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A computation in adiabatic quantum computing is implemented by traversing a path
of nondegenerate eigenstates of a continuous family of Hamiltonians. We introduce

a method that traverses a discretized form of the path: At each step we apply the

instantaneous Hamiltonian for a random time. The resulting decoherence approximates
a projective measurement onto the desired eigenstate, achieving a version of the quantum

Zeno effect. If negative evolution times can be implemented with constant overhead, then

the average absolute evolution time required by our method is O(L2/∆) for constant
error probability, where L is the length of the path of eigenstates and ∆ is the minimum

spectral gap of the Hamiltonian. The dependence of the cost on ∆ is optimal. Making

explicit the dependence on the path length is useful for cases where L is much less than
the general bound. The complexity of our method has a logarithmic improvement over

previous algorithms of this type. The same cost applies to the discrete-time case, where

a family of unitary operators is given and each unitary and its inverse can be used.
Restriction to positive evolution times incurs an error that decreases exponentially with

the cost. Applications of this method to unstructured search and quantum sampling

are considered. In particular, we discuss the quantum simulated annealing algorithm
for solving combinatorial optimization problems. This algorithm provides a quadratic
speed-up in the gap of the stochastic matrix over its classical counterpart implemented
via Markov chain Monte Carlo.
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1 Introduction and summary of results

Quantum algorithms are often described by means of quantum circuits: the algorithm starts
with a well-characterized pure state; a sequence of elementary (unitary) gates is applied; and
a final projective measurement in a fixed basis extracts the result. The circuit model may
not be best for describing all quantum information processing systems. Adiabatic quantum
computing (AQC) [1], sometimes also called quantum annealing [2, 3, 4, 5, 6], has been
proposed as an alternative.
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In AQC the computation is performed by smoothly changing the interaction parameters
of the Hamiltonian under which the system evolves. The initial state is a nondegenerate
eigenstate of the Hamiltonian. The adiabatic theorem of quantum mechanics asserts that
if the continuously related eigenstates remain nondegenerate and the Hamiltonians change
sufficiently slowly, then the final state of the system is close to the continuously related
eigenstate of the final Hamiltonian [7]. The last step is a standard projective measurement.
AQC is polynomially equivalent to the quantum circuit model [8].

In this paper we give a method for traversing eigenstate paths of Hamiltonians that differs
from AQC by the use of evolution randomization. The method is based on previous results [9,
10] in which the evolution of AQC is replaced by a sequence of projective measurements onto
the instantaneous eigenstate of the Hamiltonian with the phase estimation algorithm [11],
which exploits the quantum Zeno effect. Both AQC and the Zeno-based model work, in
essence, because an effective level decoupling is introduced in the Hamiltonian eigenbasis by
phase cancellation in AQC or projections in the Zeno case. Our method also implements
a version of the quantum Zeno effect. We choose a discretization of the eigenstate path
and apply the Hamiltonian corresponding to each point for a random time. The probability
distribution over time may be discrete or continuous. Consequently, the randomization method
can also be used in the case where we are given a path of efficiently implementable unitary
operators and an eigenstate of the last operator on the path is to be prepared. This case occurs
in the quantum simulated annealing (QSA) algorithm constructed in Ref. [12]. The probability
distribution over evolution times must be chosen so as to cancel unwanted coherences and
simulate the Zeno effect.

The algorithmic complexity of the randomization method is defined as the average sum
of the absolute evolution times for the Hamiltonians or by the average number of times the
unitaries are applied. The complexity can be bounded in terms of a lower bound ∆ on the
absolute value of the minimum spectral gap of the Hamiltonians or the minimum phase gap of
the unitaries, the length L of the path of the states (defined below), and the desired maximum
error ε of the final state compared to the target eigenstate. We show that the complexity is
O(log(L/ε)αL2/(ε∆)), where α = 0 if we can evolve backward and forward in time, and 1
otherwise. Backward evolution is possible at the same cost by reversing quantum circuits for
the forward evolution, if such evolution is circuit-based. To achieve this complexity without
additional dependencies, we use a parametrization of the operators along the path for which
the eigenstates move at a rate that is close to uniform (up to a constant factor). In many cases
of interest, L ∈ O(1) so that the complexity is of order 1/(ε∆) up to logarithmic factors. The
scaling with the gap is optimal and is better than the 1/∆3 of rigorous proofs of the adiabatic
theorem [13, 14, 15].

An advantage of our approach is that the only requirement on the Hamiltonians or the
unitaries along the path is that the length of the desired eigenstate path is well-defined. A
sufficient condition is that the time derivative of the operators exists. In terms of bounds on
the Hamiltonians and their derivatives, the worst-case bound is of order ‖Ḣ‖2/(ε∆3) up to
logarithmic factors. This bound comes from the inequality L ≤ ‖Ḣ‖/∆ [see Eq. (13)] and does
not depend on a reparametrization. It is better than the known worst-case bounds associated
with the adiabatic theorem [13] in that it does not depend on existence of, or bounds on the
second derivative of H. The scaling of the bound with the error is worse, in that it can be
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made logarithmic for analytic Hamiltonians paths at the cost of less favorable dependencies
on the other parameters of the problem [16, 14]. Logarithmic scaling can also be obtained
with the randomization method provided the final eigenstate’s energy is known. To achieve
this scaling, one can use high precision phase estimation to determine whether the desired
eigenstate has been obtained and repeat the algorithm if not.

Our method is intuitively explained by the quantum Zeno effect. Suppose that the path of
states |ψ̃(l1)〉, . . . , |ψ̃(lq)〉 satisfies the condition that for each j, |ψ̃(lj−1)〉 is sufficiently close
to |ψ̃(lj)〉. If we initialize the state |ψ̃(l1)〉 and sequentially apply projections onto the |ψ̃(lj)〉,
we prepare |ψ̃(lq)〉 with good probability. We first consider an idealized strategy, where the
projections are replaced by quantum operations of the form

Mlj (ρ) = PljρPlj + E((1l− Plj )ρ(1l− Plj )) , (1)

where Plj = |ψ̃(lj)〉〈ψ̃(lj)| and E is an arbitrary quantum operation that may vary from in-
stance to instance. This can be thought of as a projective measurement of ρ onto |ψ̃(lj)〉
followed by a process that does not affect |ψ̃(lj)〉. The fundamental effect of Mlj is to remove
coherences between |ψ̃(lj)〉 and orthogonal states. It is this decoherence that induces the
quantum Zeno effect by suppressing transfer of population to orthogonal states. An approxi-
mation of this effect is achieved if we replace the Mlj by random applications of Hamiltonians
or unitaries with |ψ̃(lj)〉 as an eigenstate. We formalize this claim in Sec. 2, Thm. 1, and give
an upper bound for the error in the approximation in terms of the characteristic function of
the probability distribution underlying the randomization.

We focus on the Hamiltonian-based version of the randomization method. The analysis
for the unitary version is a straightforward discretization. In the Hamiltonian version, the
randomization method takes as input a continuous path of Hamiltonians H = {H(s), s ∈
[0, 1]}, and a nondegenerate eigenstate |ψ(0)〉 of H(0). The method aims to output the
corresponding nondegenerate eigenstate of H(1), denoted by |ψ(1)〉, with high fidelity.

We require that the eigenstates |ψ(s)〉 are nondegenerate with ∆ a lower bound on the
energy gap. If |ψ(s)〉 is differentiable (see Appendix 1 for the more general case), we can
assume without loss of generality that the phases of the |ψ(s)〉 are chosen geometrically, so
that 〈∂sψ(s)|ψ(s)〉 = 0, which gives a path length

L =
∫ 1

0

‖ |∂sψ(s)〉 ‖ds . (2)

The quadratic cost dependence on L comes from a simple Zeno effect when an ideal decoher-
ence process according to Eq. (1) is used. It is probably not fundamental: Coherent versions
of the adiabatic path achieve scalings Õ(L) [17]. The dependence of the cost on 1/∆ is un-
avoidable for methods with only oracle access to the Hamiltonian or unitaries. This can be
seen intuitively by noting that we must, in a sense, distinguish between the desired eigenstate
and the others, which requires that we evolve the relative phases sufficiently far. More rigor-
ously, an asymptotically better dependence would result in an unstructured search algorithm
better than Grover’s, which is known to be impossible. See Sec. 4.1.

The paper is organized as follows. In Sec. 2 we explain how the quantum Zeno effect can be
exploited, show how to approximate projective measurement operations by means of evolution
randomization, and discuss several probability distributions that are useful for randomization.
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The randomization method and its complexity are analyzed in Sec. 3. In Sec. 4.1 we show
that the randomization method provides the expected quadratic quantum speed-up for the
unstructured search problem. In Sec. 4.2 we describe the QSA to simulate slowly varying
classical Markov chains. In Sec. 5 we show the equivalence of our randomization method
with a coherent version of the quantum Zeno method implemented via the phase estimation
algorithm, and briefly discuss related works. We summarize in Sec. 6.

2 Randomized evolutions

2.1 Adiabatic quantum computing using the Zeno effect

The quantum Zeno effect is based on the fact that, for a small displacement δ′, the probability
of projecting |ψ(s+ δ′)〉 onto |ψ(s)〉 decreases with (δ′)2, while the distance between states is
linear in δ′ [18, 19, 20]. Therefore, for the path of states {|ψ(s)〉}, the final state |ψ(1)〉 can be
prepared from the initial state |ψ(0)〉 with high fidelity by use of a sequence of measurement
projections onto intermediate states |ψ(s1)〉 , · · · , |ψ(sq)〉, 0 < s1 < · · · < sq = 1. We choose
sj so that the fidelity of the final state with respect to |ψ(1)〉 is sufficiently close to unity. It
is not necessary to keep track of the measurement results at intermediate steps, which gives
rise to the following definition.
Definition 1 A projective-measurement operation onto |ψ̃(l)〉 is a quantum operation of the
form

Ml(ρ) = PlρPl + E((1l− Pl)ρ(1l− Pl)) ,

with Pl = |ψ̃(l)〉〈ψ̃(l)| and E arbitrary quantum operations that may vary with l.
We assume a monotonically increasing parametrization s(l), with l ∈ [0, L′], s(0) = 0 and

s(L′) = 1. We define |ψ̃(l)〉 = |ψ(s(l))〉. (Objects with a tilde correspond to objects in the
new parametrization). Later we consider s(l) so that L′ = L, the path length of Eq. (2). We
formulate the Zeno method for quantum state preparation as follows [9, 10, 12]:
Lemma 1 (Zeno effect) Consider a continuous path of states {|ψ̃(l)〉}l∈[0,L′] and assume
that, for fixed d and all δ,

|〈ψ̃(l)|ψ̃(l + δ)〉|2 ≥ 1− d2δ2 .

Then the state |ψ̃(L′)〉 can be prepared from |ψ̃(0)〉 with fidelity p > 0 by d(L′)2d2/(1 − p)e
intermediate projective-measurement operations.

Proof. Divide [0, L′] into q = d(L′)2d2/(1 − p)e equal segments and set δ = L′/q. At
every point lj = jδ, 1 ≤ j ≤ q, we perform a projective-measurement operation onto |ψ̃(lj)〉.
The final state is Mlq ◦Mlq−1 ◦ · · · ◦Ml1(ρ), with ρ = |ψ̃(0)〉〈ψ̃(0)|. The output fidelity is
bounded as

tr [Plq (Mlq ◦ · · · ◦Ml1(ρ))] ≥ ‖Plq · · ·Pl1 |ψ̃(0)〉‖2

= Πq
j=1|〈ψ̃(lj)|ψ̃(lj−1)〉|2

≥ (1− d2δ2)q ≥ 1− d2L′2/q ≥ 1− (1− p) = p (3)

2.
From Lemma 1 and assuming a uniform parametrization, defined to satisfy L(s(l)) =

L̃(l) = l, d = 1, and L′ = L (see Appendix B), it follows that the state |ψ(1)〉 can be obtained
with fidelity p starting from |ψ(0)〉 with O(L2/(1− p)) projective-measurement operations.



S. Boixo, E. Knill, and R. Somma 837

2.2 Approximating projective-measurement operations through randomized evo-

lutions

We assume that evolutions under H(s) for time t can be implemented at a cost linear in
|t|‖H(s)‖, as in AQC. That is, we do not take into account the cost of simulating H(s) for
small time intervals. By rescaling H(s) if necessary, we can assume that ‖H(s)‖ ≤ 1. Thus,
the cost of the randomization method is determined by the sum of the absolute evolution
times. Although we consider the case where the evolution time t can be negative, one often
restricts t to be nonnegative. This restriction is justified if the Hamiltonians are physical
without a simple time-reversal procedure, rather than induced by quantum circuits. In the
latter case, evolving for negative t is as efficient as for positive t and can be realized by
reversing the quantum circuits.

We denote by ∆(s) the spectral gap for the eigenstate |ψ(s)〉 of Hamiltonian H(s). The
following results also apply to the unitary case where we are given operators U(s) and ∆(s) is
the phase gap. In the unitary case the distributions over time that are used for randomization
must be concentrated at the integers, and correspond to the number of times the unitaries
are applied.

According to Lemma 1, the Zeno method does not require that we keep track of inter-
mediate measurement results. Thus, any purely dephasing mechanism in the instantaneous
eigenbasis of H̃(l) implements a version of Ml. A natural choice for such a decoherence mech-
anism is the evolution induced by H̃(l) for a (unknown) random time. This is the subject of
next theorem, where we bound the residual coherences in terms of the characteristic function
of the random time distribution.
Theorem 1 (Randomized dephasing) Let |ψ̃(l)〉 be a nondegenerate eigenstate of H̃(l),
and {ωj} be the energy differences to the other eigenstates |ψ̃j(l)〉. Let T be a random vari-
able associated with the time of evolution under H̃(l), and RT

l the corresponding quantum
operation. Then there exists a quantum operation E such that, for all states ρ,

‖(ME
l −RT

l )(ρ)‖tr ≤ ε = sup
ωj

|Φ(ωj)| ,

where ME
l is the projective-measurement operation defined in Definition 1 with E specified,

and Φ is the characteristic function of T .
We give the proof in Appendix C. It is based on computing the coherences after the

randomized evolution in terms of the characteristic function of T as

RT
l (|ψ̃(l)〉〈ψ̃j(l)|) = Φ(ωj)|ψ̃(l)〉〈ψ̃j(l)| . (4)

The average cost of randomization is given in terms of the random variable T as 〈|T |〉,
the expected value of the absolute evolution time. If T takes only positive values the average
cost is given by

〈T 〉 = −i[∂ωΦ](0) ,

provided it is finite. Note that if T < 0 is allowed, then the average cost can be reduced by
shifting T ’s distribution so that 0 is a median of T .

We can bound the required average cost per step from below by Ω(1/∆), with ∆ a lower
bound on the smallest gap infs |∆(s)|, by means of the following theorem:
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Theorem 2 Let T be a random variable with characteristic function Φ. Then, for all ω,

cost(T ) = 〈|T |〉 ≥ 1− |Φ(ω)|
|ω|

.

Proof. From the definition of Φ we obtain

1− |Φ(ω)| ≤ |1− Φ(ω)| ≤
∫
|1− eiωt|dµ(t)

≤
∫
|ωt|dµ(t) = 〈|T |〉|ω| , (5)

with µ the probability distribution of T 2.
We want to ensure that after the randomized evolution, the remaining coherences bounded

by |Φ(ω)| for |ω| ≥ ∆ are small. Because of Thm. 2, the average absolute evolution time can
be bounded by Ω(1/∆).

If T < 0 is permitted, the bound of Thm. 2 can be achieved up to a constant factor. See
Example 2 and Lemma 3 in Sec. 2.3. For the case where we are given a path of unitaries and
T is restricted to the integers, it suffices to consider the characteristic function on the interval
[−π, π]. The results of this section are otherwise unchanged.

Repetition of the randomized evolution step decreases the error exponentially fast in the
number of repetitions, as shown by the following argument. For independent random variables
T1 and T2, the characteristic function of the sum T ′ = T1 + T2 is

Φ′ = Φ1Φ2 , (6)

with Φi the characteristic function of Ti. Thus we have the following lemma (the notation is
that of Thm. 1):
Lemma 2 Let T be a random variable with characteristic function Φ, and supωj

|Φ(ωj)| = ε.
Let T ′ be the sum of n independent instances of T . Then there exists a quantum operation E
such that for all states ρ,

‖(ME
l −RT ′

l )(ρ)‖tr ≤ εn .

2.3 Examples of randomized evolutions

We consider some examples of randomized evolution steps involving different time distribu-
tions.

1. Consider the case where all the orthogonal eigenstates to |ψ̃(l)〉 are degenerate and the
spectral gap of H̃(l), denoted by ω1, is known. We then choose a random variable Tω1

that takes the values t = 0 or t = π/ω1, each with probability 1/2. The average cost is
π/(2ω1). The characteristic function for this distribution satisfies

|Φ(ω)| =
∣∣∣∣cos

(
πω

2ω1

)∣∣∣∣ . (7)

Since Φ(ω1) = 0 , Thm. 1 implies that the projective measurement onto |ψ̃(l)〉 can be
simulated exactly with this distribution. The assumptions in this example may seem
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unrealistic, but it provides a basis for the randomization method in unstructured search
(Sec. 4.1). It is possible to generalize the method to the case where the spectrum is
known. If there are k distinct absolute eigenvalue differences ωj , the independent sum of
Tωj

has the property that the characteristic function is identically zero on the eigenvalue
differences. The average cost is

∑
j π/(2ωj).

2. Let T ’s probability density be proportional to sinc(λt)4, λ > 0. The function sinc
is defined as sinc(t) = sin(t)/t. The Fourier transform of λsinc(λt)/π is the indicator
function of the interval [−λ, λ]. The characteristic function of T is therefore proportional
to the four-fold convolution of this indicator function with itself, which is continuous and
has support [−4λ, 4λ]. There is no error in approximating the projective-measurement
operation by randomized evolution if we choose 4λ = ∆, with ∆ a lower bound on the
minimum gap. The average cost 〈|T |〉 is proportional to 1/λ = O(1/∆). According to
Thm. 2 this is optimal. A possible problem is that the tail distribution of T is large:
Moments of order greater than 2 are unbounded. Lemma 3 shows that this can be
remedied. For the unitary case we modify T by restricting to the integers. That is,
we set Prob(T = n) ∝ sinc(nλ)4. For λ ≤ π/4, the restriction of the characteristic
function to [−π, π] is unchanged (see Lemma 4), so for the case where the eigenstate
path is determined by a path of unitary operators, the same average cost of O(1/∆) is
obtained.

3. When the eigenstate path is determined by unitary operators, a simple choice of T is the
uniform distribution on integers between 0 and Q− 1, where Q = d2π/∆e. If we repeat
the randomization step n times, we can bound the error with respect to the desired
projection by (Lemma 2)

ε = sup
ωj

|Φ(ωj)|n ≤
∣∣∣∣ 1Q 1− ei∆Q

1− ei∆

∣∣∣∣n ≤ 1
2n

. (8)

The average cost is n(Q − 1)/2 ∈ O(n/∆). To have error at most ε, the cost is
O(log(1/ε)/∆).

If negative T can be used, we can shift T by −bQ/2c. This does not affect the absolute
values of the characteristic function but reduces the average cost by a constant factor
near 1/2.

4. If T is unrestricted, we can consider T with Gaussian distribution N (0, σ). Note that
restricting to 0-mean Gaussians minimizes 〈|T |〉 since the mean and the median coincide.
The absolute value of the characteristic function is

|Φ(ω)| = exp
(
−σ

2ω2

2

)
. (9)

The error of the randomization step with respect to the desired projection is bounded
by

|Φ(∆)| = exp
(
−σ2∆2/2

)
. (10)
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For this distribution, 〈|T |〉 = σ
√

2/π. To have error at most ε, we need
σ ≥ 2 log(1/ε)1/2/∆. This gives an average cost of O[log(1/ε)1/2/∆].

If T must be positive, we can displace the Gaussian by x > 0 and condition on positive
outcomes. The error can be estimated as the sum of the probability that the Gaussian
is negative, which is bounded by e−x2/(2σ2), and the right-hand-side of Eq. (10). The
average cost is O(x + σ). To have error at most ε, let σ = 2 log(2/ε)1/2/∆ and x =√

2σ log(2/ε)1/2. The average cost is then O[log(1/ε)/∆]. According to Thm. 3 (below)
this is optimal for positive T.

5. In the case where T must be supported on integers, one can try to approximate the
Gaussian by the shifted binomial distribution obtained from the sum of 2m independent
{−1/2, 1/2} mean-0 random variables. The absolute value of the characteristic function
is

|Φ(ω)| = | cos(ω/2)|2m . (11)

This requires m ∈ Θ(log(1/ε)/∆2)) to achieve error ε in approximating the desired
projection. The average cost is then O(log(1/ε)1/2/∆)). As in Example 4, we can shift
the distribution by Θ[log(1/ε)1/2/∆] and condition on positive integers to ensure that
T is positive and obtain an average cost of O[log(1/ε)/∆].

Except for Example 2, the distributions above do not achieve the optimal asymptotic
cost for unconstrained T . In the case of Example 2, the probability density determined by
sinc(λt)4 has long tails and unbounded moments. This is improved by the following lemma.
Lemma 3 There exist probability densities f for T that achieve cost 〈|T |〉 = Θ(1/∆) and
error |Φ(ω)| = 0 for |ω| ≥ ∆, and that have bounded moments of all order, i.e. 〈(T−〈T 〉)n〉 <
∞ ∀ n ≥ 0.
We give a constructive proof in Appendix D. For these distributions and ∆ ≤ π, discretization
does not result in an increase in the error, see the next lemma. Note that in the discretized
case we are only interested in the region of eigenphases [−π, π] and the relevant gap is the
eigenphase gap.

Lemma 4 Let f be a probability density whose characteristic function has support in (−∆,∆)
with ∆ ≤ π. Then the restriction of f to the integers is a well-defined probability distribution
with prob(k) = f(k) and characteristic function Φ(ω) = 0 for |ω| ∈ (∆, π].
We give the proof in Appendix E.

For positive T and if only a lower bound ∆ on the gap is known, it is not possible to
improve asymptotically over the shifted and conditioned Gaussian distribution of Example 4:

Theorem 3 Let T be a positive random variable with characteristic function Φ. Then
sup|ω|≥∆ |Φ(ω)| ≥ e−∆〈T 〉π/2.
The proof is in Appendix F.

3 The randomization method

The goal of the randomization method is to prepare the nondegenerate eigenstate |ψ(1)〉 of
H(1) by traversing of the path |ψ(s)〉. This path is determined by the family H = {H(s)}.
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Ideally, we choose the uniform parametrization s(l) discussed in Sec. 2.1 and Appendix B.
Under such a parametrization the eigenstates |ψ(s(l))〉 move at a constant unit rate along
the path. Finding the uniform parametrization is difficult in general. We therefore consider
an arbitrary subuniform parametrization l ∈ [0, L′] 7→ s(l) so that the rate at which the
states move is bounded by unity. Note that L′ ≥ L, with L the path length. A subuniform
parametrization can usually be obtained from known properties of H(s); see Lemma 5 and
Eq. (14) below. We discretize the path using q ∈ O((L′)2) segments in order to achieve
bounded error.

The randomization method uses randomized evolutions RT
l to approximate the projective-

measurement operations Ml at values s(l). Here, l = kδ for k = 1, . . . , q, with q = L′/δ and δ
sufficiently small. For good asymptotic behavior, we choose T as in Lemma 3 or Example 2.
If T must be positive, we use the shifted and conditioned Gaussian distribution of Example 4.
If T must be restricted to the integers, as in the case of a path U(s) of unitaries, we use the
discretized version of T (Lemma 4). We obtain:
Theorem 4 (Randomization method) There are choices of q and T in the randomization
method such that the method outputs |ψ(1)〉 starting from |ψ(0)〉 with fidelity at least p and
average cost

O
(

(L′)2 (log(L′/(1− p)))α

(1− p)∆

)
,

where α = 0 if T can be negative and α = 1 otherwise.
Proof. We choose a step increment δ = L′/q, with q = d2(L′)2/(1− p)e. For this choice,

Lemma 1 guarantees that, if we were to implement the projective-measurement operations
exactly, the error in the preparation of |ψ(1)〉 would be bounded by (1− p)/2, because d ≤ 1
for subuniform parametrizations. We need to choose T such that the additional contribution
to the error due to the differences between the randomized evolutions and the projective-
measurement operations is also bounded by (1 − p)/2. Suppose that the error according to
Thm. 1 is bounded by ε. After r steps we have∥∥(Mlr ◦ · · · ◦Ml1 −RT

lr ◦ · · · ◦R
T
l1)(ρ)

∥∥
tr

=
∥∥(Mlr ◦ · · · ◦Ml1 −Rlr ◦Mlr−1 ◦ · · · ◦Ml1)(ρ)

+ (RT
lr ◦Mlr−1 ◦ · · · ◦Ml1 −RT

lr ◦ · · · ◦R
T
l1)(ρ)

∥∥
tr

≤ ‖(Mlr −Rlr )(σ)‖tr

+
∥∥∥Rlr (Mlr−1 ◦ · · · ◦Ml1 −RT

lr−1
◦ · · · ◦RT

l1)(ρ)
∥∥∥

tr

≤ ε+ (r − 1)ε = rε , (12)

where we used the fact that quantum operations are trace-norm contracting, and we implicitly
applied induction in the last steps. The desired bound on the error requires ε ≤ (1− p)/(2q) =
(1− p)2/(4(L′)2). According to Lemma 3 and Example 4 this can be achieved at an average
cost 〈|T |〉 of O(1/∆) if T can be negative, and O(log(1/ε)/∆) otherwise. The total cost for
the procedure is O[q log(q/(1−p))α/∆], and substitution of the value for q yields the claimed
bound 2.

For differentiableH(s) and eigenstate path |ψ(s)〉, we can obtain a subuniform parametriza-
tion s(l) from bounds on the derivative ofH(s) and the gaps. For this we need the next lemma.
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Lemma 5 Suppose that H(s) is differentiable and {|ψ(s)〉} is a path of nondegenerate eigen-
states of {H(s)} with spectral gap ∆(s) 6= 0. Then

‖ |∂sψ(s)〉 ‖≤ ‖ ∂sH(s) ‖
|∆(s)|

.

The proof is in Appendix G.
Define ‖Ḣ‖ = sups ‖∂sH(s)‖. We obtain

L =
∫ 1

0

‖ |∂sψ(s)〉 ‖ds ≤ L′ =
‖Ḣ‖
∆

, (13)

with ∆ a lower bound to the minimum absolute value of the gap. This L′ is achieved for the
parametrization

s(l) =
∆
‖Ḣ‖

l , (14)

which is subuniform in general. Using this parametrization we obtain the following corollary:

Corollary 1 Let H(s) be a differentiable path of Hamiltonians and ∆ a lower bound on the
minimum absolute value of the spectral gap. Then we can prepare |ψ(1)〉 from |ψ(0)〉 with
bounded error probability at cost

O

(
‖Ḣ‖2

∆3

(
log
(
‖Ḣ‖/∆

))α
)
,

where α = 0 if we can evolve for negative times and α = 1 otherwise.
To conclude this section we consider the following two questions: What is the probability

that the cost of the randomization method exceeds the average cost by a constant factor? How
does the actual path followed by the states obtained in a given instance of the randomization
compare to the adiabatic path?

The average cost of the randomization method is 〈C〉 = q〈|T |〉, where q is defined in the
proof of Thm. 4, with T the relevant random variable. The probability prob(C ≥ a〈C〉) is
therefore at most 1/a (Markov’s inequality). If the higher-order moments of T are bounded,
better bounds can be obtained. In particular, for the distributions whose characteristic func-
tions have smooth, compact support, prob(C ≥ a〈C〉) decreases superpolynomially in a. For
T based on Gaussians, the decrease is e−Ω(a2). Since C is determined by a sum of q indepen-
dent instances of |T |, better bounds can be obtained for specific choices of T , particularly if q
is large. In particular the variance of C is inversely proportional to q if T has finite variance
and Chebyshev’s inequality or, for sufficiently well-behaved T , large-deviation theory can be
applied.

A distinguishing feature of the randomization method is that any given instance involves
unitary evolution, which means that the sequence of states obtained is pure. What is the
probability (over the randomization of the evolution times) that every state in the sequence
of pure states has fidelity at least 1 − γ with respect to the corresponding eigenstate along
the adiabatic path? In view of the proof of Thm. 4, the probability that the state after the
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r’th step has fidelity at least 1 − krε with respect to |ψ̃(lr)〉 is at least 1/k (by Markov’s
inequality). In particular the fidelity of the last state obtained is at least 1 − k(1 − p) with
respect to |ψ(1)〉 with probability 1/k. One can deduce that many of the states obtained in a
typical instance of the randomization method are close to the corresponding states along the
adiabatic path. Given that the deviation from the adiabatic path executes a kind of random
walk, it is reasonable to conjecture that for appropriate choices of parameters, the probability
that all states obtained are close to the adiabatic path is also high.

4 Examples of Quantum computations via evolution randomization

4.1 Unstructured search

In Grover’s algorithm [21] we want to find a single marked element S in a space of N = 2n

elements. For this, we build the Hamiltonian

H(s) = −[s |S〉〈S| + (1− s) |+〉〈+|] , (15)

acting on a set of n qubits. Here, |+〉 is the equal superposition state and |S〉 the solution state,
which is the computational basis state corresponding to the marked element. Evolving with
H(s) for time t can be done using O(|t|1+η) conventional oracle calls, with η > 0 arbitrarily
small [22]. For any s, H(s) is nondegenerate in the subspace spanned by {|+〉 , |S〉}. If |ψ(s)〉
is the eigenstate with largest eigenvalue, we seek to prepare |ψ(1)〉 = |S〉 from |ψ(0)〉 = |+〉
with sufficiently high probability. Preparation of |ψ(1)〉 using AQC was studied in Ref. [23].

The energy gap of H(s) can be obtained exactly in the relevant subspace. It is

∆(s) =
√

1− 4s(1− s)(1− 1/N) , (16)

which is minimized at s = 1/2, giving ∆ = ∆(1/2) = 1/
√
N . The path length L can

also be obtained exactly and, for large N , we have L ≈ π/2 (the states |+〉 and |S〉 are
almost orthogonal). From Thm. 4 the average cost of the randomization method for constant
probability of success is O(1/∆) ∈ O(1/

√
N) if the parametrization is uniform. In the large

N limit, this parametrization satisfies

l(s) ≈ 1
2

arctan
(

1√
N

1− s

1/2− s

)
, (17)

which satisfies 0 ≤ l(s) ≤ π/2. The randomization method then consists of a sequence of
projective-measurements operations at values

sj ≈
1
2
− cot(2lj)

2
√
N

=
1
2
− cot(2jδ)

2
√
N

(18)

for some δ > 0. Note that this is the same evolution path as the one considered in Ref. [23],
and that the rate of change of s as a function of l is ∆(s(l)). A possible choice for δ is π/4.
At s = 1/2, we can implement the phase randomization by evolving under H(1/2) for time 0
or π/∆, each with probability 1/2. This is the distribution in Example 1 of Sec. 2.3, and was
also used in Ref. [9]. It outputs the desired state almost half the time.

When more than one marked element exist, the above randomization method can still
be used to output a solution with bounded error probability: the main effect of adding new
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projectors in H(s) is an increased spectral gap ∆′(s) ≥ ∆(s). Thus, the induced decoherence
still simulates an appropriate measurement in the new eigenbasis. If the uniform distribution
is used for the randomization, then the algorithm is equivalent to the one discussed in Ref. [24],
Sec. 8.4.

4.2 Quantum simulated annealing

As the previous example demonstrates, distinguishing between the cost induced by the path
length and the one induced by the gap has important advantages, in particular when L ∈
O(1). Without this distinction, the actual cost of the method can be highly overestimated.
In Ref. [12] we studied quantum simulations of classical annealing processes via evolution
randomization. An upper bound on the path length in this case is independent of the minimum
spectral gap Γ of the classical Markov chain (i.e., Γ is the difference between 1 and the second
largest eigenvalue of the stochastic matrix). Furthermore, Γ can be quadratically increased
using Szegedy’s quantum walks [25, 26]. For bounded error probability, the randomization
method using these walks has a cost O(1/

√
Γ), where we are disregarding the dependency on

other parameters such as error probability and path length. It provides a quantum speed-up
with respect to simulated annealing using Markov Chain Monte Carlo methods, where the cost
is O(1/Γ). Quantum state preparation of Gibbs’ states using AQC and the Zeno method was
previously studied in Ref. [10], but no quantum speed-up was obtained. Recently, a unitary
version of the quantum simulated annealing algorithm (QSA), that uses Grover’s fixed point
method, was introduced in Ref. [17]. The unitary version improves the dependence of the
cost of QSA on output fidelity compared to that in Ref. [12]. However, the scaling in the gap
is the same.

Basically, QSA is designed to traverse a coherent version of the classical-state path tra-
versed by classical simulated annealing. The quantum state path is in a Hilbert space of
dimension corresponding to the size of the classical state space. The classical annealing path
we consider is determined by πx(β) = e−βE[x]/Z(β), where πx is the probability of configu-
ration x in the stationary (Gibbs) distribution. E is the associated energy or cost function,
β is the inverse temperature, and Z(β) the partition function. The corresponding path in
Hilbert space is given by the quantum Gibbs states |ψ(β)〉 =

∑
x

√
πx(β) |x〉. Note that a

measurement in the computational basis samples x with probability πx(β). Since

|∂βψ(β)〉 =
∑

x

(〈E〉 − E[x])
√
πx/2 |x〉 , (19)

we obtain the following lemma.
Lemma 6 For β ∈ (0, βf ),

‖ |∂βψ(β)〉 ‖ = σ(β)/2 ,

where σ(β) is the standard deviation of E at inverse temperature β. The path length satisfies
L ≤ βfσ/2, with σ = supβ σ(β).

If d′ is the size of the classical state space and γ is the spectral gap of E, then the state
|ψ(βf )〉, for βf = O((log d′)/γ), has high probability amplitude in the configuration that
minimizes E. With this βf , we have

L ∈ O
(
σ log d′

γ

)
. (20)
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That L is bounded independently of Γ is fundamental for the success of QSA. Using Szegedy’s
quantum walks we can boost the gap towards O(

√
Γ) and achieve the desired cost. The details

of this procedure are explained in Refs. [26, 12].
The QSA is basically a sequence of steps, each constructed to prepare the states |ψ(δ)〉,

|ψ(2δ)〉, · · · , |ψ(βf )〉 from the initial state |ψ(0)〉, δ � 1. According to Ref. [12], these states
can be prepared by a version of the Zeno effect in which, at each step, the corresponding
Szegedy walk is applied a random number of times (see Example 3, Sec. 2.3). For this
distribution the cost of the QSA is

O
(
L2

√
Γ

logL
)
∈ O

(
σ2 log2 d′

γ2
√

Γ
log (σ log d′/γ)

)
,

with Γ the minimum gap of the Markov chain along the path. The results in Sec. 2.3 show that
using the inverses of the quantum walk steps, the second logarithmic factor can be dropped.
Because of the way the quantum walk is constructed, circuits for the inverses can be obtained
by direct reversal of the circuits for the quantum walk steps. In Ref. [17] the authors show
that a coherent (non-monotonic) path traversal that uses Grover’s fixed point method for this
case can be implemented with an improved cost O(L log2 L/

√
Γ).

5 Relation to other work

It has been noted previously [9, 10, 27, 12, 17] that the projective-measurement operations
Ml can be simulated using Kitaev’s phase estimation algorithm [11] in the discrete-time case.
This requires implementing unitaries Ul = e−iH̃(l) controlled on r ancillary qubits initialized
in the equal superposition state. Then the inverse of the quantum Fourier transform is
applied to the ancillary qubits, and a projective measurement on the computational basis of
the ancillae is performed [see Fig. 1(a)]. The phase estimation algorithm needs to resolve
the desired eigenphase from other eigenphases to be able to project the state of the system
into the desired eigenstate. This requires 2r ∈ Ω(1/∆̃(l)) uses of controlled-Ul’s for constant
error. The error per step has to be small. If one of the high-confidence versions of the phase
estimation algorithm [28] is used, the overhead to achieve error ε is logarithmic in 1/ε. The
overall cost is then similar to that of the randomization method when T is restricted to be
positive.

Interestingly, the phase-estimation-based algorithm produces the same effect on the system
as the randomization method if we sample the evolution time from the uniform distribution on
an interval. This is because the phase estimation ancillary qubits can be traced out after each
step. As a result, the inverse quantum Fourier transform can also be dropped. Consequently,
the coherence in the state of the ancillary qubits, initialized in the equal superposition state,
plays no role and these qubits can be replaced by classical bits, each being 0 or 1 with
probability 1/2. This equivalence was also studied in Ref. [24]. We illustrate it in Fig. 1(b).

Repeating the phase estimation algorithm n times is equivalent to randomizing with the
sum of n independent uniform distributions. This was considered in Example 3, Sec. 2.3. The
unwanted coherences reduce exponentially in n.

There are previously noted relationships between the Zeno effect and coherent evolutions
similar to the continuous or discrete evolutions used in the randomization method. For
example, the effect of a strong interaction with another system, such as might occur in the
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|0〉⊗r / H⊗r
|j〉 • FT † FE


 /. -,() *+Trash

ρ / U j
l

(a)

(1l/2)⊗r / j •
ρ / Ul

(b)

Fig. 1. (a) Phase estimation algorithm. At the end of the algorithm, the top r-qubit register

encodes a r-bit approximation to an eigenphase of Ul on readout. It is initialized with Hadamard

gates to an equal superposition state. A sequence of 2r − 1 controlled Uj
l operations is applied,

and the first register is measured after an inverse quantum Fourier transform. If the measurement

outcome approximates an eigenphase of Ul, the second register (system) is approximately projected

onto the corresponding eigenstate. (b) Randomized evolution. If the phase estimation algorithm
outcome is ignored, the overall effect is equivalent to the one induced by initializing a set of r

bits (first register) in a random state j, with j ∈ [0..2r − 1], and by acting with Uj
l . Double lines

indicate classical information.

coupling to a measurement apparatus, is to restrict the natural Hamiltonian to the eigenspaces
of the interaction [29]. The suppression of coherent transitions by randomization with the
interaction Hamiltonian would have a similar effect. A discrete version of this observation
relevant to the analysis of dynamical decoupling was considered in [30].

There is a relationship between the way in which interactions are averaged away in dynam-
ical decoupling, particularly randomized dynamical decoupling [31, 32], and how transitions
between the adiabatic path and the other eigenstates are suppressed in the randomization
method. The relationship can be made explicit by changing to an s-dependent frame in
which the Hamiltonians H(s) are diagonal. In this frame, the transitions show up explicitly
due to the frame changes with s. Strong or randomized evolution under H(s) suppresses
these transitions by averaging them to zero. Dynamical decoupling typically uses operators
that have stronger averaging effects.

A feature of the randomization method is the use of phase decoherence to ensure a more
efficient transfer to a state of physical or computational interest. There are other ways in
which decoherence can play a role in preparing states for quantum computing. Early examples
proposed the synthesis of decoherence free subspaces from an environment-induced quantum
Zeno effect [33, 34, 35]. The use of decoherence to decrease the mixing time of quantum
walks was proposed in Ref. [36]. A related phenomenon has been studied in the context of
energy transfer [37, 38, 39, 40] as realized in certain biological molecules. More generally, it
may be that decoherence or thermal noise can enhance the success probability in adiabatic
quantum computing [41, 42, 43, 44]. Note that the required thermal noise is different from the
phase-decoherence associated with the randomization method in that it has the potentially
desirable effect of transferring population to lower-energy eigenstates of the currently active
Hamiltonian. Whether the requirements for effective exploitation of this situation can be met
in realistic devices is not clear.
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Finally, the engineering of a dissipative process using feedback techniques to stabilize a
desired quantum state has been studied extensively in the quantum control literature [45, 46,
47, 48]. Reference [49] advances that the final state of AQC can be made the unique steady
state of the dissipation, even without feedback. In essence, the process’ Lindblad operators
encode the gates of the quantum computation and appropriate updates to a logical clock
register. Again, the necessary dissipation requires more than the phase decoherence realized
by the randomization method.

6 Conclusions

We have described a method for state preparation in the spirit of AQC, but based exclusively
on randomized evolutions. The idea is to perform a discrete sequence of projective measure-
ment operations onto the desired (instantaneous) eigenstate of a given Hamiltonian or unitary
path. These operations are induced via evolution randomization, which realizes the necessary
decoherence in the eigenbasis. We bound the residual coherences after the randomization in
terms of the characteristic function of the random time.

We obtained the following exact bounds on the dephasing achieved by randomized evolu-
tions: First, to induce enough decoherence, the average evolution time per step scales with
the inverse of the minimum absolute value of the spectral (or eigenphase) gap. Second, repe-
tition of the randomization reduces the coherences exponentially in the amount of repetitions.
Third, if negative-time evolutions are implementable with constant overhead, logarithmic fac-
tors depending on the error can be reduced to constant factors, even for discretized evolutions.
Fourth, for non-negative evolutions and if only a lower bound on the absolute value of the
gaps is known, the logarithmic overhead is unavoidable.

We show that the complexity of path traversal algorithms is best expressed in terms of
the path length L. The explicit dependence of the complexity on L can be very helpful
when L does not depend on the gap. This happens, for example, in the Hamiltonian version
of an algorithm for unstructured search, where we showed that a simple choice of step size
and random time distributions rotates into the solution state with probability 1/2. One
further advantage of the path-length formulation is that we do not require the relatively
strong differentiability requirements on H as in the proofs of the adiabatic condition [13] with
explicit bounds as needed for AQC.

Another case where L does not depend on the gap is in the quantum simulated annealing
algorithm, which we also analyzed. This algorithm provides a quadratic quantum speed-up
in terms of the gap with respect to classical simulated annealing implemented via Markov
Chain Monte Carlo methods. The path is determined by an annealing schedule in which a
parameter β, related to the inverse temperature of a classical system, is slowly increased in
equal-size steps. The quantum simulated annealing algorithm allows us to reach the optimal
configuration in time O(1/

√
Γ) for constant probability of success and path length, with Γ

being the minimum gap of the stochastic matrix (and the corresponding Hamiltonian) along
the path. The improved randomization methods given here remove a logarithmic factor for
the version of the algorithm given in Ref. [12].

The similarities of the randomization method with AQC are clear: A typical instantiation
(choice of evolution times) of the randomization method is, with high probability, an approx-
imation to an adiabatic path. We find, as is often the case, that it is easier to prove error
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bounds for random instances than for the worst case. Whether the existence statement can
be “derandomized” efficiently is still an interesting question.
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Appendix A

Path length. For states |φ1〉 and |φ2〉, let Θ(|φ1〉 , |φ2〉) = arccos(|〈φ2|φ1〉|) be the angular
distance between the states. We assume that the |ψ(s)〉 form a projectively continuous path,
s ∈ [0, 1]. The length is given by

L = sup
(sk)

∑
k

Θ(|ψ(sk+1)〉 , |ψsk
〉), (A.1)

where the ordered sequences (sk) subdivide [0, 1]. Note that the expression in the limit de-
pends monotonically on the (sk), increasing in the refinement order. If |ψ(s)〉 is differentiable,
the expression in Eq. (A.1) reduces to the one in Eq. (2).

Appendix B

Uniform parametrization. Let L̃(l) be the length of the path |ψ̃(l′)〉 for 0 ≤ l′ ≤ l,
defined as in Eq. (A.1). Suppose that L̃(l) is Lipschitz continuous so that ω(l1, l2) =
supl1≤l′<l′′≤l2(L̃(l′′) − L̃(l′))/(l′′ − l′) is finite. Note that if L̃ is differentiable, one can take

ω(l1, l2) = supl1≤l≤l2
dL̃(l)

dl . In particular, if |ψ̃(l)〉 is differentiable, ω(l1, l2) = supl1≤l≤l2 ‖∂l|ψ̃(l)〉‖
works [see Eq. (2)]. We obtain:
Lemma 7 The squared overlap |〈ψ̃(l + δ)|ψ̃(l)〉|2 can be bounded by

|〈ψ̃(l + δ)|ψ̃(l)〉|2 ≥ 1− ω(l, l + δ)2δ2 .

Proof. We have

|〈ψ̃(l + δ)|ψ̃(l)〉|2 = cos(Θ(|ψ̃(l + δ)〉, |ψ̃(l)〉))2

≥ 1−Θ(|ψ̃(l + δ)〉, |ψ̃(l)〉)2

≥ 1− (L̃(l + δ)− L̃(l))2

≥ 1− ω(l + δ, l)2δ2 (B.1)

2.
To take advantage of Lemma 1, it helps to parametrize the path with an s(l) for which

ω(l1, l2) is as uniform as possible. For this purpose, define s(l) = inf{s : L(s) ≥ l} for
0 ≤ l ≤ L, where the length L(s) is the length of the path |ψ(s′)〉, 0 ≤ s′ ≤ s. The function
s(l) is not necessarily continuous.
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Continuity of states and finiteness of L implies continuity of L(s). This can be shown as
follows: Suppose that L(s) is not continuous at s. Then either supδ>0 L(s − δ) < L(s) or
infδ>0 L(s+δ) > L(s). Consider the first case. We have L(s) = lim supδ>0(Θ(|ψ(s)〉 , |ψ(s− δ)〉)+
L(s − δ)). The inequality implies that lim supδ>0 Θ(|ψ(s)〉 , |ψ(s− δ)〉) > 0, contradicting
continuity of |ψ(s)〉. For the second case, s < 1. Define L(s1, s2) as the length of the
path from |ψ(s1)〉 to |ψ(s2)〉. It can be seen from the definition, monotonicity in the re-
finement order of the term in the limit of the definition, and from projective continuity
of |ψ(s)〉 that L(s, 1) = supδ>0 L(s + δ, 1) + Θ(|ψ(s)〉 , |ψ(s+ δ)〉) = supδ>0 L(s + δ, 1) and
L(s, 1) = L(s+ δ, 1) +L(s, s+ δ). It follows that infδ>0 L(s, s+ δ) = 0. The observation now
follows from L(s+ δ) = L(s) + L(s, s+ δ).

We define L̃(l) as the length of the path |ψ̃(l′)〉 = |ψ(s(l′))〉 for 0 ≤ l′ ≤ l. We show that
L̃(l) = L(s(l)) = l. The second inequality follows from continuity of L and the definitions.
From the definition of path length and since any subdivision (lk) of [0, l] corresponds to a
subdivision (s(lk)) of [0, s(l)], L̃(l) ≤ L(s(l)). To show the reverse inequality, let s̄ = s(L(s)).
Then s̄ ≤ s and Θ(|ψ(s̄)〉 , |ψ(s)〉) = 0. Hence for all s′ ∈ [s̄, s], |ψ(s′)〉 ∝ |ψ(s̄)〉 (that is,
the two states are projectively identical). Consequently, the right-hand side of Eq. (A.1) is
unchanged if we replace the sk by s̄k. Since the s̄k are in the range of l 7→ s(l), we can choose
lk = L(s̄k) to show that the defining supreme for L̃(l) and for L(s(l)) are the same.

By the previous paragraph, ω(l1, l2) = 1 for the parametrization s(l). We therefore refer
to s(l) as the uniform parametrization.

Appendix C

Proof of Theorem 1 Let µ be the probability distribution of T . For any E ,

(RT
l −ME

l )(|ψ̃(l)〉〈ψ̃j(l)|)
= RT

l (|ψ̃(l)〉〈ψ̃j(l)|)

=
∫
e−iH̃(l)t(|ψ̃(l)〉〈ψ̃j(l)|)eiH̃(l)tdµ(t)

=
∫
eiωjtdµ(t)|ψ̃(l)〉〈ψ̃j(l)|

= Φ(ωj)|ψ̃(l)〉〈ψ̃j(l)| . (C.1)

We assume without loss of generality that ρ is pure, ρ = |φ〉〈φ|. Write

|φ〉 = c1|ψ̃(l)〉+
∑
j>1

cj |ψ̃j(l)〉 . (C.2)

Let S be the subspace orthogonal to |ψ̃(l)〉. The operation RT
l leaves S invariant, and we can
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choose E = RT
l in that subspace. Then∥∥(ME

l −RT
l )(|φ〉 〈φ|)

∥∥
tr

=

∥∥∥∥∥RT
l

∑
j>1

c1c
∗
j |ψ̃(l)〉〈ψ̃j(l)|+ h.c.

∥∥∥∥∥
tr

=

∥∥∥∥∥∥
∑
j>1

(
Φ(ωj)c1c∗j |ψ̃(l)〉〈ψ̃j(l)|+ h.c.

)∥∥∥∥∥∥
tr

. (C.3)

This is the trace norm of a matrix having

±
√∑

j>1

|Φ(ωj)c1c∗j |2 (C.4)

as the only non-zero eigenvalues. Because of the normalization, |c1|2
∑

j>1 |cj |2 ≤ 1/4. Thus

∥∥(ME
l −RT

l )(|φ〉 〈φ|)
∥∥

tr

= 2
√∑

j>1

|Φ(ωj)c1c∗j |2

≤ sup
ωj

|Φ(ωj)| 2
√∑

j>1

|c1c∗j |2

≤ sup
ωj

|Φ(ωj)| . (C.5)

Appendix D

Proof of Lemma 3. We start with any smooth even function ĥ of compact support in
(−1/2, 1/2). This implies that its inverse Fourier transform h is real and all its moments are
bounded since

|〈Xn〉| =
∣∣∣∣∫ +∞

−∞
h(x)xndx

∣∣∣∣ =
∣∣∣∣∣∂nĥ(0)
∂ωn

∣∣∣∣∣ <∞ . (D.1)

We define the characteristic function Φ1 to be proportional to the convolution of ĥ with itself,

Φ1(ω) ∝ (ĥ ∗ ĥ)(ω) . (D.2)

We normalize such that Φ1(0) = 1. By construction, the inverse Fourier transform of Φ1,
denoted by f1, is positive, normalized to 1, and rapidly decaying, as desired. To accommodate
arbitrary spectral gaps ∆ > 0, we rescale the characteristic function as Φ∆(ω) = Φ(ω/∆),
which has support in (−∆,∆). Its inverse Fourier transform is a probability density function
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f∆(t) = ∆f1(∆t). The cost of randomization with f∆ is

〈|T |〉∆ =
∫ +∞

−∞
|t|f∆(t)dt

= ∆
∫ +∞

−∞
|t|f1(∆t)dt

=
〈|T |〉1

∆
. (D.3)

where 〈|T |〉1 is the cost of randomization with f1, and is independent of ∆. It follows that
〈|T |〉∆ ∈ Θ(1/∆), which is optimal.

Appendix E

Proof of Lemma 4. Consider a probability density f with characteristic function Φ of
support in (−∆,∆), where ∆ ≤ π. Consider

∑
k Φ(ω + 2πk) = (Φ ∗ Ĉ)(ω) where Ĉ(ω) =∑

k δ(ω − 2πk) is a comb. As a distribution, Ĉ(ω) is the Fourier transform of the comb
C(t) =

∑
k δ(t − k)/(2π). See, for example, Sec. 2.4 of [50]. Using the rules for convolution

under the inverse Fourier transform, we find that the distribution (f ·C)(t) =
∑

k f(k)δ(t−k)
has Fourier transform Φ ∗ Ĉ. Because (Φ ∗ Ĉ)(0) = Φ(0) = 1, it follows that f(k) is a
probability distribution with the stated properties.

Appendix F

Proof of Theorem 3. For 〈T 〉 infinite, there is nothing to prove. So assume 〈T 〉 is
finite, which implies that the characteristic function is differentiable. Suppose first that T
has a square-integrable probability density f(t). The characteristic function is then a “Hardy
function” of class H2+ as defined in Ref. [51], pg. 162. By noting that for α > 0, ω 7→ Φ(αω)
is also Hardy, the proof of Thm. 2 on pg. 166 of Ref. [51] shows that∫ +∞

−∞

log |Φ(αγ)|
1 + γ2

dγ ≥ π log |Φ(αi)| , (F.1)

where Φ has been analytically extended to the upper half plane. The analytical extension of
Φ is obtained by using complex ω in the Fourier transform. Consequently, dΦ(z)/dz is the
Fourier transform of t 7→ itf(t), where defined. In particular, |dΦ(z)/dz| is bounded by 〈T 〉
for z = iβ with β ≥ 0. Since Φ(0) = 1, we have log |Φ(αi)| ≥ log(1− α〈T 〉). The integral of
the inequality in Eq. (F.1) can be related to the desired supremum as follows:∫ +∞

−∞

log |Φ(αγ)|
1 + γ2

dγ

= α

∫ +∞

−∞

log |Φ(γ)|
α2 + γ2

dγ

≤ α

∫ +∆

−∆

log |Φ(γ)|
α2 + γ2

dγ

+ α log( sup
|γ|≥∆

|Φ(γ)|)
∫
|γ|≥∆

1
α2 + γ2

dγ

≤ log( sup
|γ|≥∆

|Φ(γ)|)(π − 2 arctan(∆/α)) . (F.2)
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To drop the first summand in the last step we used the fact that |Φ(γ)| ≤ 1 because Φ is the
characteristic function of a probability distribution. We now let α → 0+ and combine with
the earlier inequality to get, to first order in α,

− πα〈T 〉 ≤ 2 log( sup
|γ|≥∆

|Φ(γ)|)α/∆ , (F.3)

which gives e−∆〈T 〉π
2 ≤ sup|γ|≥∆ |Φ(γ)|.

Now consider arbitrary positive T with 〈T 〉 < ∞, and with probability distribution µ.
Let Sδ be uniformly distributed between 0 and δ. The probability distribution of T + S

has cumulative distribution F (x) =
∫ x

0
min(1, (x − y)/δ)dµ(y), which is differentiable. The

corresponding probability density is given by µ([x − δ, x])/δ =
∫ x

x−δ
dµ(y)/δ and is square

integrable because ∫
µ([y − δ, y])2dy ≤

∫
µ([y − δ, y])dy

=
∫ ∫ y

y−δ

dµ(z)dy

=
∫ ∫ z+δ

z

dydµ(z) (F.4)

=
∫
δdµ(z) = δ . (F.5)

Thus T + S is subject to the bound of the Theorem. The characteristic function of T + S

is given by Φ(ω)sδ(ω), where sδ(ω) is the characteristic function of Sδ. The function sδ(ω)
converges uniformly to 1 on bounded intervals as δ → 0+. It follows that the desired bound
applies to arbitrary positive T .

Appendix G

Proof of Lemma 5. Without loss of generality, the phases of |ψ(s)〉 are geometric.
Because ∆(s) > 0 and H(s) is differentiable, it follows that |ψ(s)〉 is differentiable. From the
eigenvalue equation

H(s)|ψ(s)〉 = E(s)|ψ(s)〉 , (G.1)

we get

∂sH(s)|ψ(s)〉+H(s)|∂sψ(s)〉 =

∂sE(s)|ψ(s)〉+ E(s)|∂sψ(s)〉 . (G.2)

Denote by |ψj(s)〉, j ∈ {2, . . . , d}, the j-th eigenstate of H(s), orthogonal to |ψ(s)〉, and
with eigenvalue Ej(s). We obtain

〈ψj(s)|∂sψ(s)〉 =
〈ψj(s)| ∂sH(s)|ψ(s)〉

E(s)− Ej(s)
. (G.3)
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Because the path |ψ(s)〉 is geometric, 〈ψ(s)|∂sψ(s)〉 = 0 for all s. This gives

‖ |∂sψ(s)〉 ‖2=
∑
j≥2

| 〈ψj(s)| ∂sH(s)|ψ(s)〉|2

|E(s)− Ej(s)|2

≤ 1
∆(s)2

∑
j≥2

〈ψ(s)| ∂sH|ψj(s)〉 〈ψj(s)| ∂sH(s)|ψ(s)〉

≤ 1
∆(s)2

〈ψ(s)| (∂sH(s))2|ψ(s)〉 ≤ ‖ ∂sH(s) ‖2

∆(s)2
.
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