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ABSTRACT

A set of algorithms is presented that enables a computer to automatically read a paragraph of handprinted text. 
These steps are broken down into: 1.) isolating the lines of handprint; 2.) segmenting the lines into character images; 
3.) classifying the character images; and 4.) spell-correcting the classifications. A robust method of line reconstruction 
is presented that avoids statistical outliers and generates a spatial map representing the center of mass of each hand-
printed line. Components are organized into lines based on their overlap and proximity to bands within the map. This 
facilitates the efficient detection and splitting of vertically touching characters across lines of text. A new character 
segmentor is also presented that adapts automatically to writing style. The segmentor composes characters from mul-
tiple components and it separates touching characters from single components. Comparing the performance of the seg-
mentor between a 1-line response and a paragraph demonstrates that a person’s writing has a tendency to become more 
varied and irregular as spatial constraints are relaxed. An optimized Probabilistic Neural Network is used to classify 
the character segments, and a description of a dictionary-based correction scheme is provided. Recognition accuracies 
are reported on 500 handprinted paragraphs from NIST Special Database 19 containing the Preamble to the U.S. Con-
stitution. The new methods of line reconstruction and character segmentation improve word recognition accuracy by 
4% (from 60% to 64%) over a system that uses connected components directly as character segments. This paper rep-
resents a significant step toward a general purpose unconstrained handprint recognizer, and points out where future 
work may be focussed.

Keywords: connected components, dictionary-based correction, handprint, optical character recognition, probabilistic 
neural network, unconstrained paragraph

1. INTRODUCTION

The focus of this paper is on the technology required for a computer to read a paragraph of unconstrained 
handprint. Examples of applications that stand to benefit from this technology are the automated reading of hand-
printed messages sent via facsimile machine and the processing of forms that contain multiple-line responses to open-
ended questions such as, “Please describe the sequence of events leading up to the accident.” The task of reading an 
unconstrained paragraph of handprint can be broken into several steps as illustrated in Figure 1: 1.) the handprint is 
isolated into individual lines; 2.) the lines are segmented into individual characters images; 3.) the characters images 
are classified; and 4.) the classifications are corrected using a dictionary.

The National Institute of Standards and Technology (NIST) has developed a public domain optical character 
recognition (OCR) system, called the NIST Form-Based Handprint Recognition System, that serves as a vehicle for 
technology transfer to those developing recognition technology and integrating it into various applications [1]. The 
system is a full source code distribution written in ‘C’ and distributed on ISO-9660 CD-ROM, and it can be obtained 
free of charge by contacting the author. The public domain OCR system reads the handprint entered on Handwriting 
Sample Forms (HSF) like the one shown in Figure 2. A large collection of these forms (3669) has been scanned and 
is distributed on CD-ROM as NIST Special Database 19 (SD19) [2]. HSF forms contain single-line fields containing 
handprinted digits and a randomly ordered lowercase and uppercase alphabet. The focus of this paper is on the last 
field on the form which contains the Preamble to the U.S. Constitution. This is a relatively unconstrained paragraph of 
handprint; there are no demarcations provided within the large box to guide the trajectories or the spacing of the hand-
writing; and as a result, the handwriting in these fields is spatially representative of typical paragraphs of handprinted 
text.
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This paper presents a number of new algorithms for conducting the steps listed in Figure 1. The algorithms 
used for steps 3 and 4 are currently distributed with the first release of the NIST system, whereas the techniques for 
steps 1 and 2 (those dealing with the segmentation of a handprinted paragraph) represent new technologies that 
improve overall recognition performance. Section 2 presents a new method for reconstructing the line trajectories from 
a handprinted paragraph whose image was scanned off-line (independent from the time it was written). Section 3 
describes a new method of character segmentation that automatically adapts to the style of writing being processed. 
Section 4 discusses character classification and Section 5 documents a technique for dictionary-based correction using 
a limited-size lexicon. Results from using the new methods of line reconstruction and character segmentation are com-
pared to the performance of the original NIST public domain system in Section 6, and conclusions are drawn in the 
final section.

Figure 1. Steps to reading handprinted paragraphs with a computer.

2. ISOLATE TEXT LINES

In order to read a paragraph of handprinted text, its characters must be segmented and organized into lines. 
The approach taken in this work is bottom-up, beginning with the connected components in the image. A connected 
component is defined as a set of black pixels where each pixel is a direct neighbor of at least one other black pixel in 
the component. Eight-way connectivity is used in this application, where a neighbor is defined to be either directly 
adjacent or directly diagonal to a pixel. These components are sorted into lines of text and then segmented into char-
acter images. Connected components give reasonably good estimates of where the individual characters are in the para-
graph. Some characters may be comprised of multiple components, while some components may contain multiple 
touching characters. Regardless, the connected components can be used to determine the positions of the lines of text 
within the paragraph, and they provide good initial character segmentations.

In principle, the lines of text can be represented by a graph connecting the nearest neighbors of horizontally 
adjacent components. However, handprinted text in the form of a paragraph is spatially unconstrained as there are no 
demarcations to guide the writer’s line spacing and trajectories. As a result, the writing can be extremely varied. Lines 
within the same paragraph may bend and or slant at varying degrees of angle. In previous work, NIST developed a 
technique for tracking the trajectory of handprint when the image is captured off-line [3]. The technique (described in 
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Section 2.2) utilizes a search space defined by a cosine function (forming bubbles) to conduct a horizontally biased 
point-to-point search through the center points of the connected components within the text paragraph.

Figure 2. An example HSF form from SD19.

2.1 Computational Geometry Considered

In an attempt to improve upon the line reconstruction in [3], algorithms from more traditional Computational 
Geometry (CG) were considered. Papers like those presented by both Ittner [4] and Toussaint [5] give support for using 
CG algorithms to manipulate various sorts of image data for document analysis purposes. CG provides a suite of gen-
eral purpose algorithms that organize data into various types of topological graphs. Originally it was thought that 
graphs such as the Voronoi diagram, Delaunay triangulation, and the minimum spanning tree may prove helpful in sort-
ing the handprinted components into lines [6]. Seeking efficient implementations of these algorithms, a reference was 
found on the use of buckets that effectively reduces the time to construct the Voronoi diagram to that of O(n) [7], 
whereas naive implementations of these types of graph-building algorithms operate in O(n2), and more clever algo-
rithms still only operate in O(n log n) time [8].

Bucketing typically involves dividing up the data space into a uniform grid and assigning each data point to 
its respective spatial bin (or bucket). Data points are then subsequently referenced by their bucket address for coarse 
positional processing. Detailed positional processing can then be efficiently localized to only those data points located 
in closely neighboring buckets. Utilizing a bucket sort is most effective when the data is uniformly distributed. While 



4

machine print is extremely uniform, handprint still retains some uniformity in terms of character and line spacing. A 
bucketing scheme was designed that divided the paragraph’s image space into a grid of cells whose dimensions were 
based on the average width and height of the connected components. Rather than computing the Voronoi Diagram, etc. 
a simple nearest-neighbor method based on processing adjacent buckets was used to construct a Nearest-Neighbor 
(NN) graph from the center points of the components. The algorithm executed very efficiently. The construction of the 
NN graph from one of the Preamble paragraphs in SD19 took approximately 2 seconds on a Sun Microsystems 
SPARCStation 2 with an 80 MHz Weitek CPU1.

The results of the NN-graph were then visually compared to the lines reconstructed using the older bubble-
based point-to-point search. While the old method took on about 2.5 seconds a paragraph, its results were determined 
to be significantly better. The generation of the NN graph was indeed quicker, but unfortunately it frequently joined 
characters from neighboring lines, thus proving that NN distances alone are not sufficient to reliably organize handprint 
into text lines. It was concluded that considerable postprocessing would be required to satisfactorily clean up the NN 
graph to correctly represent text lines thus nullifying any increase in speed afforded by the bucketing scheme. At this 
point it was decided to focus work on improving the older point-to-point search as it utilizes nearest neighbor relations 
in conjunction with certain expectations of localized line trajectory based on simple writing style attributes.

2.2 Previous Point-to-Point Search

The location of each connected component (or blob) is identified by computing the geometric center of its 
smallest bounding rectangle. The result is a 2-dimensional grid of blob centers that can be used to represent the line 
trajectories of the handprinted text. A technique for searching the 2-dimensional grid of blob centers was developed 
that takes into account local writing fluctuations to sort the blobs into correct reading order. Reference [3] provides a 
detailed description of this technique which conducts a point-to-point search using a local search space defined by the 
interior of the function:

This function, which is similar to an antenna sensitivity model, forms a tear-drop shaped bubble that is desir-
able for this application because it is horizontally biased. At values of b near 0.1, the function’s shape is circular, and 
as b increases the shape continuously forms into a tear-drop. The variable, a, controls the length of the bubble along 
its horizontal axis of symmetry. By increasing a, the length of the bubble is increased and the search is extended. The 
variables, a and b, are controlled using a linear function defined by h (the average height of the blobs in the paragraph). 
Using the linear control function, the size and shape of the bubble can be continuously modified as shown in Figure 3. 
In these three examples, average blob heights of 16, 32, and 48 are used, respectively.

Figure 3. Adaptation of bubbles to the writer’s average component height.

1. Specific hardware and software products identified in this paper were used in order to adequately support the development of the tech-

nology described in this document. In no case does such identification imply recommendation or endorsement by the National Institute 

of Standards and Technology, nor does it imply that the equipment identified is necessarily the best available for the purpose.
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The search begins from the blob center closest to the top-left corner of the paragraph. The blob is added to an 
empty list, and a bubble is initialized, tested, and then grown via incrementing a until either a neighboring blob center 
is found or a exceeds a threshold (300 pixels). In general, the new blob is added to the list and the search resumes from 
the center of the new blob. However, if the new blob’s center does not meet given criteria as described in [3], then its 
center is added to the list, but the search continues from the current blob center and does not advance to the center of 
the new blob. This way the system does not naively follow erratic line trajectories, minimizing the chances of crossing 
over into adjacent lines. 

During the development of this approach, it was determined that as local fluctuations in the handprint become 
excessive (rather than force the system to make a guess) the point-to-point search should be preempted. The search is 
restarted from top-leftmost blob not yet assigned to a line in the image. This action is also taken at the end of a text 
line when no new neighboring blob centers are found to the right of the current blob. Each restart involves starting a 
new list, and the entire search process is terminated when every blob in the image has been assigned.

Figure 4. Heuristic used to preempt the search.

The criterion for preempting the search and beginning a new list is illustrated in Figure 4. In this illustration, 
the search is currently being conducted from blob center (2), and (3) has been located as the next nearest neighbor. The 
two parallel horizontal lines in the diagram represent the area bounded by -h and +h centered about the previous blob 
center (1). If the vertical distance between (1) and (3), (d1 +d2), exceeds the limit l, then the search is preempted and 
(3) is not added to the current list. Blob (3) is left unassigned so that it can be added to a list later in the search process.

Figure 5. Traces of the bubbles used to sort the connected components into lines.

The point-to-point search produces multiple lists of connected components. Some of the lists represent com-
plete lines of text, and other lists may represent only fragments of the text lines printed. A final merging process is 
required so that only lists containing complete text lines remain [3].

2.3 Line-Band Image Map

The line reconstruction described above, although an improvement over a plain NN graph, is still too suscep-
tible to including characters from other lines and crossing lines. Just as important is the fact that the method does not 
detect when two lines touch (i.e. characters across two lines touch each other vertically). In its original form, the point-
to-point technique has no way to divide these touching lines.
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Improvements contributed by the work in this paper are primarily accomplished by encapsulating the old 
point-to-point method into a more sophisticated process that generates an image-based map. The one fundamental 
change actually made to the original method is the use of one additional preemption heuristic. From Figure 4, if the 
distance between points (2) and (3) is greater than h, then the search is preempted. The remainder of the original 
method is directly used without change.

In order to improve the quality of extracted lines, the connected components are sorted into three categories: 
small, normal, and tall. A component is too small if it is dot-sized which is defined to be

If (w < (2 × esw)) && ( h < (3 × esw)) then Dot

where w is the pixel width and h is the pixel height of the component and esw is an estimate of the stroke width (dis-
cussed later). This allows a small diagonal stroke to be considered too small. A component is considered too tall

If (h >= (ech × 1.5)) then Too Tall

where ech is an estimate of the height of the handwriting (also discussed later). Those blobs determined to be too small 
or too tall are ignored when conducting the point-to-point search. In this way, only those components considered to be 
typical in height are processed, eliminating statistical outliers from the search. As the point-to-point search proceeds, 
one additional category of components is collected. Those components that cause the preemption heuristics associated 
with Figure 4 to trigger are collected into a category known as problems. This prohibits the erratic steps that cause 
preemption from being added to the line trajectories. Much more reliable trajectories are generated as a result of filter-
ing out these deviant cases. An example of the resulting piecewise linear trajectories is plotted in Figure 7. These 
results are computed from the image shown in Figure 6. Notice the component center points that are labeled small, tall, 
and problems. 

These piecewise linear trajectories estimate the vertical center of each line of handprint. In order to determine 
which connected components belong to which lines, some notion of distance from a component to its neighboring lines 
must be computed. Measuring the distance from the center point of a blob to the vertical center of a line is not a good 
characterization of the component’s true position relative to the line. A more natural measurement is based on overlap. 
To conduct such measurements, the center trajectories of each line of text are expanded to an envelope of space that 
represents the center of mass of the line. In this way, the piecewise linear trajectory is expanded to include a spatial 
band that encompasses the majority of the handprinted text along the specific line. Percentages of overlap and distances 
are computed in relationship to these bands.

To construct these line-bands, the y-coordinates from the tops of every component linked along a line are 
smoothed using the following 3-point smoothing function:

The span between each successive pair of smoothed top points is linearly interpolated. The bottoms of every compo-
nent linked together are similarly smoothed and interpolated. The resulting area between the smoothed and interpo-
lated tops and bottoms forms the envelope representing the mass of the line. Smoothing reduces the effect of large 
descenders, punctuation, and isolated erratic writing. An example of the line-bands computed for the image in Figure 
6 is shown in Figure 8. Each line’s band in the image is filled with a unique pixel value representing its line index. The 
left and right ends of each band are extended horizontally to the edges of the image or until the band intersects an 
already existing band. This resulting image is called a line-band map.

ŷi
yi 1− 2.0 yi×( ) yi 1++ +

4.0
= (2)
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Figure 6. Example of a paragraph whose lines are written with a pronounced slant.

Figure 7. Component centers from Figure 6 linked into lines of text.
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Figure 8. The line-bands computed for the image in Figure 6.

All the components in the image (including those labeled small, tall, and problems) are analyzed with respect 
to the line-band map. Each component is overlaid on the map in its original position and used as a mask. A histogram 
is calculated, totalling (by unique band index) the number of overlapping black pixels in the component. For example, 
if a component overlaps bands 3 and 4, then the histogram will contain the total number of black pixels in the compo-
nent that overlap with band 3, and separately it will contain the total number overlapping band 4.

If a component is sufficiently tall (greater than the 90th percentile of heights of all the components in the para-
graph image) and overlaps two or more line-bands, then the component likely contains two vertically touching char-
acters that belong to different lines. Single characters typically overlap neighboring bands from the top extending 
downwards, such as with the drawing of long descenders. It was observed that most characters belonging to a specific 
band will almost entirely overlap that band vertically. Therefore, the following test was designed. If the component 
overlaps two or more bands, and the lower band overlaps a substantial part of the component (greater than 12.5% of 
the component’s black pixels), and the component vertically overlaps a significant portion of the lower band (75% of 
the entire bands height), then the component is most likely two vertically touching characters and it should be split.

A tall component is split across multiple lines by dividing it vertically into relatively equal pieces. Given n 
overlapping bands, n-1 cuts are initiated at successive increments of (h/n), where h is the height of the entire compo-
nent. To make the cuts, the component image is rotated 90° on its side, and starting at the first cut position, a search 
(or trace) is initiated from the top of the rotated component downwards and from the bottom of the component 
upwards. The trace is free to fall vertically until it hits the edge of a character at which point it flows along the contour 
falling progressively downwards until either the bottom of the image or a local minima is reached. The trace upwards 
performs similarly in the opposite direction. The character is then cut at the minimum distance between these two trace 
paths. Each piece cut from the original component is rotated back and assigned to its respective line-band.

Two pairs of characters touch across the lines in Figure 6. There is the ‘p’ in “people” touching the ‘f’ in “per-
fect”, and the ‘h’ in “establish” touching the ‘f’ in “for”. Both of these cases are automatically detected and the results 
of the split are shown in Figure 9. The segmentation on the right is much better than that on the left. The development 
of more robust methods for separating vertically touching characters is left for future work.

If the component is not sufficiently tall to be considered two vertically touching characters, but it still overlaps 
one or more line-bands, then the component is assigned to the band of maximum (total black pixels) overlap. If the 
component overlaps no bands, then the distance is measured from its center point to the edge of the nearest band above 
and below. Taking the minimum distance, the component is assigned to the closer of the neighboring bands. At this 
point, all the components in the image have been assigned to their respective lines. The components are sorted within 
each line on their center x-positions, and the isolated lines of handprint are ready to be segmented into character 
images.
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Figure 9. Results of splitting vertically touching characters.

3. SEGMENT CHARACTERS

In reference [9], a method for constructing character segments of handprint from connected components is 
documented. The method uses simple statistical features to adapt to variations in writing style. The method was suc-
cessfully applied to the single-line responses on the HSF forms in SD19, where the same technique was tested on 
sequences of digits, lowercase, and uppercase characters. The method is able to compose single characters from mul-
tiple components, and it splits components of multiple touching characters. In light of its successful application, it was 
anticipated that the segmentor would work well in this study for segmenting the isolated lines of handprint.

The segmentation method as described in [9] was used to segment the lines of handprint from a number of 
different Preamble paragraphs. Upon visual inspection of the resulting segments, it was decided that the method in its 
original form does not perform satisfactorily on handprinted paragraph lines. It was determined that the heights of char-
acters within the Preamble paragraph have higher variance than those written in the 1-line fields on the HSF form. It 
is concluded that variations in writing significantly increase as spatial constraints are relaxed. This increase in variation 
makes it difficult for the original segmentation method to accurately model the writing style in the paragraphs.

The writing style is characterized by estimating the stroke width (esw) and the height of the handwritten char-
acters (ech). The estimated stroke width is computed as the median horizontal run length within the image of isolated 
handprint. The writing height, ech, is used to estimate (not the height of each individual character, but rather) the max-
imal height of the writing as a whole, similar to measuring the point size (or the height of uppercase characters) in a 
typical machine print font. With the original studies on single-line responses, the maximum height of the components 
in the field was sufficient for this estimate. Due to the higher variance in height and the increased chance of substantial 
outliers in the paragraph’s characters, the maximum no longer holds as a good height estimate. Experiments were run, 
and it was determined that taking the 90th percentile height from among the components in the line is sufficient to char-
acterize the height of the handprint. This improved the performance of the segmentor, but still not to a satisfactory 
level.

According to the segmentation method in [9], the black pixels in an image can be thought to be part of larger 
meta-pixels that are basically one stroke width square. This larger pixel is referred to as a standard stroke pixel. Extend-
ing this notion further, a standard stroke area can be defined as (esw × ech). By their very definition, characters are 
configurations of a finite and relatively small number of strokes. Measuring the image in terms of standard strokes pro-
vides a relative measure of density that adapts to the handwriting style itself, thus allowing for writer-normalized units 
that characterize or model the style of handprint for the purposes of segmentation.
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A connected component may contain multiple touching characters, and one must be able to detect this in order 
to separate the characters. Detection must be simple to compute, relatively reliable, and adaptable to the characteristics 
of a specific writer. To accomplish this, two simple features are computed. One feature, standard stroke count, mea-
sures the density of the black pixels within the component image in units of standard stroke area. The standard stroke 
count (ssc) is defined as

where p is the black pixel count of the component and ssa is the standard stroke area. This measures how many stan-
dard strokes can be constructed from the total density of black pixels in the component, and its value automatically 
adapts to the characteristics of the handwriting.

The other feature computes the aspect ratio of the component. The larger a component’s width is to its height, 
the more likely it contains multiple characters. Originally, the aspect ratio (ar) was computed as

where w is the width of the component. This is slightly different than the true aspect ratio of the component because it 
uses the standard unit height, ech, rather than the actual height of the component.

In reference [9], a training set of components containing single and touching characters extracted from 1-line 
fields was used to compute a scatter plot of (ar, ssc) feature points. As can be seen in that report, there is significant 
separation between the classes of single and touching character images, and a linear discrimination function was 
empirically derived to separate the classes. This linear function is not only used to detect touching characters, but it is 
also instrumental in directing the splitting of the characters. Details of how this takes place are provided in the refer-
ence.

Due to poor segmentation performance on the lines extracted from paragraphs, a training set of single and 
touching character components was extracted from the first 20 Preamble paragraphs in SD19, and the scatter plot anal-
ysis was repeated on these new components. The separation seen previously was no longer as prominent with the new 
component data. Upon reflection, it was determined that it was inappropriate to compute ar by dividing by ech due to 
the widely varying heights of characters in the paragraph. A second scatter plot analysis was conducted where the true 
aspect ratio of the component was used (i.e., ar was computed by dividing the component’s width by its actual height).

In this case, ar is truly relative to the component itself while ssc remains in units based on the writing style. 
As a result, the feature points when plotted are spaced further apart, and the separability of the single and touching 
classes is enhanced, but as can be seen in Figure 10 there remains significant overlap between the classes. Each of the 
20 training paragraphs were examined independently, and it was observed that some writers’ handprint exhibited 
greater separation than others. In other words, the overly simplistic handwriting style model used in the segmentor 
characterizes some writers better than others.

The lower dashed line displayed in Figure 10 plots the linear discrimination function used in [9]. Those com-
ponents whose feature points lie below the detector line are assumed to be single characters, and those above the line 
are determined to contain multiple characters. Using the original detector line on the data derived from the Preamble 
paragraphs causes many single characters (plotted as diamonds) to be incorrectly detected and split as multiple touch-
ing characters. Upon careful inspection, a new linear function (plotted as the solid line) was derived which strikes a 
compromise. The tension requiring compromise can primarily be attributed to the fact that the handprinted paragraph 
contains large uppercase letters such as ‘W’s, and it contains numerous small lowercase characters. The disparity 
between the size of large and small characters can in itself vary greatly depending on the writing style. Keep in mind 
that many combinations of these characters may touch. Ideally, we would like to detect when even two very small char-
acters touch, but this would require (using this limited model) miss-identifying large single characters as multiple 
touching characters. So, the solid detector line in the Figure 10 attempts to detect as many touching characters as pos-
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sible while preserving the larger single characters. As can be seen, the separation of single and touching classes is less 
than desired. Improving on this model is left for future work.

Figure 10. Scatter plot of (ar, ssc) feature points derived from Preamble paragraph characters. (Dashed line is old 
detector function. Solid line is new detector function.)

An example of the segmentor’s performance on a paragraph containing a significant number of touching char-
acters is shown in Figure 12. In this example, the segmented images have been scaled down slightly and pulled apart 
to emphasize the segmentation results. Many of the horizontally touching characters have been separated. Notice the 
numerous vertically touching characters have also been detected and split.

4. CLASSIFY CHARACTERS

Once character segments are created they are slant and size normalized to be 32×32 pixels as described in 
reference [1]. The Karhunen Loève (KL) transform is then computed on the normalized character images [10]. The 
KL transform performs dimension reduction and acts as a spatially localized low-pass filter. With the transform, this 
application used the 64 top-ranked eigenvectors to compute, from the normalized character images, feature vectors 
containing KL coefficients which were then classified using an optimized Probabilistic Neural Network (PNN) [11]. 
The PNN implementation used takes advantage of a k-d tree [12] preclassification search that significantly reduces the 
number of prototype vectors used to compute the PNN discrimination function. This greatly decreases the computation 
time required [1].
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Figure 11. Example of a paragraph with many touching characters (vertically as well).

Figure 12. Character segments created from Figure 11.

Figure 13. Classified text from segments in Figure 12.

Once classified, the paragraph is represented by a single string of ASCII letters as shown in Figure 13. (Note 
that the line breaks in the figure were artificially added so that the text corresponds to the original image.) The text in 
this figure was recognized from the segments shown in Figure 12. As can be seen, there are no inter-word gaps iden-
tified. Also, no attempt is made to remove punctuation marks (i.e. commas and periods) which are most frequently 
labeled as spurious ‘I’s, ‘J’s and ‘L’s. The task is left to the lexical postprocessing to filter out the spurious characters, 
identify word gaps, and correct for the incorrect segmentation and missclassification of other characters.

Characters extracted from the upper and lowercase alphabet fields written by the 1000 writers in hsf_4 and 
hsf_6 of SD19 were used as training prototypes. All together, the training set contained 48,625 labeled character 
images. The classifier was trained to generate case insensitive output. To do this, both upper and lowercase examples 
of each letter were merged together as a single class. For example, the PNN was taught to classify both handprinted 
‘a’s and ‘A’s as the single class ‘A’. This is a fairly difficult classification problem which is reflected in the quality of 
the recognition shown in Figure 13. Other training schemes may prove more successful. For example, the classifier 
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OFAMERICA 



13

could be trained to make distinct lower and uppercase classifications except for those characters where both cases have 
similar shape (ex. ‘o’ and ‘O’, ‘c’ and ‘C’). Experimenting with different training schemes is left to future study.

5. LEXICAL POSTPROCESSING

The Preamble to the U.S. Constitution is comprised of 38 unique words, and these words are used to construct 
the dictionary (lexicon) shown in Figure 14. The lexicon is used to detect words within text lines, identifying word 
boundaries and correcting any segmentation and classification errors existing within the text lines.

Figure 14. Lexicon constructed from the text contained in the Preamble to the U. S. Constitution.

An illustration of the method of dictionary-based correction used in this study is shown in Figure 15. A 
detailed description of this method is found in [3]. In the figure, a portion of classifier output, “STCTESLNORDE”, is 
being processed. The graph plots the floating point numbers listed in the first column. These numbers form a signal 
which is processed in order to locate words within the text. The second column is a fan-out of hypothesized words 
beginning with the character ‘S’ and adding one successive character from the text line forming a new hypothesized 
word on each row down the column. The maximum length of a hypothesized word is equal to the length of the longest 
word in the lexicon, “CONSTITUTION”. The third column lists the best match from the lexicon for each hypothesized 
word in the second column. The fourth column lists alignments that are produced using the Levenstein Distance [13] 
to match the hypothesized word to the lexicon match. In the alignments, 0 represents a correct character, 1 represents 
a substituted character, 2 represents an inserted character, and 3 represents a deleted character. These alignments are 
used to generate the signals listed in the first column and plotted in the graph.

Figure 15. Signals generated from a fan-out of hypothesized words.

A signal value, s, is computed from two terms, e and t. The first term, e, is an error term and is computed:

where n is the number of errors (1’s, 2’s, and 3’s) in a hypothesized word’s alignment, l is the total number of characters 
in the alignment, and g is the number of contiguous groupings of 1’s and 3’s. The Levenstein Distance strictly mini-
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mizes the amount of error in the alignment without regard for the resulting configuration of alignment elements. The 
variable g is used to favor hypothesized words whose alignments contain contiguous groupings of correct characters 
(0’s) over alignments containing many discontinuities. The second term, t, is a translation term based on a linear func-
tion that biases longer hypothesized words over shorter ones [3]. In this way, matches to the word “DOMESTIC” are 
favored over matches to the word “DO”, and “INSURE” is favored over the word “IN”. Signal value, s, is then com-
puted:

The signals listed in the first column of Figure 15 are searched top to bottom. Only those hypothesized words 
with s>0 are considered to contain possible words. All other hypothesized words in the fan-out are ignored. The 
hypothesized word with the largest signal strength is selected. If this word is a substring of a hypothesized word further 
down the list, such as “DO” in “DOMAIN”, and the word containing the substring has a signal strength, s>0, then the 
longer word is selected in place of the word with maximum signal.

Once a hypothesized word is selected from the fan-out, a new fan-out is built beginning with the first character 
to right of last correct character in the selected word’s alignment. (Actually, there is some recursive processing of the 
alignment required first; these details are provided in [3].) In Figure 15, the hypothesized word, “STCTES” is selected 
with a maximum signal of 0.254. The next fan-out begins at ‘L’, starting from the position in the text line, 
“LNORDE…”. If no hypothesized words are selected within the current fan-out, then the processing advances one 
character in the text line, and the fan-out begins from that point.

Through this approach, segmentation and classification errors are corrected, and word boundaries are auto-
matically identified. An example of the results of dictionary-based postprocessing can be seen in Figure 16. These 
results were obtained from the raw classifications shown in Figure 13. Although not perfect, these results have been 
significantly improved through the use of the line-band map and adaptive segmentor.

Figure 16. The results of dictionary-based postprocessing on the raw classifications shown in Figure 13.

6. RESULTS

As mentioned in the introduction, the techniques presented in Sections 2 and 3 (isolating the lines of handprint 
and segmenting the lines into character images) are new. In order to evaluate their impact on recognition, these new 
methods were integrated into the NIST public domain Form-Based Handprint Recognition System and run across the 
HSF forms from the first 500 writers (hsf_0) in SD19. This section compares the results of the original system against 
those achieved using the new techniques. Both versions of the recognition system used the PNN classifier described 
in Section 4 and the dictionary-based correction in Section 5. Methods for form registration, form removal, and field 
isolation (steps related to forms processing, but not specifically germane to reading unconstrained paragraphs) were 
also the same between the two systems, and are described in reference [1].

The recognized text from both the original and augmented recognition systems was scored using the NIST 
Scoring Package [14]. In order to generate word-level accuracies, the recognized text was tokenized so that each 
unique word in the Preamble was represented by a single identifying character. The scoring package aligned the 
sequences of recognized work tokens against a string of reference tokens (the ground truth), accumulating the number 

s 1.0 e− t−= (6)
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of substituted, inserted, deleted, and correctly recognized words. The original public domain system achieved a word 
accuracy over 60% (15439/25532), where as the system using the new techniques achieved 64% (16343/25532). The 
original NIST public domain OCR system uses connected components directly as character segments, so the system 
has no way of dealing with touching lines, touching characters, and fragmented characters. Using the new methods for 
line reconstruction in conjunction with the new character segmentation improved overall word recognition by 4%. Sec-
tion 3 discussed how the performance of the new character segmentor is somewhat compromised in its ability to detect 
and split touching characters. Running the augmented version of the system without character splitting (within the 
lines) resulted in an accuracy of only 61.4% (15664/25532). Therefore, using the new method to divide horizontally 
touching characters, even with its limitations, does significantly contribute to improved recognition.

In terms of execution time, the extraction of connected components took on average 1.4 seconds per Preamble 
paragraph, the isolation of text lines took on average 1.0 seconds; and segmenting of the lines into character images 
took only 0.24 seconds. In all it took on average 2.6 seconds to convert the paragraph image into isolated character 
images. The original NIST system, which was coded less efficiently and used less robust algorithms, took on average 
2.9 seconds (2.7 seconds to extract the components and 0.23 to isolate the text lines) to convert the paragraph image 
into isolated characters. There are 268 alphabetic characters in the Preamble, so the new methods working together 
generate character segments at a rate greater than 100 characters/second. For comparison, the PNN classifier takes on 
average 4.4 seconds per paragraph. The times of all the other steps pale in comparison to the dictionary-based correc-
tion which requires 37.4 seconds per paragraph. All the times reported in this section were computed on a Sun Micro-
systems SPARCstation 2 with an 80MHz Weitek CPU.

7. CONCLUSIONS

A set of algorithms have been presented that enable a computer to automatically read a paragraph of hand-
printed text. A new technique was introduced that reconstructs lines of text from the connected components within a 
handprinted paragraph. This method is very robust as it avoids tracking components that are statistical outliers, and the 
method is able to detect and split characters from multiple lines that touch each other vertically. A new character seg-
mentor was also presented that adapts automatically to writing style. The method composes characters from multiple 
components and it separates touching characters from single components. The method was shown to contain certain 
limitations in its ability to account for the widely varying character heights within the unconstrained paragraphs. How-
ever, its use did significantly improve recognition. The performance of the segmentor was compared between 1-line 
responses and the paragraphs, and it was concluded that a person’s writing has a tendency to become more varied and 
irregular as spatial constraints are relaxed. Recognition results were computed using an optimized PNN in conjunction 
with a dictionary-based correction scheme. On a testing set of 500 handprinted paragraphs containing the Preamble to 
the U.S. Constitution, the new methods improved word recognition accuracy nearly 4% (from 60% to 64%). The work 
in this paper represents significant steps toward a general purpose unconstrained handprint recognizer. Potential appli-
cations include forms processing and the recognition of handprinted facsimile. The Preamble paragraphs are represen-
tative of spatially unconstrained handwriting, thus the new method of line reconstruction is an elegant solution having 
generally broad applicability. On the other hand, the Preamble paragraphs are in terms of lexical content very con-
strained. Few applications have such constraints; therefore, the results reported in this paper are (in general) somewhat 
optimistic. Future work must include a more general and efficient solution to spell-correction.
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