in the
fileweights/td3_d.evt. The second file needed to process digit fields, weights/td3_d.pat, contains prototype KL feature
vectors and a search tree used by an optimized Probabilistic Neural Network Classifier (PN N).7 Thethirdfile, weights/
td3_d.med, contains class-based median vectors computed from the prototypesin the pat file. If the small memory
mode (the -m option), is used to invoke hsfsys, asmaller set of prototypes and their associated files are |loaded instead.
These files begin with the root file name td3_d_sin the top-level directory weights. This section describes how basis
functions, prototype vectors, and median vectors are computed and how they are stored in their respective files.

3.2.1.1 READ BASIS FUNCTIONS; sr¢/lib/nn/basis io.c; read_basis()

The KL transform of a segmented character image is obtained by projecting the image onto the orthonormal
eigenvectors of the covariance matrix of alarge number of prototypeimages. The prototypeimages are representative
of the types of images desired to be recognized by the recognition system, in this case, images of segmented digits.
The KL transform requires computing the covariance matrix, and then diagonalizing it to produce the ei genve(:tors.16
The resulting eigenvectors can be used as basis functions for feature extraction. Computing the KL transform isvery
expensive, but it is done once off-line, and the eigenvectors are stored in abasis function file for usein the recognition
system. Appendix A documents the program mis2evt that computes the covariance matrix and eigenvectors from a
training set of segmented and labeled character images. The output from this program is an ewvt file.

All elements of the basis function file occupy 4 bytes and are read-writable using the unformatted binary C
functions fread and fwrite. The supplied basis function files found in the top-level distribution directory weights are
assigned the extension evt. Thesefiles were written using C source code running on acomputer that usesthe Motorola
(high-low) byte order format. Users of other computer architectures should be aware that byte orders may need to be
changed for correct reading on their specific equipment.

The basis functions for the KL transform are eigenvectors, so these terms are used interchangeably in this
document. Thefirst element in the file is the integer number, n, representing the number of eigenvectors stored in the
file. The second element istheinteger dimensionality, D, of the eigenvectors. The remainder of the file consists of n+2
vectors, each with D elements. The first vector of length D contains the mean image vector of al of the images used
to build the covariance matrix. The second vector existsfor historical purposes only and has all elements equal to 1.0.
Thefinal n vectors are the eigenvectors of the covariance matrix, and they are stored in the order of decreasing eigen-
value.

The following items should be noted. The order of the elements within the eigenvectors corresponds to row
major ordering of theimage pixels. The ordering of the eigenvectors according to decreasing eigenvalue improvesthe
efficiency of the PNN classifier. Finally, theimages used in building the covariance matrix are 32 X 32 pixelsin size,
resulting in adimensionality of D = 1024, which is fixed throughout the implementation of hsfsys.

3.2.1.2 READ PROTOTYPES & TREE; src/lib/nn/pat_io.c; readpatstreefile()

Thefeatures produced by projecting segmented character images onto the KL eigenvectors have been studied
extensively by NIST.2/18 A set of KL coefficients are computed by applying a set of eigenvectors to the same image.
Theimage is then represented by the vector of coefficients rather than by its pixel data. The feature vectors are com-
puted from alargetraining set of segmented character imagesand can be used to train classifierssuch asPNNs. A large
number of prototypes, tens of thousands, are required to train these classifiers, so they are computed off-line and stored
in a prototypefile.
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Figure 15. Steps to process digit fields.
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Like the basis function files, prototype files are read-writable using the unformatted C functions fread and
fwrite. The supplied prototype filesfound in the top-level distribution directory weights are assigned the extension pat.
These fileswere written using C source code running on a computer that uses the Motorola byte order format. Just as
with basisfunction files, users of other computer architectures should be aware that byte orders may need to be changed
for correct reading on their specific equipment. The prototype file format was originally implemented in FORTRAN,
which embedsinteger stream lengths at the beginning and end of abyte block of data. Therefore, the low-level reading
routinesin C are complicated by this feature.

Thefirst element in aprototypefileisa4-byte integer always having avalue of 24. It indicatesthat six 4-byte
integer follow. These six integers constitute the file's header, and currently only four of the integers are actually used.
Thefirst of the six integer elements, P, represents the number of feature vectors stored in the file; the second element
n signifiesthe dimensionality of the feature vectors; the third element L is the number of possible classesto which the
vectors may belong; the fourth element is not used; the fifth element indicates the format used in the file and must be
avaue of 5151; and the sixth element is currently unused. After the six integers, theinitial block size integer with
value 24 is repeated.

The section following the header in a prototype file contains the class-set that identifies each classwith auser-
defined string. The data block starts with a 4-byte integer assigned the value 32 x L. The class set strings follow with
L strings each of length 32 bytes (they do not need to be null terminated). The same integer data length of 32 x L con-
cludes the class-set section.

The largest section of the file follows the class set and contains KL feature vectors. The n elements of one
vector arefollowed by the next for atotal of P vectors. These floating point feature vectors are most conveniently input
usingasinglefread of 4 x P x n bytesinto apreallocated block of contiguous memory. Thefeature vectorsarefollowed
by avector of integer indices on therange [0,L-1]. These indices identify the class of each feature vector stored in the
file and can be read as asingle block of 4 x P bytes.

Thefinal section in aprototype file contains asearch tree that is used to minimize the computational intensity
of atraditional PNN classifier. This tree contains indices pointing to the feature vectors stored in the file. Therefore,
the ordering of these featuresisimportant and must remain fixed. For thisreason, the tree isincluded in the prototype
file. Thetree section beginswith two 4-byte integers. Thefirst integer isthe number of nodes, N in thetree. The second
integer is the number of children per node, C. A matrix containing N x C 4-byte integers follows. The matrix isfol-
lowed by five vectors each containing N 4-byte elements. The first three vectors contain integers, while the last two
hold floating point values. Section 3.2.2.6 will discuss the use of thistreein more detail, and Appendix B documents
the program mis2pat that generates prototype files.

3.2.1.3 READ MEDIAN VECTORS; src/lib/nn/median_io.c; readmedianfile()

The program mis2pat produces asecond file that is needed for character classification. Median vector filesare
supplied in the top-level distribution directory weights and are assigned the extension med. A median file contains as
many vectors as there are classes in an application. For example, there are 10 classes when recognizing digits as com-
pared to 26 classes when recognizing upper case letters. Each median vector has the same dimensionality D asthe fea-
ture vectors stored in a corresponding prototype file. The K" element of the it vector contains the center value from
the sorted list of the ki elements from all the traini ng feature vectors for classi. The median vectors are used during
classification to initialize the search through the tree stored in a corresponding prototype file.

The median vectors are stored in an ASCI| file format. Thefirst line of the file contains two space-separated
integers. Thefirst integer specifiesthe number of vectorsin thefile, the second integer specifiesthe number of elements
in each vector. The floating point vectorsfollow, one after another, with ablank line separating each vector. The order
of these vectors correspond to the class indices stored in a corresponding prototype file.
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3.2.2 PROCESS DIGIT FIELD; srellib/hsf/field.c; process digit_field()

With the input HSF form image registered and the form information removed, the handprint entered within
each field can be extracted using the spatial field template. Thefield subimageisthen segmented, separating each hand-
printed digitinto itsownimage. Handprint varieswidely in size and slant between different writers, so each segmented
digit imageisnormalized so that the character is scaled to a consistent size, and the character is straightened to remove
slant. Features are extracted from each character image so that an image is represented by a vector of floating point
coefficients rather than by its binary pixels. These feature vectors are classified by a neural network, and the hypothe-
sized digit classifications along with their associated confidence values are stored.

3.2.2.1 ISOLATE 1-LINE FIELD; srellib/hsf/isolate.c; iso_1line field()

Through the process of form registration, the input HSF form has been transformed to line up with the spatial
field template stored in tmplt/hsftmplt.pts. This spatial template defines the location and spatial extent of each entry
field on the HSF form. Each field region is represented by 4 pixel coordinate points representing the corners of arect-
anglethat isaligned with the raster grid in the input image. These rectangul ar template coordinates are used to extract
subimages of the fields from the registered input image. Figure 16 contains an example of an extracted field (scaled up
4X). Noticethat in addition to the handprint thereis still asmall amount of form information that was not erased during
form removal. Spatia histograms similar to those used in locating registration marks are used to separate the hand-
printed data from the form data.

The techniques used works off the assumption that the entry field contains asingle line of handprinted text,
and the handprint can be distinguished from the edges of the form by examining pixel densities within a spatial histo-
gram projection. A horizontal histogram computed on the example field image is displayed in Figure 17.

/& /@0

Figure 16. Form residue in an isolated field.

Figure 17. Horizontal histogram of image displayed in Figure 16.

/& /60

Figure 18. Cropped field image containing only handprint.
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I ndex Bins Thresh Runs

0 0 0 0
1 0 0 0
2 0 0 0
3 0 0 0
4 0 0 0
5 156 1 1
6 44 1 2
7 0 0 0
8 0 0 0
9 0 0 0
38 0 0 0
39 0 0 0
40 0 0 0 -e— topedge
41 5 1 1
42 15 1 2
43 24 1 3
44 28 1 4
45 31 1 5
46 31 1 6
47 34 1 7
48 33 1 8
49 35 1 9
50 38 1 10
51 39 1 1
52 40 1 12
53 43 1 13
54 41 1 14
55 42 1 15
56 40 1 16
57 37 1 17
58 38 1 18
59 41 1 19 -«— middle
60 44 1 20
61 48 1 21
62 53 1 22
63 56 1 23
64 54 1 24
65 57 1 25
66 58 1 26
67 57 1 27
68 56 1 28
69 57 1 29
70 54 1 30
71 49 1 31
72 35 1 32
73 32 1 33
74 32 1 34
75 32 1 35
76 28 1 36
77 17 1 37
78 8 1 38
79 0 0 0 -«—— bottom edge
80 0 0 0
0 0

0
Figure 19. Technique for locating the vertical center of aline of handprinted text.
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In order to locate the handprinted text, the histogram values plotted in Figure 17 are converted to a vector of
incremental run length values. This processisillustrated in Figure 19. The first column containsalist or row indices
for the example image. The second column of numbers lists the histogram values whose positions within the list are
called bins. Notice that the lists have been shortened at points of contiguous zeros so that they fit within the figure. All
those bins having an accumul ated value of more than 2 pixelsis set to 1, and those bins having lessthan 2 pixelsis set
to 0. The resulting binary vector islisted in the third column of the figure. A run length counter isinitialized for each
contiguous group of binary values equal to 1, and each subsequent value of 1 in arunisreplaced by the current run
length counter, and the counter is then incremented. The results of this step are shown in the fourth column. Finally,
the run with the longest length is selected, and the midpoint of the run is determined to represent the vertical middle
of the handprinted text within the field. In the example shown in Figure 19, the second run with length 38 is selected,
and raster row 59 is determined to approximate the middle of the handprinted text.

Given the approximate middle of the handprinted text line, the histogram binsin the second column of Figure
19 are searched to locate the edges of the text. One search starts at the approximate middle and proceeds upwards until
ahbin equal to 0 is encountered, and in asimilar way a second search starts at the approximate middle and proceeds
downwards until abin equal to 0 is encountered. The two points at which the bins become zero are assumed to corre-
spond to the top and bottom edges of the handprinted text line. Image rows between these two points are extracted, and
any form residue is cropped.

The one-linefields on the HSF from are much wider than they aretall, so form residue is much more common
along the horizontal sides of thesefieldsthan along the vertical sides. Thelonger horizontal sides permit small amounts
of registration error to propagate until it becomes significant, whereas the error along the shorter vertical sidesis sel-
dom propagated to the extent that it is noticeable. Therefore, the process of thresholding the histogram bins and com-
puting run length incrementsis done only for locating the top and bottom edges of the handprint within the field. Left
and right edges are found by searching vertical histogram bins directly. Searching in from aleft or right edge, the first
histogram bin greater than 10 pixelsisfound, and then areverse search from that point locates thefirst bin that equals
zero. Theuse of a 10 pixel threshold avoids speckle noisein the field and locates the beginning of significant character
data, while the reverse search locates the edge of the character data. Hsfsys extracts the subimage bounded by these
left, right, top, and bottom edges, and the result of cropping the image in Figure 16 is shown in Figure 18.

3.2.2.2 SEGMENT DIGIT FIELD; src/lib/hsf/segblob.c; segbinblobdigits()

At this point, hsfsys has a subimage containing the handprint of one or more digits. The feature extraction and
classification techniques used by the recognition system are designed to classify images containing a single character.
Therefore, thefield image of multiple characters must be segmented into plausible character images, one character per
image. To do this, the system uses connected components or blobs to define these plausible character images. A blob
is defined to be agroup of pixelsal contiguously neighboring or connecting each other. In general, each blob is
extracted and assumed to be a separate character, although a blob is not guaranteed to be a single and complete char-
acter. Thisisfreguently the case with handprinted fives. Often awriter will print the top horizontal stroke of a5 so that
it does not connect the bottom portion of the digit. Inthis case, thetwo pieces of the samefivewill betreated incorrectly
as two independent characters. To avoid this type of problem, a blob pasting step has been devel oped.

Based on experience gained from creating and manipul ating large on-lineimage databases such as SD3, NIST
has developed a number of diversified structures and file formats. Storing character images in individual files has
proven to be very inefficient, especially when manipul ating databases containing hundreds of thousands of characters.
Devoting aseparate file node for each character image creates enormousfile system overhead, and unreasonably large
directory tables must be allocated. Rarely do recognition system components process only asingle character imagein
isolation. Rather, most components are designed to process alarge sample of characters. Experience has shown that
the gathering of alarge sample of characters from afile system where the images have been stored in individua files
greatly burdens the computer’s disk controller. Thisresultsin slow experiment loading times as well as limiting the
access of other applications to data stored on the same storage device.

In addition to creating large directory tables, storing segmented character imagesin individual filesresultsin
sparse usage of the storage device. This sparseness is even more exaggerated when the images are compressed. For
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exampl e, segmented character imagesin SD3 have been centered within a128 by 128 binary pixel image. Theresulting
image size is 2,344 bytes, 296 bytes for the IHead header and 2,048 bytes of image data. These fileswhen CCITT
Group 4 compressed average 360 bytesin size, 296 bytesfor the IHead header and only 64 bytes of compressed image
data. Storing these compressed image files onto CD-ROM for example, which uses a 2,048 byte block size, would be
extremely wasteful. Only 18% of each block containing image data would be used.

Inlight of these observationsthe segmentor used by hsfsys createsamemory structure called aMultiple Image
Set (M1S). The MIS structure and file format have been developed to manage large volumes of segmented character
images. The MIS format allows multiple images of homogeneous dimensions and depth to be stored in onefile. MIS
isasimple extension or encapsulation of the IHead format described in Section 3.1.1.1. It can be seen in Figure 20 that
the IHead structure is included as a member within the MIS definition. The library src/lib/mis contains a suite of rou-
tines designed to read and write MIS files and manipulate MIS structures.

An MISfile contains one or more individual images stacked vertically within the same contiguous raster
memory, the last pixel row or scanline of the previous image is concatenated to first scanline of the next image. The
individual images that are concatenated together are referred to as MIS entries. The resulting contiguous raster mem-
ory isreferred to asthe MIS memory. The MIS memory containing one or more entries of uniform width, height, and
depth is stored using the IHead file format. The IHead attribute fields are sufficient to describe the M1S memory. The
IHead structure’s width attribute specifies the width of the MIS memory, and likewise the IHead structure’s height
attribute specifiesthe height of the MIS memory. In thisway, theMIS memory can be stored just like any normal IHead
image, including possible compression. An example of an MIS memory is displayed in Figure 21 (scaled up 3X). In
this example, each extracted character is centered within a 128 by 128 MIS entry.

Due to the uniform dimensions of MIS entries, the IHead structure’swidth attribute also specifies the width
of the entriesin the MIS memory. What is lacking from the original IHead definition isthe uniform height of the MIS
entries and the number of MIS entriesin the MIS memory. Notice that, given the uniform height of the MIS entries,
the number of entriesin the M1S memory can be computed by dividing the entry height into the total MIS memory
height. The interpretation of two of the IHead attribute fields, par_x and par_y, changes when the IHead header is
being used to describe an MIS memory. The par_x field is used to hold the uniform width of the MIS entries, and the
par_y field is used to hold the uniform height of the MIS entries. In other words, width and height represent MIS
memory width and MIS memory height respectively, whilepar_x and par _y represent MI1S entry width and MIS entry
height respectively. Using this convention, an MISfileistreated like an IHead file.

/*************************************************************

Filename: Mis.h
Author: Michael D. Garris
Date: 7/18/90
*************************************************************/
typedef struct misstruct{
IHEAD *head;
unsigned char *data;
int misw;
int mish;
int entw;
int enth;
int ent_num;
int ent_alloc;
} MIS;

Figure 20. C definition for the MIS structure.
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MISMemory
128 pixels
« > Parent (x,y) Blob (w, h)

/ 0,2 21,35

3 30,0 29, 38

68, 4 18, 32

640 pixels
.

é 92,0 28, 37

O 132, 4 20, 27

Y

Figure 21. An example of an MIS memory segmented from the field image in Figure 18.

Figure 20 liststhe MIS structure definition written in C and found in include/mis.h. The structure contains an
IHead structure, head, and an M1S memory, data. In addition, there are six other attribute fields that hide the details
of the IHead interpretation from application programs that manipulate M1S memories. The MIS attributes misw and
mish specify the width and height of the MIS memory. These values are the same as the width and height attributes
contained in the IHead structure pointed to by head. The MIS attributes entw and enth specify the uniform width and
height of the MISentries. Thesevaluesarethe sameasthepar_x and par_y attributes contained in the IHead structure
pointed to by head. The MIS attribute, ent_alloc, specifies how many MIS entries of dimension entw and enth have
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been allocated to the M1S memory data. The MIS attribute, ent_num, specifies how many entries out of the possible
number allocated are currently and contiguously contained in the MIS memory data.

In addition to extracting character images, the segmentor used by hsfsys computes the location of where each
character was extracted form the field image, and also computes the characters width and height. These statistics are
listed with the MIS memory in Figure 21.

3.2.2.2.1 Extract Blobs; src/lib/hsf/segblob.c; seghinblob()

A seria implementation of aconnected component algorithm called findblob() has been devel oped that isrel-
atively inexpensive to compute and is included in this software distribution in the file src/lib/image/findblob.c. This
utility findsasingle blob from theinput image and returns a subimage containing the blab. By calling the utility repeat-
edly, one can obtain all the blobsin theinput image, or if desired, just some of the blobs. Each call to findblob() initiates
a search that begins at a specified starting point in the input image and proceeds to scan the input image in column-
major (top-to-bottom and |eft-to-right) order for ablack pixel. Once found, the black pixel is grown into a complete
blob region. The caller may leave the current point of the scan unchanged between calls, thereby making a complete
scan that finds all blobs upon subsequent calls, or the caller may change the starting point so asto direct the search to
specific regions within the input image.

Findblob() isextremely flexible and has been designed with anumber of different options. These options con-
trol the clearing of blobs from the input image, the allocation of memory for the output image, and the format of the
output image. Input image pixelsthat are members of a detected blob can either be left alone or erased. The caller can
either provide the space needed for the output image or let the utility allocate the required amount of memory. Finaly,
there arethree available output format options. In thefirst format, the blob isreturned in an output image the same size
and dimension as the input image. In this case, the blob occupies the same position in the full-size output image as it
did intheinput image. The second format returns the blob centered in an image whose dimensions are specified by the
caler. Thefinal format option causes the blob to be returned in an image allocated just large enough to contain it. In
other words, the output image is defined to be the bounding box around the blab.

Starting at a specified pixel position, the utility scanstheinput image for ablack pixel. When ablack pixel is
found, it isgrown into arun. Here, arunisamaximal horizontal segment of contiguous black pixels. Therunisthen
grown into amaximal set of connected runs, which constitutes an entire blob. During the growth process, bytes repre-
senting pixels of the blob are changed from onesto zeros, and structures representing the runs are stored in an array.
The pixelsmust be changed to avoid finding them again. (If the caller opts not to have these pixelschanged upon return,
then they are set back just prior to exiting the utility.)

The array of runsistreated as a queue. One growth step consists of reading arun from the head of the queue,
producing new runsif there are any black pixels connected to itstop or bottom, and appending these new runs to the
gueue tail. The queueisinitialized to just the seed run that is grown from the position of the first black pixel encoun-
tered during the column-major scan. The growth steps continue until the queue becomes empty. The tail of the queue
does not wrap around so as to recycle array positions (as is typical with most queue implementations). Instead, head
and tail pointers both movetoward higher addresses, so that when the growthisfinished, the array containsall elements
that have ever been in the queue. The routine then systematically goes through all the run structures and sets their cor-
responding pixelsto black in the output image. The output image, representing one blab, is then returned to the caller.

Theroutineisefficient becauseit localizes processing to only the black pixelsintheimage, and it does so one
blob at atime. In addition, the algorithm’s implementation generally requires an amount of working memory that is
small compared to the memory occupied by the input image. The blobs returned by this utility are treated as plausible
character images. If ablob istoo small it isthrown away and ignored. If ablob istoo big it currently is aso thrown
away. A future refinement to this segmentor would beto try to break any large blob down into smaller pieces because
itislikely to contain multiple characters connected to each other. In hsfsys, if ablob has less than 100 black pixelsit
is considered too small, and if ablob has more than 1750 black pixelsit is considered too big.



3.2.2.2.2 Paste Digit Blobs; src/lib/hsf/segblob.c; paste_digit_blobs()

Unfortunately, using connected componentsfor segmentation has some significant pitfalls. A blobisnot guar-
anteed to be asingle and complete character. If two characterstouch, then asingle blob will contain both characters as
asingle composite image. A blob may also contain only one stroke of acharacter that is comprised of several digoint
pieces. For example, the top of the letter T may not be connected to the vertical stroke, causing the algorithm to over-
segment the character into two blobs.

Figure 22 shows afield containing “DAuGhter” in which connected component labeling over-segments and
under-segmentsthefield. The extracted field image is shown at the top, and the resulting blobs are listed below it. The
first blob isavertical stroke that when viewed independently lookslikeal, 1, or I. Thisblob isthe vertical stroke rep-
resenting the left potion of the first letter D. Thisis an example of over-segmenting. The remaining three blobs are
examples of under-segmenting. The second blob contains portions of D, A, and u. In thisexample, thesingle blob is
assigned aclass of X by the recognition system’s character classifier because the blob is assumed to be a single char-
acter. Thethird blob contains both the G and h and is assigned aclass of G. The hisdeleted from thefield. The fourth
blob containst, e, and a portion of a clipped r. This blob isincorrectly assigned a class of W. Due to segmentations
errorsintroduced by using connected components, the field is recognized as “HXGW?” rather than “DAUGHTER”.

DAVGHY

VOB Gh W

Figure 22. An example of over and under-segmenting using connected components.

The problem of over-segmentation does occur when using connected components to segment digits. For
example, awriter will often print the top horizontal stroke of a5 so that it does not connect to the bottom portion of
the digit. The two pieces of the same 5 will be treated incorrectly as two independent characters. To avoid this type of
problem, amethod of blob pasting has been developed.

The connected component utility extracts blobsin a column-major order, so blobs are extracted | eft-to-right
within aone-line text field. In addition to the blob images, the utility returns the location from where the blob was
extracted in the field along with the blob’s width and height approximated by a bounding rectangle. Examples of these
statistics are listed in Figure 21. At times it becomes necessary to join two blobs together as with the top and bottom
pieces of adigoint five. The decision to join two blobsis based on asimple heuristic that tests neighboring blobs. The
heuristic tests the current blob with it neighbor, the next blob. If the difference between the next blob’s bottom minus
the current blob’s top isless than half the current blob’s height, then the two blobs are pasted back together as a new
plausible character image. This simple heuristic works very well at putting the tops back on digoint fives.

3.22.3 NORMALIZE CHARACTER IMAGES,; src/lib/hsf/normaliz.c; norm_2nd_gen()

To improve the classification performance of character images, a size-normalization technique referred to as
second gener ation normalization was devel oped. Handprinted characterscomein all different shapes, sizes, and slants.
Some people will use all the space provided on aform, and others will use aslittle space as possible. It has been
observed that the same characters printed by the same writer can vary greatly in size. Asawriter begins to run out of
room, he will do all types of curious things to fit the remainder of his answer in the field.

Second generation normalization attempts to remove size variations in handprint by scaling all segmented
character imagesto a consistent size. The scaling is handled by an efficient serial zoom() utility provided with the soft-
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ware distribution in src/lib/image/zoom.c. The normalization method bounds the character data within a segmented
image with abox, and that box is scaled to fit exactly within a 20 by 32 pixel region, and the aspect ratio of the original
character is not preserved. The resulting 20 by 32 pixel character isthen centered within a 32 by 32 pixel image.

Tests at NIST have shown that size-normalization improves recognition performance when recognizing
handprinted characters. The technique also applies a simple morphological operator in an attempt to normalize the
stroke width within the character image. If the pixel content of a character image is significantly high, then the image
is eroded (strokes are thinned). If the pixel content of a character image is significantly low, then theimageis dilated
(strokes are widened). The left image in Figure 23 shows an original segmented character (scaled up 4X) centered
within a 128 by 128 image. The same character spatially normalized using second generation normalization is dis-
played in the right image.

ORIGINAL SIZE
NORMALIZATION

5

Figure 23. Results of size-normalizing a segmented character image.

3.2.2.4 SHEAR CHARACTER IMAGES; sre/lib/hsf/shear.c; shear_ mis()

Asmentioned earlier, not only does the shape and size of handprinted characters vary, but their slant can also
be significantly different. As size-normalization attempts to reduce character variations due to scale, slant-normaliza-
tion attempts to reduce character variations due to slant. By effectively reducing these two sources (size and slant) of
variation, a character classifier isleft to deal primarily with variations due to character shape.

The dant isremoved by atechnique that uses horizontal shearsin which rowsin theimage are shifted |eft or
right in an attempt to straighten the character in the image. Given a segmented character image, the top and bottom
image rows containing black pixelsarelocated. Theleftmost black pixel islocated in each of thetwo rows, and alinear
shifting function is calculated to shift the rows in the image so that when finished the leftmost pixelsin the top and
bottom rows line up in the same column. The rows between the top and bottom are shifted in lesser amounts based on
the linear shifting function.

A dope factor f, defining the linear shifting function is calculated:

¢ b=h (10)
b —t

r r

wheret, isthe vertical position of the top row, by, isthe vertical position of the bottom row, t; is the horizontal position
of theleftmost black pixel in thetop row, and by isthe horizontal position of the leftmost black pixel in the bottom row.
The slope factor is used to compute a shift coefficient as follow:

s= (r-m)f (11)
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with r being avertical row index in theimage and mequal to the vertical middle of the image. This causes the shifting
to be centered about the middle of theimage. A positive value of the shift coefficient causes arow to be shifted s pixel
positions to the right, and a negative value causes arow to be shifted s pixel positions to the | eft.

This dant-normalization technique is applied after size-normalization. The results of shearing a size-normal-
ized handprinted 4 in order to remove the character’s slant is shown (scaled up 8X) in Figure 24. Thetechniqueisvery
inexpensiveto compute and it works very well. Thistechnique occasionally failsto remove the slant from the character
when the top-leftmost black pixel in theimage and the bottom-leftmost black pixel in theimage do not lie on the same
vertical stroke. Thisismorelikely to happen with characters such asH and M where there aretwo equally likely peaks
at the top and bottom of the character. In these cases, the slant may not be removed, although the results of the shearing
do cut down on character variations, which is the underlying goal of this process.

SIZE-
NORMALIZED SHEARED

Figure 24. Slant removed from a character image via shearing.

3.2.2.5 EXTRACT FEATURES; src/lib/nn/kl_mis.c; kl_transform_mis()

The Karhunen Loeve (KL) transform has many optimal properties and iswidely used in the pattern recogni-
tion field.1° The KL transform isalinear transform and corresponds to the projection of images onto the eigenvectors
of acovariance matrix, where the covariance matrix is created from images of training data such as those distributed
with SD3 and in the top-level directory train. The production of this transform is also known as principal factor or
principal components analysis. The creation of the covariance matrix and its eigenvectors is conducted off-line, and
the computed eigenvectors are stored in a basis function file described in Section 3.2.1.1.

The pixels of asegmented character image define a vector whose el ements are obtained by considering the 2-
dimensional N by N image as a vector of N2 elements. This vector is formed by concatenating the rows of the image
together, and each binary element is converted according to Equation 13. Black pixels are represented as 1 and white
pixels are represented as -1. The segmented character images have been size-normalized to be 32 by 32 pixels; there-
fore, N = 32 and N2 = 1024.

U = (Ugq, Ugg oy Uppp Ugg, wevs Ugpgs <oy Uy (12)

1if black pixel
u; =4 (13)

-1if white pixel

The mean vector in Equation (14) is computed from al the training images.
P
1 (i)

= PiZ’lu (14)

This mean vector is subtracted from all the training images forming a set of sample vectors. Each sample vector com-
prises a column in the sample matrix, U. The covariance matrix R is symmetric and is formed as the outer product of
the P sample vectors asin Equation (15).
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1.7
- = 15
R PUU (15)

The covariance matrix is diagonalized using standard FORTRAN linear algebraroutines such asthosein El SPACKZ,
producing the eigenval ues and corresponding eigenvectors in descending order of largest eigenvalue. The covariance
matrix R has N2 eigenvectors as the columns of ¥ defined in the equation

RY = YA (16)

and the only nonzero elements of A are the eigenvalueson its diagonal. The KL transform v of a vector u is the pro-
jection of the vector minus the mean vector p onto the eigenvector basis .

v=Y"(u-p (17)

Typically, only a subset of the eigenvectors corresponding to the largest eigenvalues are used in the transfor-
mation. Theinitial dimensionality of uis N2, By selecting only the top k eigenvectors, the dimensionality of the trans-
formed feature vector v isreduced to k. In hsfsys, k is selected to be 64. For a more complete discussion of the effect
of feature dimensionality please refer to Reference 22.

Several steps have been taken to increase the efficiency of the KL transform when applied to binary images.
Thefirst improvement isapre-multiplication step in which certain factors that are not dependent on theimage dataare
computed once up front, then these factors are reused over a set of segmented character images. The second optimiza-
tion takes advantage of the binary nature of the image data. The details of the implementation can be examined in the
source code file src/lib/nn/Kl.c.

3.2.2.6 CLASSIFY FEATURE VECTORS; src/lib/nn/pnn.c; treepnnhypsconsC()

It has been our experience that Probabilistic Neural Networks (PNNSs), outperform Multi-Layer Perceptrons
(MLPs) and other popular classifiersin terms of accuracy.21'22 The PNN algorithm, in itstraditional implementation’,
takesalargetraining set of prototype vectors and uses euclidean distances from an unknown vector to each of thetrain-
ing vectors. These distances are computed each time an unknown vector is classified. Similar methods are used in k-
nearest neighbor classifiers. This computation is very expensive, so up till now, the slow processing timesincurred by
software implementations of PNN have outwei ghed the accuracy benefits of the classification.

Hsfsys uses a new optimized version of PNN that was developed at NIST. This new software implementation
achieves afactor of 20 improvement in processing time over the traditional PNN when running in the standard refer-
ence recognition system, and the speed improvement is realized without any lossin classification accuracy.

Inthetraditional PNN, each training vector (or prototype) x; becomesthe center of akernel function that takes
its maximum at the vector and decreases gradually as one moves away from the vector in feature space. An unknown
feature vector y is classified by computing, for each classi containing M; prototype vectors, the sum of the values of
the class-i kernels at y, multiplying these sums by factors involving the estimated a priori probabilities, and finding
which of L classes has the highest resulting discriminant value. PNN assigns the class with the highest discriminant
value to the unknown vector y.

Many forms are possible for the kernel functions; we have obtained our best results using radially symmetric
Gaussian kernels. The resulting discriminant functions are of the form:

M, _
D) = P S exp (- Ly x")) a8
i1 26
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where ¢ isasmoothing parameter that may be optimized by conducting experiments on atesting set. In this study, ¢
isassigned 2.0 when classifying digits and 3.0 when classifying a phabetic characters. Thea priori probability of class
i isp(i), and as mentioned earlier, M; is the number of training prototypesin classi. The euclidean distance between
two vectorsis defined as

d?(x,y) = (x-y)T(x-y) (19)

The current implementation of the discriminant functions used in hsfsys does not use the leading termin
Equation (18). Further research is needed to determine if the natural frequencies of character occurrence (in the Con-
stitution box for example) would make good a priori probability estimates and improve classification accuracy. If the
number of training prototypes within each class are approximately balanced, the denominator of the leading term
becomes redundant. Specht’ shows that the discriminant val ues can be converted to estimate a posteriori probabilities
by dividing each discriminant value by their sum such that they add up to 1.0.

Several optimizations have been added by NIST to the traditional PNN implementation in order to decrease
computational intensity and improve processing times. The first optimization takes advantage of pruning those proto-
typesthat do not significantly contribute to the computation of discriminant values, and a second optimization utilized
asearch tree to reduce the number of prototypes used in the discriminant value summation. Due to the presence of the
exponential in Equation (18), the closer atraining prototype is to the unknown vector, the more significant the proto-
type's contribution to its discriminant value. In light of thIS, Equation (18) can be approximated by not including pro-
totypes whose exponential term contributes less than 10™ * timesthe largest term. Formally, the j™ prototype of any
given class can be deleted if:

1 - 1
eXp(—gd (¥, %)) <10 eXp(_szzd (¥, X)) (20)

where the subscript ¢ denotes the closest training prototype. By taking logs and changing sign, the condition in Equa-
tion (20) can be rearranged without the need for computing the exponential function. The resulting test in the distance
domain is

d?(y, x) > 2Ac62n10+d? (y, x,)) (21)

This technique can be used to approximate the traditional PNN in Equation (18). The associated error can be
constrained by setting A to asufficiently large positive number. This parameter should not belessthan log(P/L), where
P isthe number of prototypes, and L is the number of classes. The value used in hsfsysis A = 4. This ensures that
classification results will not change between the optimized and traditional PNN implementations.

Two items of importance make using Inequality (21) efficient. First, it isimportant to note that the training
prototype with smallest distance to the unknown vector (thus contributing the maximum exponential term to its dis-
criminant value) isnot known a priori. The determination of x; can be done on thefly, and distances to each prototype
only need to be computed once. During the computation of the distances, alist of eligible prototypes (prototypes not
yet deleted) can be maintained. Eligible prototypes include the closest to the unknown vector found so far together
with all other training prototypes sufficiently close that they do not satisfy the deletion criterion. The deletion test is
conducted by substituting x in Inequality (21) with the closest prototype found so far. As the distances between the
unknown vector y and each training prototype X; are computed, the new prototype will at times be closer to'y than the
closest prototype seen to that point. When this happens the current prototype X; is assigned to be the new X and all
eligible prototypes are retested using | nequality (21). Using this single pass technl que, the distance d? (y, x o) canonly
decrease throughout the process, so prototypes can be safely deleted along the way and, once del eted, they can never
become eligible again.

The second item related to the efficiency of Inequality (21) takes advantage of the fact that the distance cal-

culations can be preempted once they become sufficiently largeto trigger the del etion criterion. Inequality (21) implies
complete calculation of
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k
d?(y.x) = Y (-2 (22)
i=1

If the distance summation exceeds the deletion criterion, the computation of Equation (22) can stop with i <k, as
remaining terms contribute nothing more to the outcome of the test. A useful property of the KL transform isthat the
features are ranked in order of decreasing variance. Therefore, the first few features of atraining prototype contribute
the most to the distance summation. Typically, only four KL coefficients are required to delete a prototype, and only
about 1% of the prototypes are sufficiently closeto remain eligible for usein computing discriminant values. Applying
these two improvements (on the fly determination of x. and preempting distance cal culations) makes pruning proto-
types very efficient, which in turn greatly reduces the computation of discriminant values. The first optimization step
of pruning prototypes achieves a factor of 4 speed up in hsfsys.

A further optimization has been integrated into the PNN classifier provided in this distribution. This step uti-
lizesasearch treeto reduce the number of prototypesused inthe PNN calculations. Asstated earlier, PNN discriminant
values require the same distance cal cul ations as those used in nearest-neighbor methods. Nearest-neighbor methods
for character classification have been shown to be competitive with neural network methods.??

In nearest-neighbor methods, we have N characters with known identities; each character has been reduced
to afeature vector (or point) in k dimensions. In practical applications, N islarge (perhaps 10° or so) and k istypically
in the range 24 to 64. To classify an unknown character, first reduce it to afeature point using atechnique such asthe
KL transform. Then cal cul ate the distances between its point and each of the N known points. Any function of the N
distances and the N known classes can be used to classify the unknown character. For example, the unknown character
could be assigned the class of the nearest of the N known points. PNN itself is another example of such afunction and
includes some optimal properties. Other functions are described in Reference 22.

Thismethod of classification isexpensive; thetimeis proportional to N, since N distances must be cal cul ated.
Thereis alarge literature on faster methods.2®> Among the best are the k-d tree methods®*2° of Bentley, which often
have average searching time proportional to log(N). For our case, kislargeand Nisrelatively small (N ismuch smaller
than 2") and the training points are sparse in k-dimensional space. Therefore, the logarithmic behavior is not found.
Some dlight variations on the k-d tree give searching time proportional to sqrt(N), even for large k. While not as good
aslog(N), this search time is a substantial improvement over time proportional to N. A brief description of this search
method is presented here; details may be found in Reference 26.

Construction of the k-d tree is done recursively. The top node contains all N points. The two children of this
node each contain N/2 points. The left child node contains those points whose first feature component has values less
than the median of al first components, X4; the right child node has the remainder. Each of these child nodesis then
divided in half using the medians of the second components of the pointsin the node, and so on. The depth of the tree
islogo(N), whichislessthan k for our applications. Construction of the tree takes time proportional to Nlog(N), but it
is done once off-line and stored in a prototype as described in Section 3.2.1.2.

Searching for m-nearest neighbors in the k-d tree achieves speed because of being able to avoid cal culating
distancesfor entire sub-trees. In k-d trees, rather than searching for the m closest points, it is more natural to search for
points within distance d of the unknown point, t, asfollows. Start at the top node, and |et the unknown point have com-
ponentst;. Supposet; < X;. Put the left child node on alist to ook at |ater. All the pointsin the right child node are at
least x;-t4 distant from t. If x4-t; > d, ignore the right child node; otherwise put it on the list. Continue searching by
taking one node at atime off thelist. If the node has no children, ook at the distances of the point or pointsin the node
and remember the m smallest distances. If the node has children, look at both child nodes and put one or both of them
on thelist.

If the distance d is excessively large, too few sub-trees will be discarded and too many distances calcul ated,

leading to along search time. If disexcessively small, too many sub-treeswill be discarded and too few nearest neigh-
borswill be found, but this calculation isfast. A reasonable approach isto estimate d, preferably on the small side. If
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not enough nearest neighbors are found, d isincreased and a new search is made. Also, after m distanceslessthan d
have been calculated, d can be reduced to the mi largest distance.

To estimate the distance d, we use the centroids of each class of known pointsastrial points and cal culate the
distances of the unknown point to thetrial points. Then we use afraction, usually around 0.5, of the smallest such dis-
tance as an estimate for d. In hsfsys, the k-d tree is traversed, possibly several times, using increasing factors to widen
d. These factors are stored in global arrays beginning with the name “tree_cuts’. A different set of cut-off values are
used for classifying digits, alphabetic characters, and the mixed upper and lower case Constitution box. These cut-off
arrays are found at the top of the distribution file src/lib/hsf/field.c and were obtained empirically over atesting set of
KL prototypes (feature vectors).

KL prototype vectors and their indexed k-d tree are calculated off-line using the program mis2pat discussed
in Appendix B. The two optimizations discussed in this section (prototype pruning and k-d tree searching) have been
integrated into an optimized PNN procedure treepnnhypsconsC() found in the distribution file src/lib/nn/pnn.c. This
procedure traverses the k-d tree producing arelatively small yet viable set of prototypes. This small set of prototypes
isthen used to cal cul ate approximated PNN discriminant values according to the deletion criterion defined in Inequal -
ity (21). Invery rare cases, no close prototypesarefound in the tree search. When this occurs, al thetraining prototypes
are used in the approximated PNN cal culation. The PNN exponential activations are normalized to estimated proba-
bilities by dividing by their sum and used as classification confidence values.

The optimized version of PNN described in this section runs a factor of 20 times faster than the traditional
PNN code, and tests have shown that the gain in speed has not reduced cl assification accuracy. The optimizationsintro-
duced by NIST now enable applications to capitalize on the robustness of the PNN algorithm without compromising
processing time.

3.2.3 STORE FIELD RESULTS,; src/lib/fet/updatefet.c; updatefet()

Theresults of character classification are stored in Feature (FET) data structures. Upon completion, hsfsys
writes the contents of two of these structuresto FET files. One FET structure and file hold the system’s hypothesized
character classifications and asecond FET structure and file hold the confidence val ues associated with each character
classification. FET files are editable ASCII files similar to MFS files and are designed to contain alist of namesand a
multi-column set of datavaluesthat are associated with each name. Every linein an FET file contains anamefollowed
by zero or more values. The names of each entry field on the HSF form comprise the namesin the system’s hypothesis
and confidencefiles. For hypothesisfiles, the valuesthat follow each name are the characters recognized by the system
concatenated together without space separators asasinglefield value. A linein the file that has no value after thefield
name represents afield that was either not processed or was recognized to be empty. There is a corresponding confi-
dence value reported in the system’s confidence file for every character classified by the recognition system that is
reported in the system’s hypothesisfile. The confidence valuesfor the charactersin afield are space-separated on each
linein the FET file. These separators may be a space character 0x20 or atab character 0x09. Lines are terminated with
the line feed character OXOA. The library src/lib/fet contains a suite of routines designed to read and write FET files
and manipulate FET structures.

typedef struct fetstruct{
int aloc;
int num;
char ** names;
char **values;

} FET;

Figure 25. C definition of the FET structure.

Figure 25 lists the C definition of an FET structure that is stored in include/fet.h. The structure contains four
members. Names references an array of character strings corresponding to the names listed in the first column of an
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FET file. Inthe case of hsfsys, the names are entry field identifiers. Valuesreferences an array of character strings hold-
ing the values associated with each entry field. For a hypothesis FET structure (one that stores the system’s hypothe-
sized character classification), each string in values contains the characters recognized by the system for that specific
field. For aconfidence FET structure (one that stores confidence values), each string in values contains the space-sep-
arated list of confidence values corresponding to the field value stored in the hypothesis FET. The structure member
alloc holds the number of allocated positionswithin names and values, and num holds the number of contiguous posi-
tionscurrently filled in namesand values. In hsfsys, the primary routine responsible for manipulating an FET structure
is updatefet() found in src/lib/fet/updatfet.c. It is the responsibility of an application to parse the independent confi-
dence values from a string stored in the values array. The FET file convention provides acommon /O interface when
manipulating lists of ASCII values that are associated with a common attribute or feature (name). The contents of an
FET structure or file can be integers, floating point numbers, names, and/or any sequence of printable ASCII charac-

ters.

Hypothesis File
data/f0000_14/f0000_14.nhy

hsf_0

hsf_1

hsf 2

hsf_3 0123456789

hsf_4 0123456789

hsf_5 0123456789

hsf_6 86

hsf_7 506

hsf_8 8941

hsf_9 95309

hsf_10 891405

hsf_11 01

hsf_12 707

hsf_13 60170

hsf_14 689547

hsf_1598

hsf_16 6081

hsf_17 77132

hsf_18 314200

hsf_1978

hsf_20 464

hsf_21 93849

hsf_22 256369

hsf_23 63

hsf_24 224

hsf_25 6902

hsf_26 551339

hsf_27 78

hsf_28 722

hsf_29 5798

hsf_30 21313

hsf 31 bavxujdyohsmzfcwgiakrezpln

hsf 32 FSHUXTEZRQMLABGVI1YPUCOJWH

hst 33 WE THE PEOPLE THE UNITED
STATESIN FORM A MORE PERFECT UNION
ESTABLISH JUSTICE INSURE DOMESTIC
TRANQUILITY PROVIDE FOR THE COM-
MON DEFENSE OUR THE GENERAL WEL-
FARE AND SECURE THE BLESSINGS OF
LIBERTY TO OURSELVES OUR POSTERITY
DO ORDAIN ESTABLISH THE CONSTITU-
TION FOR THE UNITED STATES AMERICA

Confidence File

data/f0000_14/f0000_14.nco

hsf 0

hsf 1

hsf 2

hsf_31.001.001.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
hsf_41.001.001.00 1.00 1.00 .00 1.00 1.00 1.00 1.00
hsf 51.001.001.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00
hsf_6 1.00 1.00

hsf_7 1.00 1.00 1.00

hsf_8 1.00 1.00 1.00 1.00

hsf_91.00 1.00 1.00 1.00 0.82

hsf_10 1.00 1.00 1.00 1.00 1.00 1.00

hsf_11 1.00 1.00

hsf 12 0.88 1.00 1.00

hsf_13 1.00 1.00 1.00 1.00 1.00

hsf_14 1.00 1.00 1.00 1.00 1.00 1.00

hsf_15 1.00 1.00

hsf_16 1.00 1.00 1.00 1.00

hsf_17 1.00 1.00 1.00 1.00 1.00

hsf_18 1.00 1.00 1.00 1.00 1.00 1.00

hsf 19 1.00 1.00

hsf 20 1.00 1.00 1.00

hsf_21 1.00 1.00 1.00 1.00 0.64

hsf 22 1.00 1.00 1.00 1.00 1.00 1.00

hsf_23 1.00 1.00

hsf_24 1.00 1.00 1.00

hsf_25 1.00 1.00 1.00 1.00

hsf_26 1.00 1.00 1.00 1.00 1.00 1.00

hsf_27 1.00 1.00

hsf_28 1.00 1.00 1.00

hsf_29 1.00 1.00 1.00 1.00

hsf_30 1.00 1.00 1.00 1.00 1.00

hsf_31 1.00 1.00 0.99 1.00 0.9 1.00 1.00 0.99 1.00
1.00 1.00 0.85 0.90 1.00 0.91 1.00 0.50 0.68 0.68 0.98
1.00 0.95 1.00 0.66 0.57 0.99

hsf_320.97 1.00 1.00 0.90 1.00 1.00 1.00 1.00 0.99
1.00 1.00 1.00 1.00 0.94 1.00 1.00 1.00 1.00 0.99 0.98
1.00 1.00 1.00 1.00 0.70

hsf_33

Figure 26. Example of a system hypothesis and corresponding confidence file.

42




There are 10 completed HSF forms provide in this distribution under the top-level distribution directory data.
Hypothesis and confidence files created by hsfsys at NIST have been included. Figure 26 lists the contents of the
hypothesis file data/f0000_14/f0000_14.nhy on the | eft, and on the right, lists the corresponding confidence file data/
fO000_14/f0000_14.nco. Notice that confidence values are provided for every field processed except for the Constitu-
tion field (hsf_33), which had dictionary-based postprocessing applied. Also note that any line continuations and
hyphenation within the valuesfor asinglefield have been inserted by this document’stext formatter and do not actually
exist in thefiles.

3.24 DEALLOCATE FOR FIELDS; src/lib/hsf/field.c; free_field()

This step simply deallocates all the memory containing data dependent on the type of field being processed.
These are the data items loaded into the system by the INITIALIZE FOR FIELDS step. The memory allocated to all
the basis functions and intermediate cal cul ations supporting feature extraction and all the prototypes and classinfor-
mation needed for character classification are deallocated.

3.3DO LOWER CASE FIELD; sr/lib/hsf/ield.c; do_alpha_field()

This section describes how hsfsys processes fields containing handprinted lower case characters such asfield
hsf_31 on the HSF form. Figure 27 lists the steps used to process lower case fields and cross-references the steps to
the software distribution according to file and subroutine name. Notice that many of the step used in digit field pro-
cessing are applied here aswell. Those steps reused are referenced with heading numbers pointing to the previous sec-
tions and will not be discussed in this section.

The difference between processing digit fields and lower case fields are in what feature extraction and char-
acter classification filesareloaded, and how segmentation is conducted. L ower case feature extraction requiresloading
the basis function file weights/td13_|.evt, and lower case classification requires loading the prototype file weights/
td13_|.pat and the median vector fileweights/td13_|.med. Unlike processing digits, the same basisfunction, prototype,
and median vector files are loaded when processing lower case charactersregardlessif the small memory mode option
“-m" is specified or not. The differences in segmentation are discussed below.

3.3.1 PROCESS ALPHABETIC FIELD; sre/lib/hsf/field.c; process alpha_field()

Lower case field and digit field processing only differ dlightly in how characters are segmented. Otherwise,
there is nearly no difference between in the way recognition system processes lower case fields and digit fields. The
handprint entered in each field is extracted using the same one-line text isolation routine. The segmented character
images are normalized in terms of size and slant using the same techniques applied to digit images. Features are
extracted from the lower case character images using the same techniques, and the same PNN classifier isused to clas-
sify thefeature vectors. Finaly, the results of classification are added to the same hypothesis and confidence FET struc-
tures that hold the digit field results.

3.3.1.1 SEGMENT ALPHABETIC FIELD; src/lib/hsf/segblob.c; segbinblob()

As can be seen from Figure 27, the general blob extraction routine seghinblob() used in segmenting digit
fieldsisthe only step used to segment lower casefields. Thereisno added step of pasting blobs back together after the
lower casefield is separated into its connected components. This leaves the system vulnerable to the issues of under
and over-segmenting discussed in Section 3.2.2.2.2. A lower case segmentor that attempts to subdivide blobs that are
too large and merge blobs that are too small would likely improve the system.
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Figure 27. Steps to process the lower case field.
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Figure 28. Stepsto process the upper case field.
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Figure 29. Steps to process the Constitution field.
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3.4 DO UPPER CASE FIELD; sra/lib/hsf/field.c; do_alpha_field()

The steps used to process the upper case field hsf_32 on the HSF form are nearly identical to those used to
process |ower casefields. The only differenceisin what feature extraction and character classification files are | oaded.
Upper case feature extraction requires |oading the basis function file weights/td13_u.evt, and upper case classification
requires loading the prototype file weights/td13_u.pat and the median vector file weights/td13 u.med. When process-
ing upper case characters the small memory mode option “-m” isignored. The heading numbers referenced in Figure
28 point back to steps discussed in previous sections.

3.5 DO CONSTITUTION FIELD; src/ib/hsf/field.c; do_const_field()

The stepsrequired to processthe Constitution field (hsf_33) arelisted in Figure 29. Again, there are anumber
of stepsthat are used here that have already been discussed in previous sections. Two things make processing the Con-
stitution field different from the digit, lower case, and upper case fields. They are the processing of multiple lines of
text within the samefield and the optional dictionary-based postprocessing. All other steps apply the same techniques.
Feature extraction requires |oading the basis function file weights/ul .evt, and character classification requires loading
the prototype file weights/td13 _ul.pat and the median file weights/td13_ul.med. If the small memory mode option is
used to invoke hsfsys, a smaller set of prototypes and their associated files are loaded instead. These files begin with
theroot file nametd3_ul_sin the top-level directory weights. The basis functions and prototype files used to process
the Constitution field have been designed to assign both lower and upper case instances of the same character with a
single upper case classification. For example, an H and an h are both classified as H. This was done because people
frequently switch between lower and upper case when handprinting textual information.

3.5.1 PROCESS CONSTITUTION FIELD; src/lib/hsf/field.c; process_const_field()

Processing the Constitution field is different from the previous types of fields because it involves handling
multiplelines of text within the samefield, and contextual postprocessing at the word-level ispossible. Even with these
differences, thereis still alarge overlap with the steps already discussed. The character segmentor simply extracts
blobs using the connected component utility. The segmented character images are normalized in terms of size and slant
using the same techniques discussed earlier. Features are extracted from the segmented character images using the KL
transform, the same optimized PNN classifier is used to recognize the feature vectors, and the results of classification
are added to the same hypothesis and confidence FET structuresthat hold the previousfield results. Confidence values
are reported for the raw OCR results, but no confidence values are reported when dictionary-based postprocessing is
performed.

3.5.1.1ISOLATE MULTIPLE LINE FIELD,; src/lib/hsf/isolate.c; iso_nline_field()

Three of the six registration marks used to register the image lie on corners of the Constitution box at the bot-
tom of the HSF form. Because of this, the form removal is quite accurate at removing the black pixels comprising the
Constitution box from theinput image. The spatial field template stored in tmplt/hsftmplt.ptsis used to extract thefield
subimage. The handprinted data within the field is then isolated using spatial histogram techniques like the ones used
to locate the left and right ends of the handprinted text in a one-line text field. Left, right, top, and bottom edges are
found by searching horizontal and vertical histogram bins directly. Searching inward from the beginning or end of the
histogram bins, the first bin greater than 10 pixelsislocated, and then areverse search from that point locates the first
bin that equals zero. The use of a 10 pixel threshold avoids speckle noise in the field and locates the beginning of sig-
nificant character data, while the reverse search locates the edge of the character data. Hsfsys extracts the subimage
bounded by these | eft, right, top, and bottom edges.

3.5.1.2 BUILD PHRASE LISTS,; src/lib/phrase/bld_pis.c; build_pi_lists()

The connected component utility used to segment the isolated Constitution field returns blobs in column-
major order. Thissection describes the steps used to sort the blobsinto correct reading order. Initially it was anticipated
that asimple sort of the x and y center coordinates of each blob would be sufficient to organize the blobs into reading
order (left-to-right and top-to-bottom). Unfortunately, it was found that the handprint in the Constitution field often
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fluctuates significantly within linesaswell as across lines, and this fluctuation is exaggerated by the use of punctuation
marks, causing techniques that use global line statistics to fail.

A localized point-to-point technique was devel oped to organize the segmented blobsinto phrases (text lines).
The method is divided into three steps. First, the extracted blobs are collected into segments of text lines. Second, the
phrase segments are merged into complete lines of text. Finally, the text lines are sorted top-to-bottom so that the order
of the blobs within the lines correctly reconstruct the sequence of characters in the text paragraph.

3.5.1.2.1 Find Phrases; src/lib/phrase/find_pis.c; find_pi_lists()

The connected component utility produces segmented character images. Each segmented image has assigned
to it the position where it was extracted from the isolated field image. The location of each blob is identified by com-
puting the geometric center of the smallest rectangle bounding the blob. Adding each blob’s center to thelocation from
where the blob was extracted, produces a 2-dimensional grid of blob centersthat can be used to reconstruct the line
trajectories of the handprinted text.

The process of organizing the blob centersinto text linesisreferred to as Adaptive Sequence Reconstruction.
Thistechnique searches the 2-dimensional grid of blob centerstaking into account local writing fluctuationsto sort the
blobsinto correct reading order. A point-to-point search is conducted based on alocal search space defined by the func-
tion:

S = acos (b8) —5n <0< - (20)

This function, which is similar to an antenna sensitivity model, forms a tear-drop shaped bubble that is desirable for
this application because it is horizontally biased. The interior of the function isused asalocally constrained search
space. Through empirical study a technique for controlling the shape of the Sfunction was devel oped. At values of b
near 0.1, thefunction’s shapeiscircular, and asb increases the shape continuously formsinto atear-drop. Thevariable,
a, controls the length of the bubble along its horizontal axis of symmetry. By increasing a, the length of the bubbleis
increased and the search is extended in the horizontal direction.

A linear control function, b=L(a), is used to modify the shape of the bubble, b, as the length of the bubble,
a, isincreased. Thisfunction is defined by the slope of the line connecting two empirically derived points. One point
used to define the control line, (al, bl), is calculated:

al = hx0.375 bl = 0.1 (21)

where histhe average blob height for the writer. If for examplethe writer’s average blob height is 32 pixels, this point
on the linear control function defines a circular bubble with aradius of 12 pixels (1mm). The second point used to
define the controal line, (a2, b2), is calculated:

a2 = hx47 b2 = 2.0 (22)

If the writer’s average blob height is 32 pixels, this second point defines a tear-shaped bubble with a horizontal length
of 150 pixels. If awriter’s handprint is small, the bubbles used in the search are adapted to be smaller, and if awriter’s
handprint islarge, the bubbles used in the search are adapted to be larger. In addition, the bubble defining the search
space continuously changes from circular to tear-drop in shape as the extent of the search increases.

Using the linear control function L, the size and shape of the bubble can be continuously modified as shown
in Figure 30. In these three examples, average blob heights of 16, 32, and 48 are used, respectively. If asearchisto be
conducted relative to the right of a blob’s center, then only the portion of the function with x>0 isused. If asearchis
to be conducted relative to the left of ablob’s center then the portion of the function with x<O isused. The search is
conducted by initializing a to a starting length and then testing to see if any other blob centers are located within the
boundary of the bubble. If points are found, then the nearest blob is selected. Otherwise, a isincremented and the bub-
bleisenlarged and lengthened and a test for blobs in the new bubble is conducted. This continues until a center point
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of aneighboring blob isfound, or a exceeds somethreshold. In Figure 30, successive bubbles are overlaid from acom-
mon center point where aisinitialized to 12, incremented by 20, and terminated at 300.

16 oo TR 0555555 5>

Figure 30. Adaptation of bubbles to the writer’s average blob height.

The search beginsfrom the blob center closest to the top-left corner of thefield. The blob isadded to an empty
list, and abubbleisinitialized, tested, and then grown viaincrementing a until either aneighboring blob center isfound
or a exceeds a threshold. The threshold used in this system is 300 which isequal to 1 inch (12 pixels per millimeter
equals 300 pixels per inch). In general, the new blob is added to the list and the search resumes from the center of the
new blob. However, if the new blob’s center does not meet given criteria, then its center is added to the list, but the
search continues from the current blob center and does not advance to the center of the new blob. Thisway the system
does not naively follow erratic line trajectories, minimizing the chances of crossing over into adjacent lines, such as
may happen when acommais found.

Figure 31. Heuristic used to control the advancement of the search.

Figure 31 illustrates this heuristic asit is used to control the advancement of the search. In order to advance,
the new blob center must be within the area defined by the union of two region. Thefirst region isthe areabounded by
two lines with slope -0.25 and +0.25 projecting from the current blob center. The second region is the area bounded
by two horizontal lines with y-intercepts at -(0.25*h) and (0.25* h), centered about the last blob added to the list. The

49



top diagram in Figure 31 show bubbles projected from the current blob center (1). The closet neighboring blob center
is(2), however (2) is not within the given criteriarepresented by the region filled with gray. Therefore, (2) is added to
thelist with (1), but the current bubble position does not advance to (2). The middle diagram in Figure 31 shows the
search continuing with bubbles being projected from (1). The next closest blob center is(3). Notice that the gray region
has changed from the top diagram. The triangular slope-based region remains anchored to (1), but the horizontal
region, based on the writer’s average blob height, is now defined in relationship to (2). Blob center (3) is added to the
list with (1) and (2), and because (3) iswithin the new gray region, the current blob center advances to (3) as shown
in the bottom diagram in Figure 31. Note that once ablob center is added to the lit, it is not considered again in the
search process.

It was observed during the development of this approach that the heuristic described above, when tuned to
handleisolated cases, did not yield proper resultsin other cases. It was determined that aslocal fluctuationsin the hand-
print become excessive, rather than force the system to make a guess, the point-to-point search should be preempted.
The search isrestarted from a blob not yet included in any lists and closest to the top-left of the image. Thisactionis
aso taken at the end of atext line when no new neighboring blob centers are found to the right of the current blob.
Each restart involves starting anew list, and the entire search processis terminated when every blob in the image has
been assigned to alist.

The criterion for preempting the search and beginning anew list isillustrated in Figure 32. In thisillustration,
the search is currently being conducted from blob center (2), and (3) has been located as the next nearest neighbor. In
the previous step, (2) was found by searching from (1), and both (1) and (2) have been added to the current list. The
distance, d1, isthe vertical distance between (1) and (2), and the distance, d2, isthe vertical distance between (2) and
(3). Thetwo parallel horizontal linesin the diagram represent the area bounded by -h and +h centered about the pre-
vious blob center (1). The sum of (d1+d2), the vertical distance between (1) and (3), exceeds the limit, |, representing
the region bounded by the horizontal lines; therefore the search is preempted and (3) is not added to the current list.
Blab (3) isleft unassigned so that it can be added to alist later in the search process.

Figure 32. Heuristic used to preempt the search.

It is surprising how well this preemptive heuristic works. At times, more frequently with some writers than
with others, the local writing fluctuations become excessive and the search is restarted. Often the restart resumes on
the next line and the point-to-point search is successful in tracking the next line. The search istop-down by nature, so
that the blobsin the line above the area of excessive fluctuation are likely to be assigned to a previous list. Eventually
the left-most blob involving the fluctuation is the closest remaining blob to the top-left of the field, and the point-to-
point search resumes from that blob. All neighboring blobs from the line above and the line below have been previ-
ously assigned leaving only the blobs comprising the fluctuation exposed. This greatly reduces the system’s guess-
work and thereby reduces system errors. Figure 33 shows the results of segmenting the Constitution field in Figure 1
and using the bubble technique to sort the blobs into lines. A bubbleis traced from each point where a neighboring
blob was found, and each bubble reflects the actual size and the shape of the search space used to locate the neighbor.
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Figure 33. Traces of the bubbles used to sort the blobs into lists.

3.5.1.2.2 Merge Phrases; src/lib/phrase/merg_pis.c; merge pi_lists()

The point-to-point search produces multiple lists of blobs. Some of the lists represent compl ete lines of text,
and other lists may represent only fragments of the text lines printed. A final merging processisrequired so that, upon
completion, only lists containing complete text lines remain. Two heuristics are used for merging the blob lists; they
areillustrated in Figure 34 and Figure 35. Thelists are sorted in descending order according to the number of blobsin
eachlist. Thelongest list isfirst compared against all other lists, applying the first heuristic and then the second to each
comparison. If two lists meet the merging criteria, they are merged and the looping processisrestarted by resorting the
lists. Otherwise, the next longest list is compared to the remaining shorter lists, and so on until all the lists are looped
through and no merging takes place. When two lists are merged, their blob centers are appended into one larger list
and then sorted on their x-coordinates. Figure 34 illustrates the merging of two when the end point of the shorter list
iswithin avertical distance of -(0.75*h) and +(0.75*h) of the longer lists's corresponding end point.

Before
/XVA\/\- N
After

/\//\/»\//\\

Figure 34. Heuristic for merging blob lists based on end point positions.

Before

~_
/\\//\\, \/\

After

o~ T

Figure 35. Heuristic for merging blab lists based on line trajectories.
The second merge heuristicisillustrated in Figure 35. In this case, the blob centers comprising the longer list

arefitted using linear least squares to produce a slope and y-intercept. A perpendicular distance is computed between
each blob center in the shorter list and the line fitted to the longer list, and the distances less than (0.5*h) are counted.
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Thisareaaong thefitted line is represented by the gray region in the diagram. The two lists are merged if the count is
greater than (0.1* n), where n isthe number of blobsinthelonger list. Thisfacilitates merging of liststhat lie along the
same line tragjectory, but whose end points are somewhat erratic.

3.5.1.2.3 Sort Phrases Top To Bottom; src/lib/phrase/sort_pis.c; sort_pi_lists on_y()

Asaresult of the previous two steps, the blobs segmented from the Constitution field are now gathered and
sorted into lines. The last step isto sort the resulting lines vertically. The lines are sorted based on the y-coordinate
values of the first blob in each line. When finished, the correct reading order has been reconstructed.

To conduct the various sorts in hsfsys, a multiple-indexed recursive quick sort utility has been provided with
this software distribution. The utility is multisort() and isfound in src/lib/util/multsort.c. The utility is capable of sort-
ing on up to 5 integer keys (primary, secondary, etc.), and the values sorted can be an array of integers or an array of
pointers. Each of the 5 keys can be sorted independently increasing or decreasing. A macro-based interface has been
developed to help the caller access the flexible capabilities of this utility. The macro definitions are stored in include/
multsort.h and examples of how they are used can be seen in src/lib/util/sortindx.c.

3.5.1.3 CORRECT AND IDENTITY WORDS; src/lib/phrase/spellphr.c; spell_phrases2()

No contextual information has been use up to this point by the recognition system other than knowing thetype
of each field (digit, lower case, upper case, or Constitution). Of these field types, only the Constitution box has data
that can be processed using language or word models. A dictionary-based postprocessing capability has been inte-
grated into the system, and it can be optionally selected from the command line as described in Section 2.4.

If dictionary-based postprocessing is not selected, the system stores the raw hypothesized character classifi-
cations and their corresponding confidence valuesto the output FET structures, which upon completion, are written to
hypothesis and confidence files. If dictionary-based postprocessing is selected then the raw character classifications
are further processed. The system’s hypothesized classifications are prone to errors. These errors are introduced when
the connected components over and under-segment the field image and when the classifier assigns an incorrect class
to a properly segmented character image. By using a dictionary, many of these errors can be corrected.

3.5.1.3.1 Spell-Correct Line Of Text; src/lib/dict/line.c; spell_line2()

The dictionary-based postprocessing described in this section is referred to as Word I dentification using

Fanout Signals. Up to this point in the system, the handprinted text within the Constitution box has been isolated, the
extracted field image has been segmented into blobs, and the resulting blob images have been sorted into correct read-
ing order. Each blob image has a so been size and slant-normalized, having its features extracted and classified. These
steps were applied to the image in Figure 33 producing the text shown in Figure 36. Notice that the character classifi-
cationsare all upper case due to the merged upper and lower case classesin the prototype file weights/ul .kl; notice the
large number of errors contained in classifier output; and a so notice there are no inter-word spaces recognized at this
point in the process. The dictionary-based postprocessing has been devel oped to correct these classification errors and
to detect word boundaries within text lines like the ones shown in Figure 36.

Line1: ILAUTHEPEOPLEOFTHEUHLTEASTCTESLNORDERTOFORMAMORE
Line2: PTRFECTUHOHLOTABLLSHJUSTICELLNSUREDOMESTLC

Line3: TRSNQUILHTY JPROIDEFURTHECOMAONDEFM SEPROLNURERHE
Line4: GENIRALWWMRCANDSEEURTTHEBIISSLNGSOFLLBEHTYTO
Line5: OURSEIVOSANDOURPOSTLRITY DOORDALNCNDNTABIISH

Line6: MIJUNSTITUTIONFORGEUNLTEDSRARESMFAMERDCA

Figure 36. Example of classifier output prior to contextual processing.
The Preambleto the U.S. Constitution is comprised of 38 unique words, and these words are used to construct

the dictionary (lexicon) shown in Figure 37. The lexicon is used to detect words within text lines, identifying word
boundaries and correcting any segmentation and classification errors existing within the text lines.
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A FOR ORDER THE

AMERICA FORM OUR THIS

AND GENERAL OURSELVES TO
BLESSINGS IN PEOPLE TRANQUILITY
COMMON INSURE PERFECT UNION
CONSTITUTION JUSTICE POSTERITY UNITED
DEFENSE LIBERTY PROMOTE WE

DO MORE PROVIDE WELFARE
DOMESTIC OF SECURE

ESTABLISH ORDAIN STATES

Figure 37. Lexicon constructed from the text contained in the Preamble to the U. S. Constitution.

Thetechniqueisillustrated by the example shown in Figure 38. In this example, a portion of thefirst line of
text in Figure 36, “STCTESLNORDE”, is being processed. The graph plots the floating point numbers listed in the
first column. These numbers form asignal which is processed in order to locate words within the text. The generation
of these signalswill be discussed later. The second column isafan-out of hypothesized words beginning with the char-
acter S and adding one successive character from the text line forming a new hypothesized word on each row down
the column. The maximum length of a hypothesized word is 12 characters, which is the length of the longest word in
the lexicon, “CONSTITUTION”. The third column lists the best match from the lexicon for each hypothesized word
in the second column. The fourth column lists alignments that are produced using the Levenstein Distance to match
the hypothesized word to the lexicon match. In the alignments, O represents a correct character, 1 represents a substi-
tuted character, 2 represents an inserted character, and 3 represents a deleted character. These alignments are used to
generate the signals listed in the first column and plotted in the graph.

Signal  Hypothesis Match Alignment
05 0 05 020 s THIS 2220
-0127 ST STATES 022022
0174  STC STATES 022021
0031  STCT STATES 001022
0111  STCTE STATES 001002
0254  STCTES STATES 001000
0.096  STCTESL STATES 0010003
0.040  STCTESLN STATES 00100033
-0.005  STCTESLNO STATES 001000333
-0.043  STCTESLNOR STATES 0010003333
-0.075  STCTESLNORD STATES 00100033333
-0.103  STCTESLNORDE STATES 001000333333

Figure 38. Signals generated from afan-out of hypothesized words.

A signal value, s, is computed from two terms, e and t. Thefirst term, e, is an error term and is computed:

n

e= —
l-g

(23)

wherenisthenumber of errors(1's, 2's, and 3's) in ahypothesized word'salignment, | isthe total number of characters
in the alignment, and g is the number of contiguous groupings of 1's and 3's. The Levenstein Distance strictly mini-
mizes the amount of error in the alignment without regard for the resulting configuration of alignment elements. The
variable g is used to favor hypothesized words whose alignments contain contiguous groupings of correct characters
(O's) over alignments containing many discontinuities.

The second term used to compute the signal ist. Thisisatranslation term based on the linear function, T, that
biases longer hypothesi zed words over shorter ones. In this way, matches to theword “DOMESTIC” are favored over
matchesto theword “DO”, and “INSURE" isfavored over theword “IN”. The linear trandlation function used in this
study is defined by the empirically derived points (2, 0.5) and (12, 0.4); such that t=0.5 for hypothesized words of
length 2, and t=0.4 for hypothesized words of length 12. The trandation term is determined by locating the point on
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the line at the position corresponding to the length of the hypothesized word'’s dictionary match. If p is the length of
the dictionary match, then t=T(p). Signal value, s, is then computed:

s=10-e-t (29)

Thesignalslisted in thefirst column of Figure 38 are searched top to bottom. Only those hypothesized words
with s>0 are considered to contain possible words. All other hypothesized wordsin the fan-out are ignored. The
hypothesized word with thelargest signal strength is selected. If thisword isasubstring of a hypothesized word further
down thelist, suchas“DO” in“DOMAIN”, and the word containing the substring has asignal strength, s>0, then the
longer word is selected in place of the word with maximum signal.

Once ahypothesized word is selected from the fan-out, the lexicon match for that word is pushed onto a stack
and the alignment is used to synchronize the processing. As can be seen in Figure 38, characters that match between
the hypothesized word and the lexicon match are represented by 0's. The alignment elements between the |eft-most 0
and the right-most 0 comprise an alignment span, and it corresponds to the charactersin the lexicon match. The ends
of this alignment span demarcate the boundaries of the word within the origina line of text. Processing the signalsin
this fashion is done recursively. If a portion of the fan-out remains to the left of the selected word's alignment span,
then the remaining piece of fan-out may contain another word. Remember the maximum hypothesized wordis 12 char-
acterswhich islong enough to hold 3 or 4 small words from the lexicon simultaneously. The remaining left portionis
processed recursively, recalculating new signal values and searching for words within that piece. Aslexicon matches
are selected, they are pushed onto the stack.The recursion continues until al of the fan-out to the left of the top-level
selected word have been exhaustively processed. The selected |exicon matches are then popped off the stack in correct
reading order, and a new fan-out is rebuilt beginning with the first character to right of the top-level selected word’s
alignment span. For example in Figure 38, the hypothesized word, “STCTES’ is selected with a maximum signal of
0.254. The next fan-out will begin with L, starting from the position in the text line, “LNORDERTOFOR”. If no
hypothesized words are sel ected within the current fan-out, then the processing advances one character in thetext line,
and the fan-out begins from that point.

Through this approach, segmentation and classification errors are corrected, and word boundaries are auto-
matically identified. The results of the dictionary-based postprocessing are stored to the hypothesis FET structure. Al
the words recognized by processing fanout signals are concatenated together into a single string separated by spaces
and stored ashsf_33 field's value in the hypothesis FET. No confidence values are stored in the confidence FET struc-
ture. An example of the results of dictionary-based postprocessing can be seen in Figure 40. These results were
obtained from the raw classifications shown in Figure 39.

WETHEPEOPIEOPTHRUNIIEDSTATESIINOTTORMAMOREIPEHECZUNONIESEEBLITHIUS
TICEIINJUREDOMESIICTRANGUIICPROVIHFORTHECTMMONDETENEIPKOMRCETHEY
TENERALWELFUEZNDSEWRETHCBK SSINDJOFLLBERTTOJOVRSELVUIDOURPOSTERI
YRIDOORJAINMDESTZBLISLTHOCONSTITUTIONFORTHTUNZEDSTNTESOTAMMICA

Figure 39. The raw classifications from running hsfsys on the form image data/f0000_14/f0000_14.pct.

WE THE PEOPLE THE UNITED STATESIN FORM A MORE PERFECT UNION ESTABLISH JUS
TICE INSURE DOMESTIC TRANQUILITY PROVIDE FOR THE COMMON DEFENSE OUR THE
GENERAL WELFARE AND SECURE THE BLESSINGS OF LIBERTY TO OURSELVES OUR POS-
TERITY DO ORDAIN ESTABLISH THE CONSTITUTION FOR THE UNITED STATESAMERICA

Figure 40. The results of dictionary-based postprocessing on the raw classifications shown in Figure 39.



4. PERFORMANCE AND TIMING STATISTICS

Running hsfsys produces a hypothesis file and a confidence file. The hypothesis file contains the characters
recognized in each field on the input HSF form, and the confidence file contains the confidence values produced for
each character classification reported in the hypothesisfile. Both of theseare FET filesand are compatible asinput files
to the NIST Scoring Package.?’-30

In asample of thefirst 500 writersin SD1, the system achieves a character output accuracy of 92.9% (59308/
63830) on digit fields with no character rejections, where character output accuracy CHA R8%L is defined to be:

chrrec

CHARS = ___¢har (25)
total refchr

Running the recognition system using the small memory mode option, hsfsys achieves a character output accuracy of
92.3% (58916/63830) with one third the training prototypes used by default. The numerator represents al the seg-
mented character images correctly classified by the recognition system that are not rejected. The denominator repre-
sents the total number of characters that can possibly be recognized on the completed forms. The system achieves a
character output accuracy of 75.3% (9611/12766) on lower case fields and 84.5% (10784/12766) on upper case fields
without the use of context-based postprocessing.

Hsfsys achieves a character decision accuracy of 95.4% (59308/62167) with no rejections, where character
decision accuracy CHAR3 is defined to be:

chrrec
CHAR3 = ACchar (26)

chrrec chrrec
ACchar +Al char

Equation (26) has the same numerator as Equation (25), but the denominator representsthe total number of segmented
character images presented to the system’s classifier that are not rejected. Equation (26) does not include character
deletions within the system. At arejection rate of 4.6%, the system achieves a character decision accuracy of 97.4%
(57671/59217).

The system achieves afield accuracy of 79.1% (10878/13748) with no characters rejected, where field accu-
racy CHRFLD1 is defined to be:

fldrec

CHRELD1 = M (27)
total 1

The numerator of Equation (27) representsthe total number of fields correctly recognized by hsfsys. In order for afield
to be considered correctly recognized, no remaining charactersin the field value after rejection can be substituted,
inserted, or deleted. The denominator represents the total number of fields requested to be recognized by the system.

The recognition system achieves aword accuracy of 60.5% (15439/25532) when applying alimited-size dic-
tionary to the character classifications made on the Constitution paragraph. Running the recognition system using the
small memory mode option, hsfsys achieves aword accuracy of 59.0% (15076/25532) with one half the training pro-
totypes used by default. The word accuracy is computed by tokenizing each word, using the Scoring Package to align
the word tokens, and then accumulating the number of substituted, inserted, and deleted words.

A timing option can also be selected when invoking hsfsys, in which case atiming file is produced upon sys-
tem completion. Figure 41 shows the coll ective time spent on each major task within the recognition system. Thetimes
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recorded in the timing file are actually reported at a much finer detail, so that many useful tables can be compiled for
conducting various analyses. Thesetiming resultswere achieved on an SGI Challenge (1P19) computer listed in Figure
42. Notice that most of the timeis spent classifying characters (29.2%) and conducting dictionary-based postprocess-
ing (26.0%). Figure 42 listsall the different computers on which the recognition system was successfully compiled and
tested. The last column in the table shows the average user time required by each machine to process a single form.

Theses averages were compiled from the times produced on the 10 HSF form provided in the top-level directory data.

FORM TIMES

Task Sec. %
initialize : 0.55 25
register : 271 12,5
remove: 0.41 19
FIELD TIMES

Task Sec. %
initialize : 0.28 13
isolate : 0.52 2.4
segment : 2.02 9.3
normalize: 0.43 2.0
shear : 0.07 0.3
feature: 2.58 11.9
classify : 6.32 29.2
sort : 0.07 0.3
spell : 5.62 26.0
total : 21.630 100.0

Figure 41. Report compiled from timing statistics generated by hsfsys on an SGI Challenge (1P19).

Man. M odel 0.S. #Proc.” | RAM | Time
DEC Alpha OSF/1V1.3 1 32Mb | 283
HP Model 712/80 HP-UX 9.03 1 64Mb | 314
IBM RS6000 AlX 3.25 1 128Mb | 274
SGI Challenge (IP19) IRIX 5.2 8 512Mb | 22.9
SGI Indigo 2 (IP22) IRIX 4.0.5H 1 128Mb | 264
SGI Onyx (1P19) IRIX 5.1.1.3 4 512Mb | 224
Sun SPARCserver 4/470 Sun0S4.1.1 1 32Mb | 1259
Sun SPARCstation IPC Sun0S 4.1.2 1 8Mb |1695"
Sun SPARCstation 2 Sun0S4.1.3 1 64Mb | 818
(Weitek 80MHz CPU)

Sun SPARCstation 10 Sun0S4.1.3 1 32Mb | 630
Sun SPARCstation 10 SunOS 5.2 (Solaris) 2 128 Mb 39.6

Figure 42. Table of timings from different computers on which the standard reference recognition system has been suc-
cessfully ported and tested.
"All computers, including those with multiple processors, were compiled and tested serialy.
**The Sun IPC was run using the small memory mode option due to its limited memory.
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5.FINAL COMMENTS

A number of NIST Internal Reports (NISTIRS) have been referenced in this document. These reports are pro-
vided in PostScript format in the top-level directory doc. Thefile doc/hsfsys.ps contains this specific document. These
reports along with many other NIST Image Recognition Group publications are available in PostScript format across
the network via anonymous ftp on sequoyah.ncsl.nist.gov. To request a paper copy of any of these NISTIRS, please
contact:

CSL Publications

NIST

225/B151

Gaithersburg, MD 20899
voice: (301) 975-2821

Thisreport documentsthe NIST standard reference recognition system hsfsysin termsof itsinstallation, orga-
nization, and functionality. The system has been successfully compiled and tested on a number of different vendors’
UNIX workstations. It is the responsibility of the distribution recipient to port the software to their specific computer
architecture. The source code iswritten primarily in C with two supporting utilities containing FORTRAN compo-
nents. The standard reference recognition system is organized into 11 libraries. In all, there are approximately 19,000
lines of code supporting more than 550 subroutines. Source code is provided for awide variety of utilities that have
application to many other types of problems.

Distributions of the NIST standard reference recognition system can be obtained free of charge on CD-ROM
by sending a letter of request to the primary author. Requests for distribution made by electronic mail will not be
accepted; however, electronic mail is encouraged for technical questions once the distribution has been received. This
system or any portion of this system may be used without restrictions because it was created with U.S. government
funding. Redistribution of this standard reference system is strongly discouraged as any subsequent corrections or
updates will be sent to registered recipients only. This software was produced by NIST, an agency of the U.S. govern-
ment, and by statute is not subject to copyright in the United States. Recipients of this software assume al responsi-
bilities associated with its operation, modification, and maintenance.
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APPENDIX A. UTILITY mis2evt

The NIST standard reference recognition system uses the Karhunen Loeve (KL) transform to extract features
for classifying segmented character images. Thistransform is obtained by projecting a character image onto eigenvec-
tors of the covariance computed from a set of training images. The mathematical details of the KL transform are pro-
vided in Section 3.2.2.5.

The eigenvectors are computed off-line and stored in a basis function file (described in Section 3.2.1.1)
because computing the eigenvectors of alarge matrix is very expensive. The standard reference recognition system
hsfsys reads the basis function file during its initialization, and then reuses the eigenvectors across all the character
images segmented from fields of a specified type (digit, lower case, upper case, or Constitution box). The program
mis2evt applies the KL transform to segmented character images and generates a basis function file. The program’s
main routine and FORTRAN subroutines are located in the distribution directory src/bin/mis2evt. The command line
usage of mis2evt is asfollows:

# mis2evt

Usage: mis2evt:
-n  for 128x128 input write normed+sheared 32x32 intermediate misfiles
-v  beverbose - notify completion of each image
nrequiredevts evtfile mfs_of_misfiles

Arguments:

* Thefirst argument nrequiredevts specifies the number of eigenvectors to be written to the output file. It is
aso the number of KL featuresthat will ultimately be extracted from each binary image using the associated
utility mis2pat. Thisinteger determines the dimensionality of the feature vectorsthat are produced for clas-
sification. Its upper bound is theimage dimensionality (which is 32x32 = 1024). Typically, thisargument is
specified to be much smaller than 1024 because the KL transform optimally compacts the representation of
theimage data into itsfirst few coefficients (features). Hsfsys uses a value of 64. Reference 22 documents
an investigation of the dependency of classification error on feature vector dimensionality.

* The second argument evtfile specifies the name of the output basis function file.

* Thethird argument mfs_of _misfiles specifies atext file that lists the names of all the MIS files containing
images that will be used to calculate the covariance matrix. This argument is an MFSfile with the first line
containing an integer indicating the number of MIS files that follow. The remaining linesin the MFSfile
contain MIS file names, one name per line.

Options:

» The option “-n" specifies the storing of intermediate normalized character images. Mis2evt can process
binary images that are either (128 by 128) or (32 by 32). In the case of the former, the program invokes a
size normalization utility to produce 32 by 32 images and then applies a shear transformation to reduce slant
variations. If theinput images are already 32 by 32, this flag has no effect. If normalization does occur, the
resulting normalized images are stored to M1 S files having the same name as those listed in the MFSfile,
with the additional extension 32 appended. These intermediate files offer computational gains because usu-
ally the same images are used with mis2pat.

» The option “-v’ produces messages to standard output signifying the completion of each MISfile and other
computation steps.

This program is computationally expensive and may require as long as 60 minutes to compute the eigenvec-
torsfor alarge set (50,000 characters) of images. The program mis2evt was used to generate the basis function files
provided with this distribution in the top-level directory weights and ending with the extension evt. Thesefiles contain
eigenvectors computed from the images provided in the top-level directory train. The MFSfiles used as arguments to
mis2evt are al so provided in weights and end with the extension ml. For example, the basisfunction filetd13_|.evt was
generated with the following command:

# mis2evt -v 64 td13 |.evt td13 |.ml
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APPENDIX B. UTILITY mis2pat

A second supporting utility is provide with this distribution. Mis2pat takes a set of training images along with
the eigenvectors generated by mis2evt and creates feature vectors that can be used as prototypesfor training classifiers
(in this case PNN). Typically, the same images used to compute the eigenvectors are used here to generate prototype
vectors. The program mis2pat also builds a kd-tree as described in Section 3.2.2.6. The prototypes along with their
class assignments and kd-tree are stored in a prototype file (described in Section 3.2.1.2). In addition, mis2pat com-
putes median vectors from the prototype vectors and stores them in a median vector file. The program’s main routine
and FORTRAN subroutines are located in src/bin/mis2pat. The command line usage of mis2pat is as follows:

# mis2pat
Usage: mis2pat:
-h accept hexadecimal classfiles
-n  with 128x128 images write normed+sheared 32x32 intermediate misfiles
-v  beverbose - notify completion of each image
classset evtfile outfile mfs_of clsfilesmfs_of _misfiles

Arguments:

* Thefirst argument classset specifiesthe name of atext file (MFSfile) containing the label s assigned to each
class. Theinteger on the first line of the file indicates the number of classes following, and the remaining
lines contains one class label per line. For example, adigit classifier uses ten classes labeled 0 through 9.

* The second argument evtfile specifies the basis function file containing eigenvectors computed by mis2evt.
The number of featuresin each output vector is determined by the number of eigenvectorsin thisfile.

« The third argument outfil e specifies the name of the output prototype file. The nhame of the output median
vector file is the same except with a second extension med appended to the outfile argument.

* Thefinal arguments are the names of text files (MFSfiles) that contain listings of file names. The argument
mfs_of_clsfileslists file names containing class assignments corresponding to the images in the MISfiles
listed in the argument mfs_of misfiles. Each class assignment file must have the same number of class
assignments as there are images in its corresponding MISfile, and the classes assignhed must be consistent
with those listed in the argument classset.

Options:

» The option “-h” specifiesthat the class |abels listed in the classset file are to be converted to ASCII charac-
tersvalues represented in hexadecimal. All the class assignmentsin the files listed in the argument mfs_of_-
clsfiles use the convention where [30-39] represent digits, [41-5a] represent upper case, and [61-7a]
represent lower case. If the classset file contains a phabetic representations such as[0-9], [A-Z], and [&-Z],
then this flag must be used to effect conversion of these labelsto their hexadecimal equivalents.

* The option “-n" specifies the storing of intermediate normalized character images. Mis2pat can process
binary imagesthat are either (128 by 128) or (32 by 32). In the case of the former, the program invokes size
and slant normalization utilities to produce 32 by 32 images. If the input images are already 32 by 32, this
flag has no effect. If normalization does occur, the resulting normalized images are stored to MISfiles hav-
ing the same name as those listed in mfs_of _misfiles, with the extension 32 appended.

» The option “-v" produces messages to standard output signifying the completion of each MISfile.

This program was used to generate the prototype files provided with this distribution in the top-level directory
weights and ending with the extension pat. These files contain KL feature vectors, their associated classes, and a kd-
tree asdescribed in Section 3.2.1.2. Thefeature vectors were computed using the eigenvectorsfound in the same direc-
tory and from the images provided in the top-level directory train. The MFS files used as arguments to mis2pat are
also provided in weights, as are the classset files which end with the extension set. The class assignment files are listed
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infilesending with the extension cl, whereasthe MISfilesarelisted in files ending with the extension ml. For example,
the prototype file td13_|.pat was generated with the following command:

# mis2pat -vh |.set td13_|.evt td13 |.pat td13 I.cl td13_|.ml
#mv td13_|.pat.med td13 |.med

The second command renames the generated median vector file from its default name td13_|.pat.med to the
distribution name td13_|.med.
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APPENDIX C. 2nd Census OCR Systems Conference

In February of 1994, the Second Census Optical Character Recognition Systems Conference was sponsored
by the Bureau of the Census and run by NIST. Ten different organizations submitted recognition results to NIST for
scoring. The task of the conference was to read, via machine, a small handprinted portion of the 1990 Census Long
Form. This part of the form contains three questions related to occupation. Three rectangular regions were provided
on the form in which people were instructed to write their answers. Images were obtained from both microfilm and
paper, and the images were cropped creating miniforms containing just thetest questions. The detail s of the conference
and the conclusions drawn from the results are presented in Reference 12. Thisis the most comprehensive test of rec-
ognition systems of this type done to date.

The NIST standard reference optical character recognition system is similar to the NIST system used in the
conference. Both systems use connected componentsfor segmentation; they use the same size and slant-normalization
techniques; they both use the KL transform to compute feature vectors; and a PNN classifier isused in both systems.

Degspite their similarities, there are some significant differences between the standard reference recognition
system and the conference system. The standard reference recognition system conducts form removal prior to conduct-
ing field isolation, whereas the conference system simply registered the image, extracted the fields, and removed form
artifacts. Systems that conducted some type of form removal in the conference achieved better results than those that
did not. Also, the dictionary-based postprocessing used in the standard reference recognition system is substantially
different than that used in the conference system. The standard reference recognition system uses the word-based pro-
cessdescribed in Section 3.5.1.3 to process the handprint written in the Constitution box of Handwriting Sample Forms
(HSF forms). The conference system used phrase-based dictionary matching where the system corrected errors using
lists of multiple-word phrases rather than using single-word dictionaries.

The application of these two systemsis also significantly different. First, the image quality of the HSF forms
distributed with SD1 and SD3 is better than the quality of images scanned from the Census Long Forms. Second, the
standard reference recognition system uses alimited-size dictionary (38 words) when processing the Constitution box.
Thisisin contrast to the conference where dictionaries of more than 60,000 multiple-word phrases were used.
Although the dictionary is restricted when reading the Constitution box, the segmentation of the charactersis compli-
cated. The segmentation of this multiple-line text paragraph requires an elaborate sol ution, such asthe sequence recon-
struction described in Section 3.5.1.2. Thisisconsiderably more difficult than segmenting the single-line (occasionally
more than one line) fields on the conference miniforms.

It is difficult to compare the performance of the standard reference recognition system to the conference sys-
tem due to the differences between the two systems and their applications. However, some comparisons can be made
at the word recognition level. The word accuracy of the standard reference recognition system was 61% on the Con-
stitution box. The average field in the conference contained two words so that this level of accuracy, if sustained on
the conference test, would have resulted in a 37% field accuracy rate. In the conference, NIST achieved a 25% field
accuracy. Based on these numbersit is probable that the standard reference recognition system is better than the con-
ference system.

The expected word accuracy for the best conference system was about 76%, so on aword basis we would
expect the the standard reference recognition system to have about 15% (76%-61%) more errors than the best confer-
ence system. Thisis comparable to the median system reported at the conference. The difference between the best con-
ference systems and the NIST standard reference recognition system is primarily due to segmentation. Unlike the best
conference systems, the standard reference recognition system does not use any techniques for oversegmenting char-
acters and reconstructing words.
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