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Abstract

This report describes a system we have developed that automatically classifies iages of fingerprints into six pattern-
fevel classes, Automatic classification is useful in an Automaied Fingerprint ldentification System (AFIS) because
it can he used to partition the database of fingerprint cards aud thereby reduce the amount of work that must be
performed by the fingerprint matcher. Qur program takes gray-level images of fingerprints as input. and for each
fingerprint it produces a hypothesized classificalion as arch. left loop, right loop, scar, {enled arch, or whoerl, as well
as a number indicaling how much confidence should be assigned to its classification decision. The system perforins
these processing steps: Image segmentation: image enhancement: feature extraction: registration: application of
a linear transform that both applies a pattern of regional weights and reduces dimensionality: running of a main
classifier, whicli is a Probabilistic Neural Net. and of an auxiliary whorl-detecting classifier that traces and analyzes
pseudoridges {approximate trajectories Lhrough the ridge flow): and finally, the combining of the cutputs of the
maiu and auxiliary classifiers so as (o decide on a hypothesized class and a confidence level. The program’s memory
and disk space requirements can be met by a typical desktiop workstation. The distribution consists of source code,
data files. a demonstration set of 2700 fingerprint images, and documentation.
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1 Introduction

Automatic fingerprint classification is a subject ol interest (o developers of an Automaled ingerprint Identification
Systen (AI'IS). In such a system, there is a database of file fingerprint cards against which incoming seareh cards
must be efficiently maiched. Aulomalic matchers now exist: they compare fingerprints on the basis of their patterns
of ridge endings and bifurcations (the minutiae). However, il the file is very large. then exhaustive matching of
search fingerprints against file fingerprints may require so much computation as to be impractical. In such a case,
the efficiency of the matching process may bhe greatly increased by partioning the file on the basis of classification
of fingerprints. Once the class of cach print of the search card has been determined. the set of possibly malching
file cards can be restricted to those whose 1l-tuple of classes matches that of the search card, thereby reducing the
number of comparisons thal must be performed by the minutiae-matcher,

Some fingerprint indentification systems eurrently use manual classification followed by autonmalic minutiae-matching;
(he standard Henry classification system, or a modification or extension of it. is ofien used. (The handbook [1]
provides a complete description of the manual classification system used by the FBL) Automaling the classification
process should improve its speed and cost-effectiveness. However, producing an accurate automatic fingerprint clas-
sifier has proved 1o be a very diflicult 1ask. The object of the research leading to PCASYS is to build a prototype
classifier that separates fingerprints into basic pattern-level classes known as arch, left loop, right loop, sear, {enled
arch, and whoerl, Figure [ shows example fingerprints of the several classes: figure 2 is a second example print of
the whorl class, which will be used for subsequent figures illustrating the stages of processing. The pattern-level
classes comprise a version of the top level of classification involved in a Henry system. Although this small set of
classes does nol produce as fine a partioning of a database as does a full Henry system, it seems reasonable 1o use
only the pattern-level classes in this research: automatic classification into a finer systemn ol classes closer (o Lhe
[lenry system could be a subject of future research.

PCASYS is a prototype/demonsiration patlern-level fingerprint elassification program. It is provided in the form
of a source code distribution and is intended to run on a deskiop workstalion. The program reads and classifies
each of a set of fingerprint image files. optionally displaying the results of the several processing stages in graphical
form. The disk contains 2700 fingerprint images that may be used to demonstrate the classifier: it can also be run
on user-provided images.

The basic method used by the PUASYS fingerprini classifier cousists of, first, extracting from the fingerprint to
be classified an array (a two-dimensional grid in this case) of the local orientations of the fingerprint’s ridges and
vallevs, and second. comparing that orientation array with similar arrays made from prototype fingerprints ahead of
time. The comparisons are actually performed between low-dimensional feature vectors made from tlie orientation
arrays, rather than using the arrays directly. but that can be thought of as an implementation detail. Orientation
arrays or matrices like the ones used in PCASYS were produced in early fingerprint work at Rockwell, CALSPAN,
and Prinirak: the delection of local ridge slopes came about naturally as a side effect of binarization algorithims
thal were used to preprocess scanned fingerprint images in preparatlion for minutiae detection. Early experiments
in autematic fingerprint classification using these orientation matrices were done by Rockwell, improved upon by
Printrak. and work was done at NIST (then NBS): Wegstein. of NBS. who produced the R92 registration algorithm
that is used by PCASYS, did importanl early automatic classification experiments.

This report is organized as follows. Section 2 describes the algorithims used. Section 3 describes a miethod (hat can
be used Lo (rain (optimize) the parameters of the classifier. Section 4 provides some accuracy and timing results.
Seclion § lists some paossible topics for future work. Section 6 concerns the proeedure for installing and running
the programs.
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Figure 1: Example fingerprints of the six pattern-level classes. Top row: arch (A), left loop (L). Middle row:
right loop (R). scar (S). Bollom row: lented arcli (T). whotl (W), (These are NIST Special Database 14 images
s0024501.wsq, s0024310.wsq, s(24304.wsq. s0026117.wsq, sO0024372.wsq, and s002435Lwsq: they are among the

demonstration images provided with PCASYS.)
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Figure 2: A second example fingerprint of the whorl class (s0025236.wsq). This is the fingerprint used for subsequent
figures.



2 Description of the Algorithms

This section describes the algorithims the system uses in ils several processing phases. Each subsection shows, at
its heginning, the pertinent source code file(s).

2.1 Segmentor

{Source file: lib/pea/sgmni.c)

The seginentor routine performs the first stage of processing needed by the classifier. It reads the input fingerprint
image, which must be an 8-hit grayscale raster of width at least 5312 pixels and height at least 420 pixels, scanned
at about 500 dots per inch: this image is assumed to depict a predefined region of a fingerprint card, corresponding
Lo one ol the ten boxes in which the individual fingers are rolled. The segmentor produces, as its output, an image
that is 512 x 480 pixels in size. by culling a reclangular region of these dimensions out ol the input image. The
sides of the rectangle that is cut out are not necessarily parallel to the corresponding sides of the original image.
The segmentor atlempls to position its cut rectangle on the impression made by the last joint of the finger. and il
attempts 1o define the rotation angle of the cut rectangle so as (o remove any rotation that the finger impression
Liad to start with. Cutting out this smaller rectangle is helpful because it reduces the amount of data that has (o
undergo subsequent processing (especially the compule-intensive image enhancement): and the removal of rotation
may be helpful since it removes a source of variation between prints of the same class, !

The segmentor decides which rectangular region of the image to snip cut by performing a sequence of processing
steps. This processing, and all processing after segmentation as well, will he illustrated using the fingerprint of
figure 2 as an example; figure 3, which is one of the windows produced by the graphical version of the system,
shows the results of the segmentor’s processing steps. which are as follows,

Iirst, the segmentor produces a small binary ((wo-valued or logical-valued) image whose pixels indicate which
&xB-pixel Dlocks of the original image should be considered to be the foreground, that is. the part of the image
that contains ink. whether from the finger impression itself or from printing or wriling on the card. To produce
this foreground-image, it first finds the mininnm pixel value for each block and the global minimum and maxinmum
pixel values. Then, for each of a fixed set of factor values between 0 and 1. he routine produces a candidate
foreground-image based on factor as lollows:

threshold = global min + factor x (global_max - global _min)

Set to true each pixel of candidate foreground-image whose corresponding pixel of the array of block
minima is < threshold, and count resulting true pixels.

Count the transitions between true and false pixels in the candidate foreground-image, counting
along all rows and colummns, Keep track of the minimum, across candidate foreground-images, of the
number of transitions.

Among those candidate foreground-itnages whose number of true pixels is within predefined limits, pick the one
with the fewest transitions. (If threshold is too low. there tend to be many while holes in whal should be solid
blocks of black [oreground: i threshold is too high. there tend to be many black spots on what should be solid
white background. If threshold is about right. there are few holes and lew spots, hence few {ransitions.) The 1op
picture of figure 3 shows the resulting foreground-image.

Next. the routine perlorms some cleanup work on the foreground-image. the main purpose of which is to delete
those parts of the foregronnd that correspond to printing or writing rather than the linger impression. The routine
does three ilerations of crosion?, then it deletes every connected set of true pixels except the one whose number
of true pixels is largest, and as the final step of cleanup it sets to true, in each row, every pixel hetween the
leflmos! and righlmost true pixels in that row, and similarly for colunins. The routine then compules the centroid

I The images produced by the segmentor are similar to those of NIST Special Database 4. in which the corrections for translation
and rotation were done manually.
?Erosion vonsists of changing to false each true pixel that is next 1o a lalse pixel.



of the cleaned-up foreground-image, for later use. The second picture of figure 3 shows the result of Lhis cleanup
processing.

The routine next finds the left, top and right edges of the loreground, which usually has a roughly reclangular
shape. Because the preceding cleanup work has removed noise true pixels caused by printed hox lines or writing,
the {ollowing very simple algorithm is sufficient for finding the edges. Starting at the middle row of the foreground-
image and moving upward, the routine linds the lefimost true pixel of each row in turn. considering the resulting
pixels to trace the left edge: but. to avoid going around the corner onto the top edge. the routine stops as soon as it
encounters a row whose leftimost true pixel has a horizontal distance of more than 1 from the lefimost true pixel
of the preceding row. The routine finds the bottom parl of the left edge by using the same process but moving
downward from the middle row: and it finds the top and right edges similarly. The third, fourth, and fifth pictures
ol figure 3 depict these edges.

Next, the routive uses Lhe edges (o calculate the overall slope of the foreground, as lollows. First it lits a straight
line to each edge by linear regression: naturally. it fits the left and right edges. which are expected to be roughly
verlical, to lines of the form r = my + b, and it fits Lhe top edge Lo a line of the [orm y = mr + 6. The next lo
last picture of figure 3 shows these fitted lines. The overall slope is defined to be the average of the slopes of the
left-edge line. the right-edge line. and a line perpendicular to the top-edge line.

Having measured the foreground slope. the segmentor now knows the angle to which it should rotate its cutting
rectangle so as to nullify the existing rotation of the fingerprint: but it still must decide the location at which to
cut. To decide this, it first finds the [oreground top. in a manner more robust than the original finding of the
top edge and resulting fitted line. It finds the top by considering a tall rectangle, whose width corresponds 1o the
output image width, whose eenter is at the previously compuied centroid of the foreground-image, and which is
tilted in accordance with the overall foreground slope. Starting at the top row of (his tall, narrow tilted rectangle
and moving downward. the routine counts the true pixels of each row in turn, and stops at the first row which
both fits entirely on the foreground-image and has at least a threshold number of true pixels. The routine then
finishes deciding where to cut by letting the top edge of the reclangle correspond Lo the foreground top it has just
detected, The cut out image thus will be tilted so as to cancel out the existing rotation of the fingerprint, and
will be positioned so as to haug from the lop of the foreground, as it were, The bollom picture of figure 3 is the
(cleaned-up) foreground with an outline superimposed on it showing where the segmentor has decided to cut. The
segmentor finishes by actually cutting out the corresponding piece of the input image: figure 4 shows the resulting
segmented image. (The routine also cuts out the corresponding piece of the {oreground-image. for use later by the
psendoridge analyzer.)



T

Figure -: The image cut out of the example fingerprint
image by the segmentor.

Figure 3: How the segmentor decided the angle and loca-
tion at which to cul lrom the example fingerprint image.
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2.2 Image Enhancer

(Source files: lib/pea/enhne.c. lib/fft/*.c)

This routine enhances the segmented fingerprint image. The algorithm used is basically the same as the enhance-
ment algorithm described in [2], and pp. 2-8  2-16 of [3] provide a description of other research that independently
produced this same algerithm. The routine goes through the image and snips out a sequence of squares each of
size 32 x 32 pixels, with the snipping positions spaced 24 pixels apart in each dimension to produce overlapping.
F2ach input square undergoes a process that produces an enhanced version of its middle 24 x 24 pixels. and this
smaller square is installed into the output image in a non-overlapping fashion relative to other cutput squares.
(The overlapping of the input squares reduces boundary artifacis in the ontput image.)

The enhancement of a square ol input is done by first performing the forward 1wo-dimensional fast Fourier iransform
(FT'T) to convert the data from its original (spatial) representation Lo a frequency representation: then applying a
nonlinear function that tends Lo increase the power of useful information (the overall pattern, and in particular the
orientation. of the ridges and valleys) relative to noise; and finally, perforining the backward 2-d FI'T to return the
enhanced data to a spatial representation before snipping out the middle 24 x 24 pixels and installing them into
the output image.

The filter's processing of a square of input pixels can be described by the {ollowing equations. First, produce the
complex-valued matrix A + i# by loading the square of pixels into A and letting B be zero. Then. perform the
forward 2-d discrete Fourier translorm. producing the matrix X + i} defined by

31 31 o
'\'j"' -+ 1}:?1 = Z Z(n"nm <+ i-Hnm )"XI) ( T;“(”lj + J?“)) .

m=0n=0

Change Lo zero a fixed subset of the Tourier (ransform elements corresponding to low and high frequency bands
which, as discussed below, can be considered to be noise. Then take the power spoefrum clements .\ i'e}‘ + }ﬁ- ol the
Fourier transform, raise (hem to the 0.3 power, and multiply them by the Fourier transform clements, producing a
new [requency-domain representation {7 4 11:

Uje + (Vi = (X3 + Y3 (X + Y1)

Return to a spatial representation by taking the backward Fourier transform of {7+ 7V,

31 91
. . . - i,
Copn + i Dy = Z E (Ui + iV )exp (—32 (jm+ kn)) \

=0k=0

and then finish up as follows: find the maximuim absolute value of the elements of (° (the imaginary mairix D is
zero). and cul out the middle 24 x 24 pixels of (" and install them in the output image. but first applying to them
an affine transform that maps 0 to 128 {a middle gray) and that canses the range to be as large as possible without
exceeding the range of 8-bit pixels (0 through 255). (The DO component of the Fourier transform is among the
low-frequency elements that are zeroed out, so the mean of the elements of (" is zero and it is therefore reasonable
to map 0 Lo the middle of the available range.)

However, for greater efficiency, the enhancer routine actually does not simply implement these formulas directly.
Instead. il uses [ast Fourier transforms (FI7Ts), and in fact takes advantage of the purely real nature of the input
matrix by using 2-d rea! TFTs. But the output is no different than if the above formulas had been translated
straight into code.

We have found that enhancing the segmented image with this algorithm, before extracting the orientation features
(next section), increases the accuracy of the resulting classifier. The table and graphs on pp. 24-6 of [1] show
the accuracy improvement caused by using this filter (localized FI'T filter). as well as the improvements caused
by various other features. The nonlinear function applied to the frequency-domain representation of the square
of pixels has the effect of increasing the relative strength of those frequencies that were already stronger than the
others; and these originally stronger [requencies correspond to the ridges and valleys in most cases. so that the
enbancer strengthens the important aspects of the image (the ridges and valleys) at the expense of noise such as

-1



small details of the ridges. breaks in the ridges. and ink spots in the valleys. This is not simply a lincar filter that
attenuates cerlain frequencies. allthough part of its processing does consist of eliminating low and high frequencies:
(he surviving frequencies go through a nonlinear function which adapts to variations as to which frequencies are
most powerful. This aspeet of the filter is helpful because the ridge wavelength can vary considerably between
fingerprints and between areas within a single fingerprint.”

Figure 5 shows the enhanced version of the segmented image. At first glance, a noticeable difference between the
original and enhanced versions is the increase in contrast. but actually the more important change caused by the
enhancer is the improved smoothiness and stronger ridge/valley structure of the image, which are apparent upon
closer exaimmination. Discontinuities are visible at (he houndaries of some oulput squares despite the overlapping of
input squares, but these apparently have no major harimful effect on subsequent processing,

Figure 5: Enhanced image {roi the example fingerprint.

37 different FIT-based enhancement method, the directional FFT filter of [4]. uses global rather than local FT'Ts and uses a set
of masks tu selectively enhance regions of the image that have various ridge orientations., This enhancer was more computationally
intensive than the localied FFT flter, and did not produce better classification accuracy than the localized filter.



2.3 Ridge-Valley Orientation Detector

(Source file: lib/pea/ridge.c)

This routine detects, at each pixel location of the lingerprint immage. the local oriention of the ridges and valleys
of the finger surface, and produces an array of regional averages of these orientations. This is the basic feafure
criractorof the classification system: its output is used by both the main PNXN classifier and the auxiliary classifier.

AR ENEARE
6 [T8[1[2(3] |4
6 1
S I8 45
4 6
41 [3]2[1[8[7] |6
HEEENEREH

Figure 6: Pattern of slits used by the orientation detector.

The rouline is based on the ridge-valle g lngerprint binarizer described in [5]. That binarizer uses the lollowing
algorithm to reduce a grayscale fingerprint image to a binary (black and white only) image. For each pixel of the
image. denoted (7 in figure 6. the binarizer computes slit sums s;.7 = | .. .8 where each s, is the suimn of the values
of the slit of four pixels labled 7 in the figure. The binarizer uses lacal thresholding and slit comparison lormulas,
The local thresholding formula sets the output pixel to white if the value of the central pixel. (", exceeds (he average

of the pixels of all slits, that is, il
b

('>%Z.-,-. (1)

i=1

(g%

Local thresholding such as Lhis is belter than using a single (hreshold everywhere on the image, since it ignores
gradual variations in the overall brighiness.

The slil comparison forimula sels the outpul pixel to white if the average of the minimum and maxinmum slit sums
exeeeds Lhe average of all the slit sums, that is. if

8

1 1
§(5171i11 + -“'mﬂr) > g Z"‘i' (:

i=1

1
—

The motivation for this lormula is as follows. 1f a pixel is in a valley. then one of its eight slits will lie along the
(light) valley and have a high sum. whereas the other seven slits will each cross several ridges and valleys and these
slits will therelore hiave roughly equal, lower sums, so that the average of the (wo extreme slit sums will exceed the
average of all eight slit sums and the pixel will be binarized correctly to white, Similarly. the formula causes a pixel
lving on a ridge to be binarized correctly to black. This formula uses the slits to detect long structures (ridges and
valleys), rather than merely using their constituent pixels as a sampling of local pixels as formula 1 does; it is able
to ignore sinall ridge gaps and valley blockages. since il concerns itsell only wilh entire slits and not with the value
of the central pixel.

The authors of [5] found that they obtained good binarizalion results by using the following compromize formula.
rather than using either (1) or (2) alone: the output pixel is set to white if

2
3
¢ Smin Smar 2 3 S 3
+ s + & 5 Z ()

=1

This is simply a weighted average of formulas (1) and (2). with the first one getting (wice as much weight as the
second.



This binarizer can be converted into a detector of the ridge or valley orientation at each pixel very trivially: merely
consider each pixel that would have heen binarized to black {a ridge pixel) to have the orientation of its minimum-
sum slit, and consider each pixel that would hiave been binarized to white (a valley pixel) to have the orientation of
its maximume-sum slit. However, the resulting array of pixelwise orientations is large. noisy. and coarsely quantized
(only 8 different orientations are allowed)., Therefore. the pixelwise orientations are reduced to a much smaller
array ol local average orientalions, each of which is made from a 16 » 16 square of pixelwise orientations. The
averaging process reduces the volume of data, lessens noise, and produces a finer quantization of orientations.

The ridge angle 8 at a location is here defined to be 0° il the ridges are horizontal. increasing towards 180° as the
ridges rolate counlerclockwise, and snapping back to 0° when the ridges become horizontal again: 0° < 6 < 18(°,
When pixelwise orientations are averaged. the quantities averaged are actually not the pixelwise ridge angles 8, but
rather the pixelwise orfentation veclors (cos 20, sin 28). The orientation finder produces an array of these averages
of pixelwise orientation veetors.? Since all pixelwise vectors have length 1 (being cosine. sine pairs), each average
vector has a length of at most 1. If a square of the image does not have a well-defined overall ridge and valley
orientation. for example bhecause of blurring or because the orientation is highly variable within this square, then
the orientation vectors of its 256 pixels will tend to cancel each other out and produce a short average vector.
The length of an average vector is thus a measure of orientation strength. (The routine also produces as output
the array of pixelwise orientalion indices. to be used by a later routine which produces a mare finely spaced array
of average orientations.) Figure 7 depiets the local average orientations that were detected in the segmented and
filtered image from the example fingerprint.

Figure 7: Array of local average orientations of the example fingerprint. Each bar, depicting an orientation, is
approximately parallel to the local ridges and valleys.

2.4 Registration

(Source files: lib/pea/r92.c. lib/pea/ridge.c)

Registration is a process that the classifier uses in order to reduce the amount of translational variation hetween
similar orientation arrays. If the arrays fromn two fingerprints are such that one is approximately a translation of
the other, then the feature vectors that later processing steps will produce from these orientation arrays may be
very different. becanse of the translation, even though the ridge flow patterns are similar, This problem can be

* Averaging a set of local orientation angles can produce absurd resnlts, because of the unremovable point of discontinuity that is
inherent in an angular representation, so it is better tu use the vector representation, Also, the resulting loval average orientation
veclars are an appropriate representalion to use for later processing steps {(except [or the R92 registration program, which recuires
canverting the vectors into angles of a different format ), bevause these laler steps require that Euclidean distances between entire arrays
of local average orientations produce reasonable results.
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ameliorated by regisfering cach array: finding a consistent [eature and essentially (ranslating the array so as to
bring that feature to a standard location.

To find the cousislent feature that is required. we use the R92 algorithim of Wegstein [6]. This proecedure finds, in an
array of ridge angles, a feature that is located approximately at the core ol a loop ingerprint. or at the more upright
of the two cores that often occur in a whorl; the algorithm also finds a well-defined feature in arch and tented arch
[ingerprints, even though these types of prints do not have true cores. After RY2 finds this feature. which will be
denoted the registration point, the registration process is completed by taking the array of pixelwise orientations
produced earlier and averaging 16 x 16 squares from it in order to make a new array of average orientations; the
averaging is done the same way it was done to make the first array of average orientalions (which became the
input to R92), except that now the squares upon which averaging is performed are translated by the vector that is
the registration point minus a standard regisirelion poinf defined as the componentwise median of the registration
points of a sanple of fingerprints. The result is a registered array ol average orientations.’

The RY2 algorithin begins by analyzing the matrix of angles in order to huild the “K-table™. (RY2 processes the
orientations in angular form. and il defines the angles o range [rom 0° to 90° as a ridge rolales [rom horizonlal
counterclockwise to vertical, and from 0° to —#)° for clockwise rolation. rather than having the angles range from
0° to 180° as the ridge rotates counterclockwise from horizontal, the definition used earlier.) This table lists the
first location in each row of the matrix where the ridge orientation changes {rom positive slope to negalive slope to
produce a well-formed arch, Associated with each K-table entry are other elements that arve used later 1o caleulate
the registration point. The ROW and COL values are the position of the entry in the orientation matrix. The
SCORE is how well the arch is formed at this location. The BC STUM is the sum of Lhis angle with its east neighbor.
while the A SUM is BC SUM] plus the one angle to the west and east of the BC" SUA. SUM HIGH and SUM
LOW are sununations ol groups of angles helow the one being analyzed. VFar these two values, five sets of four
angles are individually summed. and the lowest and highest are saved in the K-table.

With the K-table filled in. eacl entry is then scored. The score indicates how well the arch is lormed at (his point.
The point closest to the core of the fingerprint is inlended Lo gel the largest score. If scores are equal, the entry
closest to the bottom of the image is considered the winner. C'alculating a score for a K-table entry uses six angles
and one parameter, RK3. RK3 is the minimum value of the diflerence of two angles. For this work, the parameter
was set to 0 degrees, which is a horizontal line. The six angles are the entry in the K-table. the two angles to its left
and the three angles to its right. So if the entry in the K-table is (7. j). then the angles are al positions (i.j — 2},
(foj~ 1) (i g) (A4 1) (AL J4+2), and (1. j + 3). These are labeled M. A, B, (. D, and N, respectively. For cach
of the differences. M — B, A — B, (" — N, and " — D, which are greater than B3, the score is increased by one
point. 1l 4 has a positive slope. meaning the angle of A is greater than AR 3, then the score is increased by one
poinl and another il 3 — A is greater than RRA3. If 1) has a negative slope, meaning the angle of 1) is less than
RI3, then Lhe score is increased by one point and another if D — N is greater than RA3. If NV has a negative
slope, then the score is increased by one point. All these comparisons form the score for the entry.

Using the information gathered aboul the winning entry, a registration point is produced. First, il is determined

whether the fingerprint is possibly an arch: if so, the registration point (&, y) is computed as:

o AR.C) .

rE “x(.4(;{.(’)—.4(13.(’-%1)+( l)*’"

(ox R4+ N xitslh+ D+ (ax {(R=1}+ N xidslh)+ (o x(R-=2+ ) xts(k=1)
fs(k + 1)+ 1s(k) + {s(k = 1)

where A is the angle at an entry position. R is the row of the entry, (' is the column of the entry. & is the entry
number, {s is a sum of angles, o is 16 {(the number of pixels between orientation loci). and 3 is 8.5. The {5 value is
calculated by summing up to six angles. These angles are the current angle and the five angles to its east. While
the angle is not greater than 94 degrees ils absolute value is added 1o {s. Tor angles 89, 85, 81, 7%, 100, and 60.
the sum would be 330 (89 + 85 + &1 + 75). Since 100 is greater than 99, the smumalion stops at 75,

3The new array is made by re-averaging the pixelwise orienlations with translated squares, rather than merely translating the first
average-urientations array, because the registration point found by R92, and henee the prescribed translation vector, is defined more
precisely than the crude 16-pixel spacing corresponding to one step through the average orientation array.
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2.5 Feature Set Transformation

(Source file: lib/pea/trusirm.c)

This routine applies a lincar transform to the registered orientation array. Transformation accomplishes two
useful processes: the reduction of the dimensionality of the feature vector from its original 1680 dimensions to 64
dimensions, and the application of a fixed pattern of regional weights which are larger in the imiportant central
arca of Lhe orientation array,

2.5.1 Karhunen-Loéve Transform

The Probabilistic Neural Network (PNN) classifier. discussed in section 2.6, must® compute the squared distances
between a feafure veefor representing the fingerprint to be classified. and stored feature vectors representing each
of a large number of profotype fingerprints. The leature vector representation of a fingerprint could be defined
to be the registered orientation array, treated as a single vector of 1680 elements (28 x 30 orientation vectors
two components per orientation vector). I this were done. the resulting squared Euclidean distance hetween two
leature vectors would be independent of the (consistent) ordering of the 1680 elements, and could be (hought of as
the sum of 810 (28 x 30) squared distances between corresponding pairs of orientation vectors in the two arrays.
This way of defining the distance between two orientation arrays, amounting to templale matching in which one
array is overlaid on the other, would be reasonable in terms of the quality of the results. However, it would not
be a particularly reasonable distance computation in practical terms: because of the high dimensionality of these
vectors, storing a large number of them as prototypes would requires excessive memory and computing distances
between such vectors would be slow.

It would be helpful to transforni these high-dimensional feature vectors into nuch lower-dimensional ones in sech
a way that Fuclidean distances hetween veetors were approximaltely preserved. Fortunately. the Karhunen-TLodve
(K-L) transform [7] does exactly that. To produce the matrix that implements the K-L transform. the first step is
to make the sample covariance matrix of a set of typical original feature vectors, the registered orientation arrays in
our case. Then. a diagonalization routine is used to produce a subset of the eigenvectors of the covariance malrix.
corresponding to the largest eigenvalues: let m denote the number of cigenvectors produced. (The diagonalization
process can be sped up by arranging to produce only, say, the first 100 or so eigenvectors. which will probably De
sufficient.) Then, for any n < m. the matrix ® can be defined to have as its columns the first n eigenvectors:
cach cigenvector has as many elements as an original feature vector. 1680 in the case of orientation arrays. A
version” of a K-L transform. which reduces an original feature vector u (an orientation array. thought of as a single
1680-dimensional vector) to a vector w of n elements, can then be defined as follows:

w="y

The K-L transform thus may be used to reduce the orientation array of a fingerprint to a much lower-dimensional
vector which may be sent to the PNN classifier. producing approximately the same classification results as would be
obtained without the use of the K-L transform but with large savings in memory and compute time. A reasonable
value of 1, the number of eigenvectors used and hence number of elements in the feature vectors produced. can
he found by trial and error: usually n can be much smaller than the original ditnensionality. {We have found 64
1o be a reasonable n.) In earlier versions of our fingerprint classifier, we produced low-dimensional feature vectors
in this manner. using the arrays of 28 x 30 orientation vectors as the original feature vectors. Later experiments
revealed. lowever. that significantly better classification accuracy could be obtained by modilving the production
of the feature vector, in various ways. so as to cause the importanl central region of the fingerprint Lo have more
weight than the outer regions: these experiments culminated in the production of the rcgional weights discussed
below.

%in its naive form, which PCASYS uses

TUsnally the sample mean veclor is subtracted from the original feature vector beflore applying ¥4, but we omit this step Lecause
doing so simplifies the computations and has no effect on the ultimate results. The PNN classifier uses squared distances helween
feature vectors, so any afline (ransform (a linear transform plus a constant vector) used in the production of feature vectors can he
replaced by its corresponding linear transform withoul changing the resulting squared distances, since the afline part would rancel sut
between the two vectors being compared anyway.
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2.5.2 Regional Weights

During testing it was noted that the uniform spacing of the orientation measurements throughout the picture area
could probably be improved upon by replacing it with a nonuniform spacing that concentrated the measurements
more closely together in the important central arca of the picture, with a sparser distribution in the clearly less
important outer regions. We tried this [8]. keeping the total number of orientation measurements the same as
before (810) in order to make a fair comparison, and the result was indeed a significant lowering of the classificalion
error rale.

Eventually it occurred to us thal these improved results might not really have been caused by the nonuniform
spacing but rather by the mere assignment of effectively greater weight 1o the central region, caused by placing
a larger number of measurements there. We tested this hypothesis by reverting to the uniformly-spaced array of
orientation measurements, but now with a nonuniform pattern of regional weights (o be applied to the orientation
array before performing the K-L transform and computing distances. The application of a fixed pattern of weights
to the features before computing distances between feature vectors is equivalent Lo the replacement of the usual
Luclidean distance by an alternative distance, In [9]. Specht improves the accuracy of PNN in basically the same
manner: pp. [-765-6 describe the method used to produce a separate o value lor each dimension ({feature).

To keep the number of weights reasonably small and thus control the amount of runtime that would be needed o
aptimize them, we decided 1o assign a weight to each 2 x 2 block of orientation-vectors, for a total of 210 (14 x
15) weights, rather than assigning a separate weight to each of the 840 orientation-vectors. Oplimization of the
weights was done using a very simple form of gradient descent. as discussed in section 3.5, The resulting oplimal
(or nearly optimal) weights are depicted in figure 9. The gray tones represent the absolute values of the weights
{(their signs have no effect), with the values mapped to tones by a linear mapping that maps 0 to black and the
largest absolute value that occured, to white. These weights can he represented as a diagonal matrix W of order
1680. and then their application of the weights to an original fealure vector (orientation array) u. to produce a
weighted version 4, is given by the matrix multiplication

i = Wua,

Figure U: Absolute values of the optimized regional weights. Each square represents one weight, associated with a
2x2 block from the registered orientalion array.

We have tried optimizing a set of weights to be applied directly to the K-L features. but this produced poor
generalization results. The regional weights we describe here are not equivalent to any set of weights (diagonal
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matrix) that could be applied to (he K-L features: their use is approximately equivalent to the application of
the non-diagonal matrix ¥*'WW, mentioned in 3.5, to the K-L feature vectors. We also have tried optimizing
a completely unconstrained linear transform (matrix) to he applied to the K-L feature vectors before computing
distances; that produced impressive lowering of the error during training but disastrous generalization resulls.
Among our experiments involving the application of linear transforins prior lo PNN distance compulations. we
obtained the best results by using regional weights.

2.5.3 Combined Transform

Clearly it is reasonable to apply the optimized regional weights W, and Lhen to reduce dimensionality with ¥,
before letting Lhe PNN classifier compute distances. An efficient way o do this is to make the combined transform
matrix T = ¥'W and then when running the classifier on a fingerprint, to use

w =Tu

to converl its orientation array directly into the final feature-vector representation.®

# Alter optimizing the weights W, we could have made new eigenvectors from the covariance matrix of the wr wghted original-feature
vectors; the W resulting from this new ¥ would presumably have then produced a more efficient dimensionality reductjon than we
now obtain, allowing the use of lewer fealures. But we devided not 1o bother with Lhis, sinee the memory and time requirements of the
currenl [eature vertors are reasonalbile.
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2.6 Main Classifier: Probabilistic Neural Network

(Source file: lib/pea/pnn.c)

This routine takes as its input the low-dimensional feature vector that is the outpul of the (ransform discussed
in the preceding section, and it determines the class of the fingerprint. The Probabilistic Neural Network {PNN)
is described hy Specht in [10]. The algorithm classifies an incoming feature vector by computing the value, at its
point in {eature space, of spherical Gaussian kernel functions centered af each of a large number of stored prototype
feature veclors. These prototypes were made aliead of time from a training set of fingerprints of known class by
using the same preprocessing and feature extraction that was used to produce the incoming feature vector. For
cach class, an an activation is made by adding up the values of the kernels centered at all prototypes of that class:
the hypothesized class is then defined to be the one whose activation is largest. The activations are all positive.
being sums of exponentials. Dividing each activation by the sum of all activations produces a vector of normalized
activations. which, as Specht points out, can be used as estimaltes of the posterior probabilities of the several classes.
In particular, the largest normalized activation, which is the estimated posterior probability of the hypothesized
class. is a measure of the confidence that may be assigned to the classiier's decision.?

In mathematical terms. the above definition of PNN can be written as follows. slarting with notational definilions:

N = nuber of classes (6 in PCASYS)
M, = number of prototype prints of class 7 (1 <7< V)
x}” = feature vector from j*" prototype print of class i (1 < j < M)
w = feature vector of the print to be classified
4 = asmoolhing factor
a, = aclivation for class {
it, = normalized activation for class i
h = hypothesized class
¢ = confidence

FFor each class i, the PNN computes an aclivation:

M,

=Yoo (=7 (w=m) (w-x).

It then defines h to be the 7 for which ¢; is grealest, and defines ¢ to be the A" normalized activation:

N
e =1y =uay/ E a,.

i=1

Figure 10 is a bar graph of the normalized activations produced for the example fingerprint. (Although the PNN
only needs to normalize one of the activations. namely the largest, to produce the confidence, all 6 normalized
activations are shown here.) The whorl (W) class has won and so is the hypothesized class (correctly as it turns
out), but the left loop (L) class has also received a fairly large activation and therelore the confidence is only
moderately high.

?This naive version of PNN must compute the distance of (he incoming feature vector from each of the many prototype feature
vecturs, possibly using many eyeles. Various methods have been found for increasing the speed of nearest- neighbors classifiers, a
category which PNX may be considered to fall into (see. fur example, [11], and [12] for a very last tree method), but the classification
aceuracy of fast approximations to the naive PNN may suffer at bigh rejection levels. For that reason, and because the naive PNN
takes only a small fraction of the total time used by the PCASYS classification system {image enhancement takes much longer), we
have used the naive versiun.
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Figure 10: Normalized output activations that the Probabilistic Neural Network produced for the example finger-
print. A = arch, L = lefi loup. R = right loop. § = sear. T = {ented arch, W = wherl.
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2.7 Auxiliary Classifier: Pseudoridge Tracer

{(Source file: lib/pea/pseudao.c)

This routine takes a grid of ridge orientations of the incoming fingerprint and traces pseudoridges [13], which are
trajectories that approximately follow the flow of the ridges. By testing the pseudoridges [or concave-upward
shapes. the routine detects some whorl fiugerprints that are misclassified by the PNN classifier. We were motivated
to produce a whorl-detector when we realized, upon examining the prints misclassified by the PNN even at high
rejection levels, that many of them were whorls,

The routine takes as an input an array of local average ridge orientations!? Another input is a small binary image
that shows the region of the segmented image comprising the inked foreground rather than the lighter background.
First. the routine changes Lo zero vectors any of the orientation vectors thal either are not on the foreground, or
are smaller than a threshold in squared length. (Small squared length indicates uncertainty as to the orientation.)
Next, it performs a few iterations of a smoothing algorithin, which merely replaces each vector by an average of
itself and its four neighbors: this tends 1o improve anomalous or noisy vectors. Then. it finds out which vectors are
either ofl the foreground or, in their now smoothed state, smaller than a threshold in squared length, and it marks
these locations as bad. so that they will not be used later. The program also makes some new representations of
the orientation vectors  as angles, and as step-vectors of specified length - which it uses later for efficient tracing
of the pseudoridges (an implementation detail).

Having finished with this preliminary processing, the program then staris lo trace pseudoridges. Starting at each
of a block of initial locations in the orientatlion array. it makes a pseudoridge by following the orienlation flow. first
in one of the two possible directions away from the initial point and then in the other direction. (For example.
il the ridge orientation at an initial point is “northeast-southwest”, then the program starts out in a northeast
direction, and later comes back to the initial point and starts out in a southwest direction.) If a location has been
marked as bad. then no trajectores are started there. A trajectory is stopped if it reaclies a limit of the array of
locations. or if it reaches a bad location. or if the turn required to continue the trajeclory is excessively sharp, or if
a specified maximum number of steps has been taken. The two trajectories (raced out from an initial point are. in
effect. joined end to end, producing a finished pseudoridge. The preudoridge only approximately follows the ridges
and valleys, and is insensitive to details such as bifurcations or small scars. The left part of figure 11 shows some
pseudoridges found in the example fingerprint.

After the routine has finished tracing a pseudoridge. it goes through it from one end to the other and finds each
maximal segment of turns that are either all left (or straight) turns. or all right turns. These segments can he
thought of as lobes, each of which makes a sweep in a constant direction of curvature. I a lobe's orientation at
its point of sharpest curvature (vertex) is sufficiently close to being horizontal. and in sucli a sense that the lobe
could be approximately concave upward (not concave downward). and if additionally the lobe has, on cach side of
its vertex, at least a minitmum amount of cumulative curvature, then the lobe qualifies as a concave upward shape.
The routine checks each lobe of the current pseudoridge to find out if the lobe qualifies as a concave upward shape.
If no lobe gualifies. it advances to (he next location in the block of initial points and makes a new pseudoridge.
The routine stops when it either finds a concave upward shape. or exhiausts all lobes of all pseudoridges without
finding one: its output is one bit of information, namely whether or not it found a concave upward shape. The
right part of figure 11 shows a concave upward shaped lobe that was found.

This pseudoridge (racer is useful as a delector of whorls. It only very rarely produces a false positive, defined as
finding a concave upward lobe in a print that is not a whorl, but often does produce a false negative. defined as
not finding a concave upward lobe even though a print is a whorl. The next section describes a simple rule thal is
used 1o combine the pseudoridge (racer’s ontput with the output of the main (PNN) classifier. thereby producing
a hybrid classifier that is more accurate than the PNN alone.

19The array used has its constituent orientation vertors spaced hall as far apart as thuse comprising the arrays used earlier, and it
does not undergo registration.
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Figure 11: Left: Pseudoridges found in the example print until search was stopped by the finding of a concave-
upward lobe: black region is the foreground (inked) part of the segmented image. Right: The concave-upward lobe
that was found.
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2.8 Combining the Two Classifiers

(Source file: lib/pea/ecombine.c)

This final processing module takes the outputs of the main Probabilistic Neural Network classifier and the auxiliary
pseudoridge tracer. and makes the decision as to what ¢lass, and confidence, 1o assign to the fingerprint.

The PNN produces a hypothesized class and a confidence. The pseudaridge tracer produces a single bit of output.
whose {wo possible values can be interpreted as the print is a whorl and it is not clear wheiher the prini is a whorl,
(The pseudoridge tracer is never sure that a print is nef a whorl.) A simple rule was found to be sufficient for
combining the PNN and pscudoridge tracer results, so as to produce a classifier more accurate than the PNN alone.
The rule is described by this pseudocode:

if(pseudoridge tracer says whorl) {
hypothesized_class = whorl
if (pnn_hypothesized_class == whorl)

confidence = 1.
else
confidence = .9

)

else { /* pseudoridge tracer says not clear whether whorl #/
hypothesized _class = pnn_hypothesized_class
confidence = pnn_confidence

This is a reasonable way to use the pseudoridge tracer as a whorl detector, because as noted in the preceding
section, this detector has very {ew [alse positives but a [air number of false negatives. So, if the whorl detector
“fires” then the print is classified as a whotl even if the PNN disagrees, although disagreement results in slightly
lower confidence, since firing implies that the print is almost certainly a whorl. 1f the whorl detector does not fire.
then the PNN is allowed to set the classification and confidence. In this case. the PNN is allowed to hypothesize
any class, even whorl. since non-firing of the whorl detector does nof imply that the print is almost ¢ertainly not a
whorl, but enly that it is not the case that it almost certainly is a whorl.

Since the whorl detector fired for the example print and the PNN also classified this print as a whorl, the combining
rule caused the final output of the classifier ta be a hypothesized class of whorl and a confidence of 1. As it turns
vul. Lhis is the best possible result that could have been obtained for this print, since il actually is a whorl.

The pseudoridge tracer improves the result for some prints that the PNN would have correctly classified as whorls
anyway (such as the example print), by increasing the classification confidences. 1t also improves the result for
some whorls that the PNN misclassifies, by causing them to be correctly classified as whorls. The tracer harms the
result only for a very small number ol prints, the non-whorls that it mistakenly detects (o be whorls. The overall
ellect of combining the pseudoridge (racer with the main PNN classifier is a lowering of the error rate, compared
to the rate oblained using the PNN alone,
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3 Training the Classifier

The Probabilistic Neural Network classifier itsell does not require a complex optimization process, but the full
PCASYS classifier requires optimization of the regional weights that it uses to produce improved feature vectors
for use by the PNN. After the regional weiglits are optimized. an additional parameter must be optimized. namely
an overall simoothing factor for the PXN.

The following sections describe a training process. Each section shows the name of the command that should
be used. The arguments or, for some commands, parameters files. are too lengthy to show here: complete usape
instructions may be found by consulting the online man pages.

3.1 Make the Orientation Arrays

mkoas

This command reads IThead image files of fingerprints and, from each image. extracts the orientation array (oa).
This should be run on the full set of prototype prints thal will ultimately be used (o make the prolotype feature
veclors to be used by the PNN classifier.

3.2 Make the Covariance Matrix

meancov

This command reads a sel of oas and computes their sample mean and sample covariance matriz.!’ It should he
run on al least a reasonably large subset of the oas made by mkoas.

3.3 Diagonalize the Covariance Matrix

diag

This diagonalization program reads the covariance matrixand computes a subset of {largest) eigenvalues, and the
corresponding eigenvectors. The ecigenvalues are not needed in the training process. but may be of (heoretical
interest. The program calls a sequence of EISPACK roulines[14].

3.4 Run the Karhunen-Loéve Transform

lintran

This command applies a specilied linear transform to a sel of vectors. It should be run on a subset of the oas.
with the transform matrix consisting of the cigenvectors made in the preceding step. i.e. each row of the transform
matrix is an eigenvector. The resulting set of low-dimensional Karhunen-Loéve (K-L) vectors will be used as data
by optrws (optimize regional weights command, below). Note that these K-L vectors do not represcul the entire
prototype set: producing them for only a subset of the set of prototype prints keeps the number of these K-l
vectors small enough so that the optrws command {optimize regional weights, below) will not lake an unreasonably
long time to run. Note also that these vectors are nel of the form (hat will be taken by the ultimate protoiype
feature vectors thal will be used by the finished classifier: they are merely intermediate representations, which will
be useful when optimizing the regional weights. After (hat optimization is finished they will no longer be needed.

' The mean is not needed for further provessing, but is computed because il multiple processors are available, it may be possible Lo
save lime by running several simultaneous instances of meancov on different subsets of the oas. then combining the resulting output
files, using the embmes command. To combine several covariances, cmbmes needs the means as wells as (he covarianees of the subsets,



3.5 Optimize the Regional Weights

optrws

This command optimizes the regional weights. First it finds an optimal single value to whicl to set all the weights.
Having thus defined an initial point in weight space. the program linishes the optimization by a very simple version
of gradient descent. Tirst it estimates (by secant method) the gradient of the activation error rate. when classifving
a set of fingerprints by PNN, using the same set of prints as the PNN prototypes but leaving out of the proto
sel Lhe particular oue being classified. Then it searches the line pointing in the anli-gradient direetion from the
initial point. using a very simple method to find the minimum (or at least a local minimun) of the error along this
line. The program then estimates the gradient there and does another downhill search. It stops alter a specified
number of iterations. A reasonable number of ilerations is three or four, which may take several hours of (ime to
run on a typical workstation if using a few thousand prints as the data. If several processors are available, it may
be possible to save optrws runtime by setling ils parameters so that, in one of its phases of processing. it spawns
several processes to divide up the work. C'onsult the man page and the default parameters file mentioned in the
man page (o find out about this. If your operating system does implement fork() and execl(), which are required
by the severalprocesses version of optrws, Lhen optrws can be caused to link properly (i.e. without the lork and
exec] calls beeoming unresolved references) by adding the argument -DNO_FORK_AND_EXECL to the definition
of CLAGS in sre/bin/optrws/Makefile. That will cause a dilferent subset of the source code file to be compiled
(conditional compilation).

In order to efficiently evaluale the error function at a point in regional-weiglts space, optrws produces the square
matrix W of order NFEATS from the cigenvectors ¥ and the diagonal matrix W that is equivalent to the
regional weights, then applies this matrix to all the K-L feature vectors before computing distances. This is only
an approximation to the direct use of the regional weights. because of the use of only a partial set of eigenvectors.
which also are nol recomputed eacl time the weights are changed: hut the results seem satisfactory, and (he total
runtime is much smaller than for direct methods.

3.6 Make the Transform Matrix

mktran

Reads the optimized regional weights made by optrws. and the eigenvectors. and makes the transforim matrix ¥'W,
which will be used in the next step.

3.7 Apply the Transform Matrix

lintran

Lintran should next be run on the entire set of prototype oas made earlier, using the transform maltrix made hy
mktran. The resulting lealure vectors will be the prototype feature vectors used by the finished PNN classifier.
The transform matrix both applies the optimal pattern of regional weights. and uses the cigenveciors to accomplish
dimension reduction. (When the finished classifier runs on an incoming prinlt, it applies this same transform matrix
to the oa made from the print and then sends the resulling leature vector to the PNN, This approximately duplicates
the effect that would have resulted if PNN had been used on the oas themselves, but with the optimized regional
weights paltern applied before the distance computation.)

3.8 Optimize the Overall Smoothing Factor

optosf

Optimizes an overall smoothing factor (osf) that the PNN classifier will use. As noted above. the optimization of
the regional weights should be done using the K-L vectors of anly a subset of the prototype prints, (o save time.
Since the full set of prototypes will be used in the finished classifier, though. it is expected thal better accuracy
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will be obtained if the classifier vses an osf that is slightly larger than I, rather than using 1 in effect as is the
case during optimization since no overall smoothing factor is used then. This corresponds to Specht’s observation
[10] that as the number of prototypes increases, the optimal smoothing parameter o decreases: increasing Lhe osf
corresponds to decreasing o. (If the full prototype set was used to optimize the regional weights. then optosl should
notl be run: the osf should just be set to 1.)

(‘ompleting the above optimization process results in the finished PNN classifier data, consisting of prototype
feature vectors, a transform matrix that will be applied to the oas of incoming prints, and ihe overall smaoot hing
factor. The classification system Lhen consists of the combination of the PNN classifier and the pseudoridge tracer.
The latter program has many parameters that may be experimented with if desired, and also there is a parameter
of the rule used to combine the PNN and the psendoridge program. These paramelters may be optimized by trial
and error: reasonable values for them are provided in the default parameters files.

Aflter all aspects of the classification system are settled. it can be tested by running it on a test set of fingerprints,
The test set should of course be disjoint from the set of prints used in oplimization and should even be digjoint from
the alternate rollings of such prints, since the alternate rolling of a print is generally much more simifar to it than is a
randomly selected print. (In SD14, each “f" first rolling print has an alternate rolling, namely the corresponding s”
second roiling print. These two prints were made [rom the same finger of the same person. on different occasions. )
To get the maximum value from whatever fingerprints are available. it is probably best to perform several instances
of optimization/testing, each time using a different subset of the fingerprints for optimization and a different subset
disjoint from the first subset, as the test set. That will help to overcome the problem of the measured error rate
being strongly affected by the characteristics of one small test set. and will produce a better esimate of the error
rale that could be expecied if the classifier were to be run on a large number of randomly occuring prints,
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4 Accuracy and Timing Results

4.1 Accuracy Results

The fingerprint images nsed Lo train and test the PCASYS classifier were taken from NIST Special Database 14
(SD14) [15]. This database consists of images scanned from 2700 pairs of standard fingerprint cards. Each pair of
cards contains fingerprints taken from a single individual, but captured on two different occasions. One of them is
the card stored in the I'BI file for this person and is denoted the file card. and the other card is one that had been
sent in Lo be scarched against the database and is denoted the scarch card. Each card used was scanned at 500
dots per inch, and the resulting image was then used to produce 10 smaller images. one for each finger impression,
by cutting oul rectangles of predefined locations and dimensions, corresponding to the printed boxes in which the
rolled finger Impresssions are made.

We trained (optimized) the main PXN classifier using file prints {0000001.wsq through 0024300.wsq of SD14,
which ultimately became the PNN prototypes. Training consisted of optimizing the regional weights and Lhe
overall smoothing [actor, by the criterion of minimizing an activation error rate (a continuous kind of error rate.
more suitable for minimization than a fraction of prints misclassified would be) when fingerprinls were classified
by PNN. Then, the finished classification system was made by adding to the optimized PNN (he pseudoridge
tracer, with its parameters sel to values that had been arrived at much carlier as a result of testing. There is
one additional parameter of the system, namely a confidence value (hat is assigned to a print’s classification as
whorl when the pseudoridge tracer finds that it is a whorl but the PNN lLas concluded that it is not a whorl: this
was set to 0.9, With all aspeets of the classification system settled, we then tested its accuracy by running it on
search prints s0024301.wsq through s0027000.wsq of SD14, with the PNN part of the system using feature vectors
of {00000 1. wsq through f0024300.wsq as prototypes. The test set that was used is provided on the PCASYS ('D
in directory demofugs, in the form of the original fingerprint rasters. The classifier may be run on this entire set if
desired. so as to duplicate the test results, or it may be run on a subset of these prints or on other prints provided
by the user. The 24.300 prints from which the PNN prototype fealure vectors are derived are not provided on the
D because there would not be enough space, but the prototype leature vectors themselves are provided.

The result of the tesl was an error rate (fraction of the test prints misclassified) of 7.78%. More insight inte the
behavior of the classifier can be obtained by examining the confusion matriz of table 1. This matrix has a row for
eacl actual class and a column lor each hypothesized class. and it shows. as the unparenthesized numbers, how
many test prints fell into each (actual class. hyp. class) cell. For example, it shows (hat 779 of the L. {left loop)
prints were classified as L. and that 2 of them were classified as R. Each parenthesized number is tle percentage
thal its corresponding count comprises of the sum of the counts in that row: for example, (he parenthsized numbers
show that 96.9% of the L prints were classified as L. and that (.2% of them were classified as R. The entries shown
in boldface correspond to correct classifications. Obviously this classifier is not at all good at classifving sear prints,
but they were nevertheless left in the training and test sets, for simplicity and to avoid any possible optimistic bias,

The 7.78% error rate, and the confusion matrix, pertain to the use of the classifier without rejection: it is required
to produce a hiypothesized class lor every print. However. if the classifier is allowed to reject some prints, i.e.
to indicate that it is uncertain as to their class and that it does not accept the hypothesized class, then il can
achieve an error rate much lower than 7.78% on the prints that it accepts. The confidence number produced by the
classifier is used to provide an adjustable rejection level. To implement rejection. it is sufficient 1o sel a confidence
threshold, then reject all prints for which the classifier produces a confidence below the threshold. The larger a
threshold is used, the greater is the percentage of the prints thal are rejected (obviously}. but alse the smaller is
the percentage of the accepted prints that are misclassified. The solid curve in figure 12 is an ¢ rror vs. rejeet curve
that summarizes this behavior, produced from the results of the test run. The dashed curve on the same graph
is lor a classifier consisting of the PNN alone, without the help of (he pseudoridge analyzer: clearly the hybrid
classifier is more accurate than the PNN alone, at all rejection levels.



Actoal | Hypothesized class ' ‘
class | A L] R] S T ] W

[ A 43 (87.8) T (2.0 2 (40T 0 (00 3 (6.0 0 (0.0)]
A 1 (0.5) | 779 (96.9) RN D) 6 (0.7) 13 (10) |
R 105y 11 (15) ] 696 (94.7) [ 0 (0.0) 8§ (1.1 165 (2.2)]

S 0 (0.0 3 (60.0) 1 (2000 | 0(0.0) 0 (0.0) I (20.0) |
=T 200 23.8) [ 25 (29.8) [ 15 (10.9) | 0 (0.0) ] 24 (28.6) 0700y |
| W 2 (0 [ 45 (4| (27) 0 (0.0)] 0 (0b)]| 948 (92.7) |

Table 1: Confusion matrix. Unparenthesized: counts of how many prints fell into each cell. Parenthesized:
percentages of row sums of counts. Boldlace: correct classificalions.

EAROR PERCENTAGE

REJECT PERCENTAGE

Figure 12: Percentage of accepted prints erroneously classified vs. percentage of prints rejected. Solid: hybrid
classifier (PNN combined with pseudoridge-analyzing whorl detector). Dashed: PNN alone.



4.2 Timing Results

The classifier (in its non-graphical form) was timed on several computer models!?: the results are shown in table 2.
The default run of peasysgn was run (i.e. no user parameters file). which classifies the first 20 prints ol the demo
set. The clock time reported by “time” was multiplied by the usage percentage and divided by the munber of prints
to produce the average seconds per print. Note that PCASYS is intended only as a prototype and demonstration
program, and is not expected to achieve a throughput rate sufficient for use in a working AFIS.

[ Compuler Model B | Single-Precision and Optimization Options [ Sorond?]
[ DEC Alpla [ -Isingle -02 7.0
HP 9000/735 o - +03 5.0
IBM 70127370 o -fsingle -03 6.7
G Challenge (IP19). using only one processor -02 7.5
| Sun SPARCstation 2 w/ Weitek 30MHz (DU -Fsingle -03 17.7
\h ) Sun SPARC'station 10 - -fsingle -O3 16.7
} ~ Sun SPARCserver 1/170 -fsingle -O3 32.9

Table 2: Timing results for various workstation models.

12 Various commercial equipment may be identified in order to adequately specify or deseribe the subject matter of this work. In no
case does such identification imply recommendation or endorsement by the National Institule of Standards and Technology.
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5 Possible Future Work

The PCASYS program implements the best fingerprint classification algorithms that we have found as a result
of our experiments, bul we think that considerable accuracy improvement may still be possible without radically
changing the overall structure of the system. The following are some of the possible avenues of Turther research
that seem promising:

e A Multilayer Perceptron (MLP) with a sine activation function could be used in place of the PNN. We have
already tried an MLP with a sigmoid activation function. producing results slightly worse than those of the
PNN. but the sinusoidal version has belter training dynamics than the sigmoidal version, and has already
produced very good resulls in experiments done at NIST [16. 17, 18).

» Lrror-correcting codes could be used as an output representation for an MLI? {probably the sinusoidal version).
instead of the usual one-node-per-class representation. This has been found to improve accuracy [19].

e More information could be extracted from (he pseudoridges than is done in our current system. such as hy
using histograms ol the cumulative turning angles or by using rules designed (o deteet patterns other than
concave-upward shapes. These are among the possible uses of pseudoridges pointed out by Smith [13].



6 Installing and Running the Classifier

6.1 Installing the Classifier

Instructions [or installing the classifier demos and other commands are contained in the readme.txt file on the
distribution C'D-ROM. That file contains instructions for running the installation seripl, install.sh. and indicates
the setup proceedures that are needed in order 1o be able lo run the cormmands.

6.2 PCASYS Data Files

For the purpose of convenientely storing and transporting data. formats have been defined for three types of data
files:

matrix A matrix of real numbers.

covariance A covariance matrix of real numbers. This format saves disk space by st oring only the honstrict lower
triangle, which is sufficient because a covariance matrix is symmetrie.

classes A list of classes, thought of as unsigned characters. For use with fingerprints in peasys. class values 0
through 3 denote arch, left loop. right lvop. scar, tented arch, and whorl. A classes file can be used for any
classification situation with no more than 236 classes, though,

Fach type of file can exist in either an ascii or a binary storage mode. A daia file contains header informaltion followed
by the data itself. The header information consists of: a description string (can he of any length, but must conlain
no newlines: can be left empty): code bytes indicating the file type and storage mode; and additional information
specific to the file type (if matrix, the two dimensions; if covariance, the order. i.e. what both dimensions of the
symmetric matrix are. and the nummber of vectors used (o build the covariance: if classes. the number of elements,)
The datainfo comimand can be run on any PCASYS data file: it writes a report of the header information to the
standard output. {Caution: datainfo produces meaningful output only if for matrix. covariance. and classes files.
Do not run it on IHead image rasters, text files, source code files. binary executables, etc.)

The directory pepltm on the ('D contains three data files needed by the classifier demos: the prototype leature
vectors used by the PNN (profvs.ase. a matrix file with each feature vector slored as one row): their classes
(procls.ase, a classes file): and a transformn matrix that the demos apply (o (he orientation array of each demo
lingerprint (o produce the feature vector Lo be sent to the PNXN (tranmat.ase, a matrix file). These files are
provided in ascii form as a way of transporting the data to any machine that PCASYS is to be installed on.
regardless of the binary data storage format used by that machine. Machines can vary in the byte ordering used
and in the format of Hoating-point numbers. However, files containing large quantites of data (in particular, the
prototype feature vectors) are hest stored in binary format, to save ifo lime. So. the installation script converts
the ascii data files on the ('D to binary form and stores the resulting files in peasys/data. (Because the aseii to
binary converter command. asc2bin. will have been compiled locally during the compilation phase of installation,
it will produce binary files appropriate for the local machine.)

6.3 Commands

Installation of PCASYS results in the production of the following commands, shown here with short descriptions.
For a complete description and usage instructions for any of these commands. consult the provided online man page.
{To prepare to use the man pages. cither edit .cshre or .profile so that whererer_peasys_is_installe d/pcasys/man is
added to MANPATIL or make an alias for man -M thai_dire ciory, which can then be used to consult only PCASYS
IMan pages).



6.3.1 Classifier Demos

pcasysgn non-graphical demo

pcasysgy graphical demo

6.3.2 Training (Optimization) Commands

diag finds some eigenvalues and eigenvectors

lintran runs a linear transform on a set of vectors

meancov makes mean and covariance from a set of vectors

mkoas makes orientation arrays [rom fingerprin(s

mktran makes transform maltrix incorporating the optimized regional weights
optosf optimizes the overall smoothing lactor

optrws optimizes the regional weights

6.3.3 Utility Commands

asc2bin converts an ascii data file (o Dinary

bin2asc converts a binary data file to ascii

chgdesc changes (he description string of a data file

cmbmes combines several mean/covariance file pairs

datainfo reports the header info of a dala file 10 standard output
dpyimage displays an Hlead image file on the terninal screen
oas2pics makes [ead pictures of orientation arrays

rwpics makes [Head pictures of regional weights or estimated gradients
stackms stacks several matrir files logether

sun2ihdr converts a Sun raster file to an [Head file

6.4 Running the Classifier
6.4.1 Graphical and Non-graphical Versions

The classifier has a graphical version (command name peasysgy) and a non-graphical version {(pcasysgn). The
graphical version. which requires the X Window System. produces windows on the screen containing graphics
which show (he results of the phases of processing used to classify each fingerprint. (Many of the illustrations
in this report were made from screen dumips of the graphical demo.) The non-graphical version classifies the
fingerprints but produces no graphies: it is suitable if you do not have X Windows, or for greatest running speed.
Both versions optionally produce a stream of messages on the terminal showing whicl fingerprint the classifier is
working on and what phase of processing it is performing. and hoth versions produce an output file.



6.4.2 Default Parameters and Specifying Parameters

Alter installation, cach user who wants to run the peasys commands should edit .cshre or -profile so as to add (le
peasys/bin directory to the path. and should make a directory .peasys in user’s home directory. containing (wo
symbolic links. These should be: ed_mount peint. pointing to wherever the C'D) is mounted: and inst_parentdir,
pointing to the parent direclory of the peasys installation hierarchy. (The demos need (o know the C'I) mount point
to find the demo fingerprint images on the C'D. and they need to know the installation parent dir so they can find
the binary files installed in peasys/data.) Then, to run the classifier in default mode. it is sufficient to type the
command name, for the graphical or the non-graphical version, without arguments: “peasysgy” or “peasysgn”. In
default mode. the demo runs on the first 10 of the 2700 provided demao fingerprints.

Alternalively. the user may produce a parameter file and use its name as an argument: “peasysgy prafile” or
“peasysgn prsfile”. Whether or not the user provides a parameter file. the demo reads two default parameter files
in the peasys/data/dfprs hierarchy, first oas.prs (parameters affecting the making of orientation arrays) and then
add/peasysgy.prs or add /peasysgn.prs as appropriate (additional parms lor demo). If the user provides a parameter
file. the demo then reads il, and whatever values are specified in it override those found in the default files. Consull
the default files to find out what the parameters are and as an example of the format for a parameters file (a
naine-value pair on each line, with a pound sign (o indicate that the rest of a line is a comment ).

6.4.3 Output File

The output file produced by running the classifier in its default mode is as follows:

o( - ) o - ) ol - ) o - > ol - ) of -
0{ 0.0) o( 0.0) o( 0.0) o( 0.0) o( 0.0) 3(100.0)

50024301.wsq: is W; pnn: hyp R, conf 0.66; conup y; hyp W, conf 0.90; right
s0024302.wsq: is R; pnn: hyp R, conf 0.84; conup n; hyp R, conf 0.84; right
50024303.w¥sq: is R; pnn: hyp R, conf 1.00; conup n; hyp R, conf 1.00; right
s0024304.wsq: is R; pnn: hyp R, conf 1.00; conup n; hyp R, conf 1.00; right
50024305.wsq: is R; pnn: hyp R, conf 0.99; conup n; hyp R, conf 0.99; right
500242306.wsq: is L; pan: hyp L, conf 0.99; conup n; hyp L, conf 0.99; right
£0024307.wsq: is L; pnn: hyp L, conf 0.85; conup n; hyp L, conf 0.85; right
s0024308.wsq: is L; pnn: hyp L, conf 1.00; conup n; hyp L, conf 1.00; right
50024309.wsq: is L; pnn: hyp L, conf 1.00; conup n; hyp L, conf 1.00; right
50024310.wsq: is L; ponn: hyp L, conf 0.99; conup n; hyp L, conf 0.99; Tight
80024311.wsq: is R; pnn: hyp R, conf 0.99; conup n; hyp R, conf 0.99; right
s0024312.wsq: is W; pnn: hyp W, conf 0.99; conup y; hyp W, conf 1.00; right
s50024313.wsq: is R; pnn: hyp R, conf 0.99; conup n; hyp R, conf 0.99; right
s0024314.wsq: is R; pnn: hyp R, conf 0.89; conup n; hyp R, conf 0.89; right
s0024315.wsq: is R; pan: hyp R, conf 0.94; conup n; hyp R, conf 0.94; right
50024316.9sq: is L; pnn: hyp L, conf 0.99; conup n; hyp L, conf 0.99; right
30024317.wsq: is L; pnn: hyp L, conf 1.00; conup n; hyp L, conf 1.00; right
s0024318.wsq: is L; pnn: hyp L, conf 0.99; conup n; hyp L, conf 0.99; right
s0024319.wsq: is W; pnn: hyp W, conf 0.99; conup y; hyp W, conf 1.00; right
80024320.wsq: is L; pnn: hyp L, conf 1.00; conup n; hyp L, conf 1.00; right
pct error: Q.00

A L R S T W
A ot =) o - ) o - ) o - ) o - of - )
L o( 0.0) §(100.0) o( 0.0) 0 0.0) o( ©0.0) 0( 0.0)
R o( 0.0) o( 0.0) 8(100.0) o( 0.0) o( 0.0) 0( 0.0)
s o - ) o€ - o - o - o - of -)
T
W



The output file has a line for each of the fingerprints that were classified. Each line shows: the last componenl
of the fingerprint image filename: its actual class (A. L. R, S, T, and W stand for the pattern-level classes arch.
left loop. right loop. scar. tented arch, and whorl): the output of the main Probabilistic Neural Network (PNN)
classifier (a hypothesized class and a confidence); the output of the auxiliary pseudoridge-tracing whorl detector
{whether or not a concave-upward shape. a conup. was found): the final eutput of the hybrid classifier, which is a
hypothesized class and a confidence: and whether this hypothesized class was right or Wrong.

The last part of the output file is a brief summary of the results. First, there is the percent error. i.e. the percentage
of the fingerprints that were classified incorrectly. Following this is a confusion matriz. It has the same forinal as
table 1, described in 4.1.
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A The IHead Image File Format

Afler digitization. certain attributes of an image are required to correctly interprel the l-dinwensional pixel data
as a 2-dimensional image. Examples of such attributes are the pixel width and pixel height of the image. These
attributes are stored in a machine readable header prefixed to the raster bit stream. A program that manipulates
the raster data of an image is able o first read the header containing these attributes and determine the proper
interpretation of the data that lollows it.

NIST has designed. implemented., and distributed images based on this paradigm. A header format named Ilead
has been developed for use as an image interchange format, Numerous image formals exist: some are widely
supported on small personal computers, others supported on larger workstations: most are proprietary formats,
few are public domain. [Head is an attempt to design an apen image format which can be universally implenmented
across lheterogencous computer architectures and environments. 1Head has been successfully ported and tested
on several systems including: UNIX workstations and servers. DOS personal computers. and VMS mainframes.
Bolh documentation and source code for the [Head format are publicly available. 1Head has been designed with
an extensive set of attributes in order to: adequately represent both binary and gray level images: represent
images captured from different scanners and cameras: and satisfy the image requirements of diversified applications,
including but not linited to, image archival/retrieval, character recognition, and Engerprint classification.

The IHead structure definition, written in the ¢ programming language, is as [ollows:

/*********************1‘**************************************/

/* File Name: IHead.h */
/* Package: NIST Internal Image Header */
/* Author: Michael D. Garris */
/* Date: 2/08/90 */

/e ok sk ko ok R ARk ook sk s ok o o ok o ok ok ok ok ke ok ok

/* Defines used by the ihead structure */

#define IHDR\_SIZE 288 /* len of hdr record (always even bytes) */
#define SHORT\_CHARS 8§ /¥ # of ASCII chars to represent a short */
#define BUFSIZE 80 /+* default buffer size */

#define DATELEN 26 /* character length of date strimng */

typedef struct ihead{
char id[BUFSIZE]; /* identification/comment field */
char created[DATELEN]; /#* date created */
char width[SHORT\_CHARS]; /#* pixel width of image */
char height [SHORT\_CHARS]; /# pixel height of image */
char depth[SHORT\_CHARS]; /+# bits per pixel */
char density[SHORT\_CHARS]; /* pixels per inch */
char compress[SHORT\_CHARS]; /# compression code */
char complen[SHORT\_CHARS]; /* compressed data length */
char align[SHORT\_CHARS]; /* scanline multiple: 8116|322 %/
char unitsize[SHORT\_CHARS]; /* bit size of image memory units %/
char sigbit; /% 0->sigbit first | 1->sigbit last */
char byte\_order; /* 0->highlow | 1->lowhigh#/
char pix\_offset [SHORT\_CHARS]; /# pixel column offset */
char whitepix[SHORT\_CHARS]; /* intensity of white pixel */
char issigned; /# O->unsigned data | i->signed data #*/
char rm\_cm; /* O->rov maj | 1->column maj */
char tb\_bt; /* O->top2bottom | 1->bottom2top */
char 1lr\_rl; /* O->left2right | 1->right2left */
char parent[BUFSIZE]; /# parent image file */
char par\_x[SHORT\_CHARS]; /# from x pixel in parent */
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char par\_y[SHORT\_CHARS]; /* from y pixel in parent */
}IHEAD;

/* General Defines */
#define UNCOMP 0O
#define CCITT\_G3 1
#define CCITT\_G4 2
#define LZW 3

#define RL\_LZV 4
#define RL 5

#define JPEG 6
#define WSQ 7
#define MSBF 'O’
#define LSBF ’1°
#define HILOW ’0¢
#define LOWHI °1’
#define UNSIGNED ’0°
#define SIGNED ’1°
#tdefine ROW\_MAJ °0'
#define COL\_MAJ °1*
#define TOP2BOT 'Q*
#define BOT2TOP *1’
#define LEFT2RIGHT 'O’
#define RIGHT2LEFT '1°

#define BYTE\_SIZE 8.0

extern IHEAD *calerahdr();
extern IHEAD *cuthdr();
extern void nullihdr();
extern void parseihdrid();
extern veid printihdr();
extern IHEAD *readihdr();
extern void writeihdr();

The following listing shows the header values [rom an 1Head file, corresponding (o these structure members. This
header information belongs to demao fingerprint s0024301. wsq:

IMAGE FILE HEADER

Identity : s0024301.wsq m i do
Header Size : 288 (bytes)

Date Created : Wed Apr 21 22:37:17 1993
Width : 832 (pixels)

Height : 768 (pixels)

Bits per Pixel : 8

Resolution : 500 (ppi)
Compression : 7 (code)

Compress Length : 37446 (bytes)
Scan Alignment : 8 (bits)

Image Data Unit : B (bits)

Byte Order : High-Low

MSBit : First

Column Offset : O (pixels)
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White Pixel : 255
Data Units : Unsigned
Scan Order : Row Major,
Top to Bottom,
Left to Right
Parent : tape205.n0407065.01 4096x1536
X Origin : O (pixels)
Y Origin : O (pixels)

The lirst attribute field of [Head is the identification field, id. This field uniquely identifies the image file. typically
by a file name. In the fingerprint files of NIST Special Database 14 {(of which the provided demno fingerprints are a
subset ), the id feld contains, after thie file name, various information about the fingerprint: sex (m or (). inked or
live scan (i or 1), and the classification of the fingerprint (in this case, do, meaning double loop whorl with outer
tracing).

The attribute field, ereated, is the date on which the image was captured or digitized. The next three fields hold the
image’s pixel width, height. and depth. A binary image has a pixel depth of 1 whereas a gray scale image containing
256 possible shades of gray has a pixel depth of 8. The at(ribute field. density, contains the scan resolution of the
image: in this case, 500 ppi. The next two fields deal with compression.

In the THead lormat, images may he compressed with virtually any algorithm. Whether (he image is compressed or
not. the Ilead is always uncompressed. This enables header interpretation and manipulation without the overhead
of decompression. The compress field is an integer flag which signifies which compression techuique. il any, has
been applied to the raster iinage data which follows the header. I the compression code is zero. then the image
data is not compressed. and the data dimensions: width, height. and depth. are sufficient to load the image into
main memory. However, il Lhe compression code is nonzero. then the complen field must be used in addition (o
the image’s pixel dimensions. For example. the image described here has a compression code of 7. By convention.
this signifies that WSQ compression has been applied to the image data prior 1o file creation. In order to load the
compressed image data into main memory, the value in complen is used (o load the compressed block of data into
main memory. Once the compressed image data has been loaded into memory, WS8Q decompression can be used
to produce an image which has the pixel dimensions consistent withi those stored in its header.

The attribute field, align. stores the alignment houndary to which scan lines of pixels are padded. Pixel values of
binary images are stored & pixels (or bits) to a byte. Most images, however, are not an even multiple of # pixels in
width. In order to minimize the overhead of ending a previous scan line and beginning the next scan line within
the same byte. a number of padded pixels are provided in order to extend the previous scan line 1o an even byte
boundary. Some digitizers extend this padding of pixels out to an even multiple of 8 pixels, other digitizers extend
this padding of pixels out to an even multiple of 16 pixels. This field stores (he image’s pixel align- ment value
used in padding out the ends of raster scan lines.

The next three attribute fields identify binary interchanging issues among heterogencous computer architectures
and displays. The unitsize field specifies how many contiguous pixel values are bundled into a single unit by the
digitizer. The sighil field specifies the order in which bits of significance are stored within each unit: most significant
bit first or least significant bit first. The last of these three fields is the byte_order field. If unitsize is a multiple
of bytes. then this field specifies the order in which byfes occur within the unit. Given these (hree attributes,
binary incompatibilities across computer hardware and binary format assumptions within application soltware can
he identified and eflectively dealt with.

The pix_offset attribute defines a pixel displacement from the left edge of the rasier image data to where a pariicular
image’s significant image information begins. The whitepix attribute defines the value assigned to the color white.
For example, the binary image described in Figure 7 is black text on a white background and the value of the while
pixelsis L. This field is particularly useful to image display routines. The issigned field is required to specifly wlhether
the units of an image are signed or unsigned. This attribute determines whetlier an image with a pixel depth of 8,
should have pixels values interpreted in the range of 128 to 4127 or 0 to 255. The orientation of the raster scan
may also vary among different digitizers. The attribute field. rm.cm, specifies whether the digitizer captured the



image in row-major order or column-major order. Whether the scan Lines of an image were accumulated from (op
to bottom. or bottem Lo top. is specified by the feld, (1) bt, and whether left to right, or right to left, is specified
by the field, rlir.

The final altributes in llead provide a single historical link from the current image to its parent image; (he one
from which the current image was derived or extracted. In the example. the parent field shows the name of a
large rasier, scanned [rom a fingerprint card. from which the current raster. depicting one box of the card, was
cul. In general, the x origin and y origin field contain the upper left hand corner pixel coordinate from where the
extraction look place from the parent image, but for these fingerprint hnages the x origin and y origin fields have
been set to zeros. We believe thal ihe [Head image format contains the minimal amounl ol ancillary information
required to successfully manage binary and gray scale images,
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