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Field-sensitive addressing and control of
field-insensitive neutral-atom qubits
N. Lundblad*†, J. M. Obrecht, I. B. Spielman and J. V. Porto

The establishment of a scalable scheme for quantum computing with addressable and long-lived qubits would provide a route
to harnessing the laws of quantum physics to solve classically intractable problems. The design of many proposed platforms for
quantum computing is driven by competing needs: isolating the quantum system from the environment to prevent decoherence,
and easily and accurately controlling the system with external fields. For example, neutral-atom optical-lattice architectures
provide environmental isolation through the use of states that are robust against fluctuating external fields, yet external
fields are essential for qubit addressing. Here, we demonstrate the selection of individual qubits with external fields, while
the qubits are in field-insensitive superpositions. We use a spatially inhomogeneous external field to map selected qubits to
a different field-insensitive superposition, minimally perturbing unselected qubits, despite the fact that the addressing field
is not spatially localized. We show robust single-qubit rotations on neutral-atom qubits located at selected lattice sites. This
precise coherent control should be more generally applicable to state transfer and qubit isolation in other architectures using
field-insensitive qubits.

The ability to address individual qubits is a vital component
of most quantum-computing architectures. In the case of
neutral-atom qubits held in an optical-lattice register1–3,

addressing generally requires the interaction of specific atoms
with a control field. Of long-standing concern is the difficulty
of addressing only selected atoms amongst an ensemble of ≈ 105
atoms in nominally identical lattice sites. One approach is to use
long-period lattices or arrays of independent single-atom traps
sufficiently spaced to address with a focused optical beam4–6;
in this case, the optical diffraction limit sets a bound on the
qubit register spacing (and therefore register density). Alternatively,
experiments using the Mott insulator transition in optical lattices7
result in large arrays of subwavelength-separated single ground-
state atoms, which are useful for collisional and exchange quantum
gates2,8–10. Schemes similar to magnetic resonance imaging for
addressing subwavelength-separated qubits have been proposed
and demonstrated, wherein an externally applied gradient field
shifts local energies, mapping spectroscopic resolution to spatial
resolution6,11–13. However, these schemes require that the qubits be
in field-sensitive states, a requirement that is at odds with the need
for long coherence times.

Here, we demonstrate how to combine environmental insensi-
tivity and site-specific subwavelength addressability, as illustrated
in Fig. 1. Our scheme is based on a register of qubits, each in a
superposition of storage states |0〉 and |1〉, the energy difference
of which is insensitive to external magnetic fields, a significant
source of environmental decoherence. (Such pairs of states are
known colloquially as ‘clock states’ owing to their utility as fre-
quency standards.) In addition, each qubit has a second pair
of clock states, the working states |0′〉 and |1′〉, which have a
different transition frequency from that of the storage states.
Whereas transitions between the storage states (|0〉 ↔ |1〉) or
between the working states (|0′〉 ↔ |1′〉) are insensitive to ex-
ternal fields, the transitions between storage and working states
(such as |0〉 ↔ |0′〉) are field sensitive. Application of a field
gradient thus spectrally selects a qubit from the register, enabling
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frequency-sensitive (and therefore position-sensitive) mapping of
the selected qubit’s coherent superposition between storage states
and working states. Once the selected qubit has been transferred
to the working states, we can then carry out isolated arbitrary
single-qubit operations on the selected qubit alone. Remaining
qubits (still in the storage states) are unaffected by both themapping
process and the subsequent control operation on the selected
qubit. One can then map the selected qubit back to storage states,
resulting in a qubit register with the addressed qubit in a new
arbitrary superposition of storage states. This idea may be appli-
cable to other physical systems vulnerable to optical or electrical
crosstalk (see, for example, refs 14 and 15), relaxing the required
isolation for control fields used to address individual qubits in a
spatially dense register.

We demonstrate this scheme in an optical-lattice-based ensem-
ble of registers, where each register is composed of two separately
trapped 87Rb atoms acting as qubits A and B. The storage and
working states of the qubit are encoded in four hyperfine sublevels
of the ground-state manifold of 87Rb, which can be coupled with
resonant microwave radiation. Both qubits are initialized in the
storage-state superposition α|0〉+β|1〉. After applying a localized
effective magnetic field, we spectrally select qubit A and map it
into the working-state superposition α|0′〉+βeiθ |1′〉, where θ is a
systematic phase depending on the details of the mapping process.
Qubit B remains in the initial storage-state superposition. We then
apply a control operation on the working transition, transforming
qubit A into the new state α′|0′〉+β ′|1′〉. Using a modified Ramsey
technique, we verify the basic features of this scheme: namely, that
storage-state coherence is unaffected by the application of the field
gradient, and that the addressablemapping process is coherent.

Our register confinement is provided by a double-well optical
lattice generated by a Ti:sapphire laser operating at 810 nm (see the
Methods section and ref. 16). We use the states |F = 1,mF =−1〉
and |F = 2,mF = 1〉 as storage states |0〉 and |1〉, and the
states |F = 1,mF = 0〉 and |F = 2,mF = 0〉 as working states
|1′〉 and |0′〉. At our operating field near 323 µT, the linear
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Figure 1 | Scheme for combining field-sensitive qubit addressability with
long-lived field-insensitive ‘clock state’ qubits. a, Using microwave or
optical Raman control, qubits in a quantum register (two shown here as
qubits A and B) can be prepared in a coherent superposition of the ‘storage’
states |0〉 and |1〉, a field-insensitive clock-state pair. b, Application of a
magnetic field gradient Zeeman-shifts energy levels, spectrally selecting a
specific qubit (A) from the register. Field-sensitive transitions can then be
used to selectively map the storage-state superposition to a pair of
‘working’ states |0′〉 and |1′〉. c, After the site-selective mapping, arbitrary
qubit rotation can be carried out on the A qubit alone, as the working-state
transition is off-resonant from the storage-state transition. Inverting the
mapping process returns qubit A to a new storage-state superposition. This
scheme demonstrates crosstalk-free site-specific addressing, with both
qubits almost always in field-insensitive superpositions.

magnetic-field dependence of the storage transition vanishes,
making the storage-state qubit extremely insensitive to small field
fluctuations or inhomogeneity17. Theworking transition has a slight
linear sensitivity to magnetic field. Figure 2 shows the coherence
properties of the storage and working states, measured using
Ramsey’s method of separated oscillatory fields18. Figure 2a shows
the result of a standard Ramsey sequence, where we ‘open’ with
an initial π/2-pulse on the storage transition, placing each qubit
in the equal superposition |0〉+ |1〉. After a fixed delay, we ‘close’
the sequence with a final π/2-pulse of variable relative phase Φ,
and measure the populations in |0〉 and |1〉 as a function of Φ. The
resulting fringe contrast as a function of the delay time decays with
a dephasing time T ∗2 = 61(5) ms.

The residual dephasing is limited by inhomogeneity of the
lattice-beam intensity because there is no known simple ‘magic
wavelength’ scheme19 for hyperfine transitions in 87Rb (refs 20, 21).
This inhomogeneity results in a small, lattice-induced differential
light shift of the hyperfine states that is proportional to lattice
intensity and inversely proportional to the lattice-beam detuning
from atomic resonance. We calculate a differential shift of'170Hz
for a typical total lattice light shift of 230 kHz and estimate an
inhomogeneity of '10Hz for our experimental parameters, which

is roughly consistent with the observed dephasing time. We also
measure the magnitude of the differential shift as a function
of lattice intensity (discussed below). The inhomogeneity of the
differential light shift is the main technical limitation on coherence
in our ensemble of storage qubits, and can be improved by
making the lattice beams more homogeneous and detuning the
lattice farther from resonance, as with the λ = 1.06 µm lattice
used for precision spectroscopy in ref. 22. In addition, dynamical
decoupling techniques have been shown to be useful in reducing
the effects of inhomogeneous broadening23,24. A simple spin-echo
pulse sequence, which rephases time-independent inhomogeneous
dephasing, gives a residual coherence time T2 in excess of 300ms,
probably limited by drifts in lattice intensity (and thus differential
light shift) that cannot be filtered by a single echo. In an analogous
measurement, Fig. 2b shows that the working-state coherence
exhibits a shorter dephasing time of T ∗2 = 21(2)ms, dominated by
backgroundmagnetic field gradients.

In contrast to the field-insensitive qubit states, the transitions
|0〉→ |0′〉 or |1〉→ |1′〉 are field sensitive. This sensitivity enables
spectroscopic qubit addressing, but requires that state transfers be
carried out fast enough to avoid the qubits’ vulnerability to field
inhomogeneities while they temporarily occupy the field-sensitive
superpositions |0′〉 + |1〉 or |0〉 + |1′〉 during the transfer from
storage states to working states, as in Fig. 1b. We measure this
timescale using the standard Ramsey method on the field-sensitive
transition |0〉→ |0′〉, giving T ∗2 ' 500 µs, roughly 100 times shorter
than that of the clock states.

To directly determine the impact of this field sensitivity on the
mapping from storage to working states, we developed a modified
Ramsey sequence that is sensitive to decoherence in the mapping
process. This sequence is composed of the standard opening π/2-
pulse on the storage transition, followed by π-pulses mapping
storage states to working states, and closed by a final π/2-pulse
on the working transition. Whereas the standard Ramsey sequence
depends only on the relative phase of the two (equal-frequency)
π/2-pulses, our modified sequence requires phase control of four
different microwave signals, including the two mapping π-pulses.
As all of our pulses have different frequencies, the meaning and
control of the relative phases involved is more subtle.

In particular, each modified Ramsey sequence (carried out at
time t0 relative to a fixed origin) involves four signals of the form
cos(ωt+φ), and the observed fringe depends on the relative phase
φtot=φ01+φ0′1′−φ00′−φ11′+1ωt0, where

1ω=ω01+ω0′1′−ω00′−ω11′ (1)

If the four frequencies are phase-locked and satisfy the energy-
conserving condition 1ω = 0, the Ramsey output is insensitive
to the starting time t0 of the sequence, depending only on
φtot = φ01 + φ0′1′ − φ00′ − φ11′ . We observe Ramsey fringes by
adjusting the phase of any of themicrowave fields by a variable offset
δφ, with the φ01 and φ0′1′ fringes out of phase with the φ00′ and φ11′
fringes. A fringe resulting fromvaryingφ0′1′ is shown in Fig. 2c.

The contrast of our mapped Ramsey sequence can be affected
by errors in both the population and the phase of the mapping
π-pulses. Population left in the storage states |0〉 and |1〉 from
incorrect mapping would decrease the contrast of the working-
state fringe. However, the transfer efficiency of a π-pulse is
only quadratically sensitive to detuning, giving a small effect
for small inhomogeneity. The phase of the mapping pulses also
matters, unlike π-pulses on isolated two-level systems. As the
mapped states spend half the time in a field-sensitive superposition
during the mapping pulses, the effective field sensitivity during
the mapping process is half that of the |0〉 + |0′〉 superposition.
Thus, despite the fact that the total duration of the mapping
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Figure 2 | Qubit coherence and qubit mapping. a, We measure the coherence time T∗2 of the storage-state qubit. The contrast of the resulting interference
fringe as a function of delay is shown; the storage-state qubit exhibits a coherence time of'61(5) ms, assuming exponential decay. The insertion of a
spin-echo π-pulse in the Ramsey sequence removes dephasing caused by spatial inhomogeneities, resulting in longer coherence times (red). b, A similar
measurement, carried out using the working states, yields a coherence time of'21(2) ms, which also improves given a spin-echo π-pulse (red). c, We
demonstrate the coherent mapping of a storage-state superposition to a working-state superposition. A modified Ramsey pulse sequence opens on the
storage transition (purple) and closes on the working transition (yellow), giving a fringe of observed contrast of 0.99(3). The mapping is effected with the
use of appropriate π-pulses transferring the |0〉 population to |0′〉 (green) and the |1〉 population to |1′〉 (orange). Using Rabi frequencies tailored to the
particular combination of differential energy level shifts in the problem (see text), we prevent undesired transitions to nearby states, as illustrated with the
dotted grey transition. The error bars reflect 1σ statistical uncertainty.

process (200 µs) is not significantly smaller than the dephasing
time T ∗2 of the sensitive transitions ('500 µs), the fringe has high
contrast, confirming that the qubit coherence is largely unaffected
by the mapping process.

We obtain the necessary field gradients to make the mapping
process addressable by generating an optically induced effective
magnetic field at every other lattice site, that is, on one site of
each of our two-qubit registers, as illustrated in Fig. 3a. This
optically induced effectivemagnetic field is proportional to the local
ellipticity of the lattice light, which we control using electro-optic
modulators (see the Methods section and ref. 16). The spatially
varying effective magnetic field Beff results from the atom’s vector
light shift (which adds to the scalar light shift providing the lattice
potential), where Beff ∼ iαv(E∗×E), αv is the vector polarizability,
E is the lattice electric field and E∗×E is the local ellipticity of the
lattice field. Beff adds vectorially with the external bias field16,25–27.
We can adiabatically transform the initial Beff = 0 lattice into a
lattice with a non-zero Beff at the B sites of each quantum register,
Zeeman-shifting the resonant frequency of the B sites by 1AB/h.
The effective field remains zero at the A sites, resulting in an
effective magnetic field gradient between the A and B sites. For a
given polarization configuration, this shift is proportional to the
lattice-beam intensity as illustrated in Fig. 3b, and corresponds
to a field gradient of up to '8 Tm−1. In the presence of this
gradient, the A and B sites of the quantum register can be addressed
using radiofrequency or microwave fields. We now demonstrate
(1) that our qubits are largely insensitive to Beff, yet (2) we
can nevertheless use Beff to coherently address selected qubits in
our quantum register.

The robustness of the storage-state qubit in the presence of
the effective magnetic field is illustrated in Fig. 3d. We show
high-contrast Ramsey fringes, measured independently for A and B
sites, wherewe apply the addressing fieldBeff to the B qubits between
the π/2-pulses comprising the Ramsey sequence. As expected, the

storage-state coherence on either site is unaffected by Beff. During
the application of Beff, a phase offset of 19(2)◦ develops between
the Ramsey fringes of the two sites, which corresponds to a small
energy difference of h × 35Hz over the 1.5ms Ramsey delay.
This partially results from an intensity difference (and associated
difference in differential light shifts) that exists between the A and
B sites in the Beff 6= 0 configuration (see Fig. 3a). To understand
this, we measure the magnitude of the differential light shift for
the working-state transition, first in the Beff = 0 configuration,
and then for the A sites in the Beff 6= 0 configuration, both as
a function of intensity, as illustrated in Fig. 3c. We parametrize
the lattice-beam intensity in all lattice configurations in terms
of the equivalent lattice depth of the Beff = 0 configuration (see
the Methods section). Given this parametrization, we measure
the differential shift for atoms in the Beff = 0 configuration to be
6.1(5)Hz/ER, where ER= h̄2k2/2M =h×3.499 kHz, with k=2π/λ
and M is the 87Rb atomic mass. This is near a calculated value
of 4.9Hz/ER based on a model of the lattice and an atomic light-
shift calculation. The difference between these curves represents
crosstalk: the extent to which the addressing process perturbs
A-site atoms, which nominally experience no effective magnetic
field. A typical 25Hz difference in differential light shifts on
the A sites (between the Beff = 0 and Beff 6= 0 configurations)
combined with a typical 15 kHz effective Zeeman shift of the
B sites suggests a crosstalk figure-of-merit for our system of
'0.002. For the two storage-state Ramsey fringes of Fig. 3d, the
estimated difference in differential shifts between the A and B
sites of '12Hz (different from that of the case of the working
transition) combined with the Beff application time of '600 µs
gives an expected phase shift of'3◦, considerably smaller than that
observed. Several effects could contribute to this discrepancy: drifts
in the lattice intensity, peculiarities of beam alignment not included
in our lattice model16 and drifts in both microwave/radiofrequency
power and background magnetic fields leading to shifts in the
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Figure 3 | Beff and the differential shift. a, We apply an effective magnetic field Beff to the B sites of a two-qubit register, Zeeman-shifting the
field-sensitive levels by an amount1AB. In addition, in the Beff 6=0 configuration, the light shift at each site changes slightly by amounts VA and VB. b, The
calibration of1AB as a function of lattice-beam intensity, where the intensity is plotted in units of the equivalent Beff=0 lattice depth (see the Methods
section). A prediction of the frequency shift based on a model of our lattice is shown in pink. c, Measurements of the differential shift of the
working-transition resonance frequencies in the Beff=0 lattice (black) and on the A sites of the Beff 6=0 lattice (blue) as a function of intensity, relative to
the expected free-space resonance, effectively measuring VA. Shown in green is an estimate of the differential shift caused by the lattice along ẑ, which is
held at constant intensity. d, Ramsey fringes illustrating the coherence of storage-state qubits after application of Beff to the B sites during part of the
Ramsey delay. We observe Ramsey fringes for the A sites (left graph, contrast 0.95(2)) and B sites (right graph, contrast 0.96(2)). The error bars reflect 1σ
statistical uncertainty.

two-photon transition controlling the storage-state qubits (see
the Methods section).

Figure 4 illustrates our full capability, where we combine
coherent mapping between storage and working states with the
addressing provided by the use of Beff. The combination is
complicated by the need to simultaneously satisfy three possibly
conflicting criteria: the prevention of ‘leakage’ of the mapped-site
population into unwanted hyperfine states (see Fig. 4a) and the
assurance that each of the two mapping pulses affects only one
site (A–B isolation: see Fig. 4b). As our Rabi frequencies are
comparable to both the effective Zeeman shift from Beff as well
as the differential shifts of the hyperfine states due to the nuclear
magnetic moment, some care is required. We initialize both qubits
in the register with a π/2-pulse on the storage-state transition,
apply the effective magnetic field to the B sites, then apply the
mapping pulses. As Beff shifts the B-site mapping transitions from
the A-site resonance (by1AB/h=23 kHz), conversion from storage
states to working states is carried out only on the A sites. We
satisfy the above three isolation criteria by appropriately choosing
three mapping parameters: the effective Zeeman shift 1AB and
the two microwave Rabi frequencies of the mapping π-pulses.
In particular, the Rabi frequency of the second mapping pulse

(|1〉 → |1′〉) was chosen to eliminate transitions to closely lying
undesired states, exploiting the slight non-degeneracy of the various
transitions, as in the global operation of Fig. 2. In addition, we
chose 1AB such that the second mapping pulse exhibited zero
response at a detuning of 1AB/h. Finally, we chose the Rabi
frequency of the first mapping pulse (|0〉→ |0′〉) so that it similarly
exhibited zero response at a detuning of 1AB/h. Alternatively, one
could use spectrally narrower pulses (such as shaped Blackman
pulses) to assure negligible frequency response outside the narrow
band of the pulse.

To verify the site-selective mapping of the A-site atoms to
the working states, we (1) measure the state population in the
A sites after closing the Ramsey sequence with a π/2-pulse on
the working transition and (2) measure the state population in
the B sites after a π/2 pulse on the storage transition. The data
shown in Fig. 4 prove the coherence and isolation of the transfer
process and also demonstrate controlled single-qubit rotation
carried out on only one site of the register. The high contrast of
the resulting fringes confirms that the process is coherent, and that
state pollution from imperfect A–B isolation or intra-site leakage
to undesired states is at most 3% (comparable to our measurement
uncertainty of about 3%).
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Figure 4 | Site-selective coherent mapping and single-qubit rotation.
a,b, We open a Ramsey sequence on the storage transition on both
A and B sites, carry out the storage-state to working-state mapping on
A sites alone, and then close the Ramsey sequence on the working
transition, and measure state population on A sites alone with observed
fringe contrast 0.96(2.5) (a); close the Ramsey sequence on the storage
transition, measuring state population on B sites alone with observed fringe
contrast 0.97(4) (b). A–B isolation and leakage to undesired states are
controlled by means of tailored Rabi frequencies on the mapping pulses,
and the appropriate choice of Beff (see text). The error bars reflect 1σ
statistical uncertainty.

Any control scheme incorporating field-sensitive transitions (as
ours does) is vulnerable to imperfections in the quality of the con-
trol, owing to fluctuating or inhomogeneous background or control
fields. Although our observed global Ramsey fringe contrasts are
consistent with unity, scalable quantum computing places stringent
limits on required control fidelities. This level of control can be
achieved with composite pulses, providing a specific desired result
(such as that of the π-pulses used in our transfer process) using
a train of pulses of variable pulse area and phase. Composite
pulses are designed to be robust against fluctuations and inho-
mogeneities over a given bandwidth28; pulses of particular interest
to the quantum-computing community have been discussed29 and
explored experimentally30. As a proof of principle, Fig. 5 shows
the results of applying the venerable CORPSE pulse sequence on
the field-sensitive transition |F = 1,mF =−1〉→ |F = 2,mF = 0〉,
along with the results of conventional π-pulses. As expected, the n-
CORPSE-π spectra are significantly flatter about resonance than the
equivalent π-pulse spectra. These are not immediately applicable to
our transfer process owing to issues involving A–B isolation, but
demonstrate the inherent utility of the technique for neutral-atom
quantum computation.

The technique demonstrated here can be used with the effective
field gradient of an individual focused laser beam11 to provide
single-site addressing. The ultimate fidelity of such addressable
control will be determined by a range of technical issues, such
as the stability of the external and control fields, the spatial
resolution of the addressing beam and its registration to the lattice
position, and the lattice intensity. The fundamental limit is set
by the spontaneous photon scattering of the light providing the
effective magnetic field gradient. In 87Rb atoms, for example, one
optimal choice for the addressing laser wavelength is found near
787 nm, detuned between the 52P1/2 and 52P3/2 transitions. The
total scattering probability during a site-selective π-pulse depends
on the details of the system11 but we calculate that for a 1 µm
beam waist and 0.5 µm lattice spacing, the scattering probability
can be .2 × 10−4. In the context of our double-well lattice,
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Figure 5 | Exploration of composite-pulse techniques for trapped neutral
atoms. We compare the frequency spectrum of n π-pulses versus n
CORPSE-π pulses on a field-sensitive transition. The π-pulses (denoted as
180x) have arbitrary phase and standard pulse area, whereas the CORPSE
pulses comprise three sequential pulses of differing area and phase, in this
case 4200300180600. The nπ analogue of a CORPSE pulse is simple n-fold
repetition of the CORPSE pulse. a–d, Data representing π- (a), 3π- (b),
5π- (c) and 7π-pulses (d) and their respective CORPSE analogues. The
centre frequency of the resonance drifts slightly between graphs,
illustrating the errors to which these experiments are vulnerable and
against which composite pulses are robust. The dotted lines represent the
expected spectrum of an nπ-pulse given the measured Rabi frequency of
the transition. The wide grey line is present only to guide the eye. The error
bars reflect 1σ statistical uncertainty.

future work will focus on implementing the transfer process with
composite pulses and implementing benchmarking techniques31
to probe our control fidelities below the per cent level. We also
seek to use our techniques to provide all possible inputs to the√
SWAP gate described in ref. 10, where the relevant gate time

is more than two orders of magnitude faster than the relevant
coherence time. In a more general context, the approach we
have demonstrated here is applicable to any quantum-computing
architecture where two appropriate pairs of states can be found,
with the attendant ability to transform in and out of a storage-
state quantum memory.

Methods
We load our optical lattice with ultracold atoms originating from a spin-polarized
87Rb Bose–Einstein condensate in the 52S1/2|F = 1,mF =−1〉 hyperfine ground
state. We produce small condensates with ≈8×104 atoms (such that the resulting
lattice filling factor is near unity) in an Ioffe–Pritchard magnetic trap; to this trap,
we subsequently add a three-dimensional optical lattice, generated by intersecting
beams from a Ti:sapphire laser operating at λ=810 nm. A lattice along ẑ divides the
Bose–Einstein condensate into a stack of independent two-dimensional systems,
and a separate, deformable double-well lattice formed from a single folded and
retroreflected beam in the xy plane completes the confinement16. As the total lattice
depth in the lattice is a complicated function of the laser polarizations controlling
the topology, we parametrize the intensity of the single xy-lattice input beam for
all lattice configurations in terms of the equivalent xy-lattice depth in the Beff = 0
configuration. In terms of this parametrization, the total light shift experienced by a
trapped atom in the Beff=0 configuration will be approximately twice the xy-lattice
depth plus the depth of the lattice along ẑ . During loading, all lattice intensities
follow an exponential profile, reaching their final values in 150ms (with a time
constant of 50ms). Typical final lattice depths are 20(1) ER for the vertical lattice
and 20(1) to 40(2) ER for the xy-lattice, where ER = h̄2k2/2M = h×3.499 kHz,
with k = 2π/λ and M is the 87Rb atomic mass. (Unless otherwise stated, all

NATURE PHYSICS | VOL 5 | AUGUST 2009 | www.nature.com/naturephysics 579
© 2009 Macmillan Publishers Limited.  All rights reserved. 

 

http://www.nature.com/doifinder/10.1038/nphys1330
http://www.nature.com/naturephysics


ARTICLES NATURE PHYSICS DOI: 10.1038/NPHYS1330

uncertainties herein reflect the uncorrelated combination of single-sigma statistical
and systematic uncertainties.) For all experiments, the initial lattice we load into is
a state-independent square lattice of period λ/2= 405 nm. In Fig. 3c, the points at
41 ER were obtained at a lower depth of the lattice along ẑ , and have been corrected
by 18Hz (the estimated change in the differential shift from the lattice along ẑ) to
be consistent with the other data.

Atoms loaded into this initialization lattice are deep into the Mott-insulating
phase with nominally one atom per site. We then turn off the Ioffe–Pritchard
trap, leaving a stable bias field of 322.9(1) µT along x̂− ŷ . This field is chosen to
minimize the sensitivity of the hyperfine clock transition |1,−1〉↔ |2,+1〉 (our
storage qubit) to external fields, while allowing for reasonably low sensitivity
('37 kHzmT−1) in our working qubit, the well-known |1,0〉↔ |2,0〉 transition
commonly used in atomic clocks.

We transform our lattice into the state-dependent configuration (Beff 6= 0)
on a timescale (300 µs) adiabatic with respect to vibrational excitation. This
transformation is effected through the use of high-voltage Pockels cells, which
control both the input polarization of the xy-lattice, and the relative phase of the
in-plane (x̂ , ŷ) and out-of-plane (ẑ) polarization components16. This yields an A/B
site-dependent ellipticity, which in concert with the atoms’ vector polarizability
yields a spin-dependent vector light shift. To measure the state population of the
A(B) lattice sites, we dynamically adjust the topology of the lattice, converting
B(A)-site atoms into high-momentum states, which spatially separate from the
low-momentum atoms of interest in the A(B) sites during time-of-flight12.

We measure the atomic density distribution using resonant absorption
imaging along ẑ and use Stern–Gerlach gradients32 to concurrently resolve
differing mF components. In addition to standard technical noise, uncertainty in
the contrast measurements in the A(B) site is due in part to imaging noise from
background atoms from the B(A) site not being intentionally measured. Depending
on the depth of the lattice, the high-momentum atoms may spatially overlap with
low-momentum atoms in the images; for the data in Fig. 3 (for which this effect
was slight) a small correction was applied. The lattice depth used in Fig. 4 was large
enough (chosen for maximum A–B isolation) that the high-momentum states did
not overlap, and no correction was necessary.

Transitions between storage states are driven by a two-photon coupling
comprising a microwave field at 6832.325MHz and a radiofrequency field at
2.352975MHz (ref. 17). For our field intensities and detunings, the two-photon
Rabi frequency is Ω2γ /2π' 750(8)Hz, given a '100 kHz detuning from the
|F=2,mF=0〉 intermediate state. Unlike single-photon transitions, the two-photon
transition is sensitive to power-dependent shifts due to the radiofrequency and
microwave coupling to the intermediate state. This shift is present only during
the application of the coupling, and must be considered when satisfying the
energy-conserving condition of equation (1). This shift is typically '+50Hz,
however, and the ωi can be adjusted to satisfy equation (1) without compromising
resonance, as the single-photon Rabi frequenciesΩi/2π are all>4 kHz.
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