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The Landau-Lifshitz-Gilbert damping parameter is typically assumed to be a local quantity, in-
dependent of the magnetic configuration. To test the validity of this assumption we calculate the
precession damping rate of small amplitude non-uniform mode magnons in iron, cobalt, and nickel.
At scattering rates expected near and above room temperature, little change in the damping rate is
found as the magnon wavelength is decreased from infinite to a length shorter than features probed
in recent experiments. This result indicates that the presence of weakly non-uniform modes, ex-
pected in real devices, should not appreciably affect the dynamic response of the element at typical
operating temperatures. Conversly, at scattering rates expected in very pure samples around cryo-
genic temperatures, an order of magnitude decrease in damping rates is obtained for magnons with
wavelengths commensurate with domain wall widths. While this low temperature result is likely of
little practical importance, it provides an experimentally testable prediction of the non-local con-
tribution of the spin-orbit torque-correlation model of precession damping. None of these results
exhibit strong dependence on the magnon propagation direction.

Magnetization dynamics continues to be a techno-
logically important, but incompletely understood topic.
Historically, field induced magnetization dynamics have
been described adequately by the phenomenological
Landau-Lifshitz-Gilbert (LLG) equation [1–3]

ṁ = −|γ|m×H + λm̂× (m×H) , (1)

which accounts for the near equilibrium dynamics of sys-
tems in the absence of an electrical current. γ is the
gyromagnetic ratio and λ is the phenomenological damp-
ing parameter, which quantifies the decay of the excited
system back to equilibrium. The LLG equation is a
rather simple approximation to very intricate dynamic
processes. The limitations of the approximations enter-
ing into the LLG equation are likely to be tested by the
next generation of magnetodynamic devices. While many
generalizations for the LLG equation are possible, we
focus on investigating the assumption that damping is
local. It is generally assumed in both analyzing exper-
imental results and in performing micromagnetic simu-
lations that damping is a local phenomenon. While no
clear evidence exists to contradict this assumption, the
possibility that the damping is non-local – that it de-
pends, for example, on the local gradient of the mag-
netization – would have particular implications for ex-
periments that quantify spin-current polarization [4], for
storage [5] and logic [6] devices based on using this spin-
current to move domain-walls, quantifying mode dynam-
ics in bit-patterned media [7], vortex dynamics [8], and
the behavior of nano-contact oscillators [9, 10].

While several viable mechanisms have been proposed
to explain the damping process in different systems [11–
17], we restrict the scope of this paper to investigating
the degree to which the assumption of local damping is

violated for small amplitude dynamics within pure bulk
transition metal systems where the dominant source of
damping is the intrinsic spin-orbit interaction. For such
systems, Kamberský’s [14] spin-orbit torque-correlation
model, which predicts a decay rate for the uniform pre-
cession mode of
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has recently been demonstrated to account for the major-
ity of damping [18, 19]. The matrix elements |Γ−

nm(k)|2

represent a scattering event in which a quantum of the
uniform mode decays into a single quasi-particle electron-
hole excitation. This annihilation of a magnon raises the
angular momentum of the system, orienting the magneti-
zation closer to equilibrium. The excited electron, which
has wavevector k and band index m, and the hole, with
wavevector k and band index n, carry off the energy and
angular momentum of the magnon. This electron-hole
pair is rapidly quenched through lattice scattering. The
weighting function Wnm(k) measures the likelihood that
the scattering event occurs. The very short lifetime of
the electron-hole pair quasiparticle (on the order of fs at
room temperature) introduces significant energy broad-
ening (several hundred meV). The weighting function,
which is a generalization of the delta function appearing
in a simple Fermi’s golden rule expression, quantifies the
energy overlap of the broadened electron and hole states
with each other and with the Fermi level. Expression 2
has been discussed extensively [14, 18–20].

Although recent efforts have approached the problem
of dissipation of non-collinear excited states [21, 22] the
simple step of generalizing Kamberský’s theory to non-
uniform mode magnons has not yet been taken. We fill
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this obvious gap, obtaining a damping rate of
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for a magnon with wavevector q. The numerical eval-
uation of this expression for the damping rate of finite
wavelength magnons in transition metal systems, pre-
sented in Fig. 1, and the ensuing physical discussion form
the primary contribution of this paper. We find that the
damping rate expected in very pure samples at low tem-
perature is rapidly reduced as the magnon wavevector
|q| grows, but the damping rate anticipated outside of
this ideal limit is barely affected. We provide a simple
band structure arguement to explain these observations.
The results are relevant to systems for which the non-
collinear excitation may be expanded in spin-waves, pro-
vided the amplitude of these waves is small enough to
neglect magnon-magnon scattering.

Calculations for the single-mode damping constant
(Eq. 3) as a function of electron scattering rate are pre-
sented in Fig. 1 for iron, cobalt, and nickel. Damp-
ing rates are given for magnons with wavevectors along
the bulk equilibrium directions, which are 〈100〉 for Fe,
〈0001〉 for Co, and 〈111〉 for Ni. Qualitatively and quan-
titatively similar results were obtained for other magnon
wavevector directions for each metal. The magnons re-
ported on in Fig. 1 constitute small deviations of the mag-
netization transverse to the equilibrium direction with
wavevector magnitudes between zero and 1 % of the Bril-
louin zone edge. This wavevector range corresponds to
magnon half-wavelengths between infinity and 100 lat-
tice spacings, which is 28.7 nm for Fe, 40.7 nm for Co,
and 35.2 nm for Ni. This range includes the wavelengths
reported by Vlaminck and Bailleul in their recent mea-
surement of spin polarization [4].

Results for the three metals are qualitatively similar.
The most striking trend is a dramatic, order of magni-
tude decrease of the damping rate at the lowest scattering
rate tested as the wavevector magnitude increases from
zero to 1 % of the Brillouin zone edge. This observation
held in each metal for every magnon propagation direc-
tion investigated. The damping rates of Fe and Ni show
a leveling off or partial recovery as the wavevector magni-
tude is further increased. For the higher scattering rates
expected in devices at room temperature there is almost
no change in the damping rate as the magnon wavevector
increases from zero to 1 % of the Brillouin zone edge in
any of the directions investigated for any of the metals.

To understand the different dependences of the damp-
ing rate on the magnon wavevector at low versus high
scattering rates we first note that the damping rate
(Eqs. 3 & 3) is a convolution of two factors: the torque
matrix elements and the weighting function. The ma-
trix elements do not change significantly as the magnon
wavevector increases, however, the weighting function
can change substantially. The weighting function

Wnm(k,k + q) ≈ An,k(εF )Am,k+q(εF ) (4)
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FIG. 1: Damping rates versus scattering rate. The preces-
sion damping rates for magnons in iron, cobalt, and nickel
are plotted versus electron scattering rate for several magnon
wavevectors. A dramatic reduction in damping rate is ob-
served at the lowest scattering rates. The Landau-Lifshitz λ

(Gilbert α) damping parameter is given on the left (right)
axes. Electron scattering rate is given in eV on the top axis.
Magnon wavevector magnitudes are given in units of the Bril-
louin zone edge and directions are as indicated in the text.

contains a product of the initial and final state electron
spectral functions

An,k(εF ) =
1

π

h̄γ

(εF − εn,k)2 + (h̄γ)2
, (5)

which are Lorentzians in energy space. The spectral func-
tion for state |n,k〉, which has nominal band energy εn,k,
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FIG. 2: Partial band structure of bcc iron. The horizontal
black line indicates the Fermi level and the shaded region
represents the degree of spectral broadening. The solid dot is
a hypothetical initial electron state while the open circle is a
potential final scattering state. (Initial and final state wave-
vector separations are exagerated for clarity of illustration.)
The intraband magnon decay rate diminishes as the energy
separation of the states exceeds the spectral broadening.

is evaluated within a very narrow range of the Fermi level
εF . The width of the spectral function h̄γ is given by
the electron scattering rate γ = 1/2τ where τ is the
orbital lifetime. (The lifetimes of all orbital states are
taken to be equal for these calculations and no specific
scattering mechanism is implied.) The weighting func-
tions restrict the electron-hole pair generated during the
magnon decay to states close in energy to each other and
near the Fermi level. For high scattering rates, the elec-
tron spectral functions are significantly broadened and
the weighting function incorporates states within an ap-
preciable range (several hundred meV) of the Fermi level.
For low scattering rates, the spectral functions are quite
narrow (only a few meV) and both the electron and hole
state must be very close to the Fermi level.

The second consideration useful for understanding the
results of Fig. 1 is that the sum in Eqs. 2 & 3 can be
divided into intraband (n = m) and interband (n 6= m)
terms. For the uniform mode, these two contributions
correspond to different physical processes with the intra-
band contribution dominating at low scattering rates and
the interband terms dominating at high scattering rates
[14, 18–20].

For intraband scattering, the electron and hole occupy
the same band and must have essentially the same energy
(within h̄γ). The energy difference between the electron
and hole states may be approximated as εn,k+q − εn,k ≈
q · ∂εn,k/∂k. The generation of intraband electron-hole
pairs responsible for intraband damping gets surpressed
as q·∂εn,k/∂k becomes large compared to h̄γ. Unless the
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FIG. 3: Intraband and interband damping contributions in
iron. The intraband and interband contributions to the damp-
ing rate of magnons in the 〈100〉 direction in iron are plot-
ted versus scattering rate for several magnitudes of magnon
wavevector. Magnitudes are given in units of the Brillouin
zone edge.

bands are very flat at the Fermi level there will be few lo-
cations on the Fermi surface that maintain the condition
q · ∂εn,k/∂k < h̄γ for low scattering rates as the magnon
wavevector grows. (See Fig. 2). Indeed, at low scattering
rates when h̄γ is only a few meV, Fig. 3 shows that the
intraband contribution to damping decreases markedly
with only modest increase of the magnon wavevector.
Since the intraband contribution dominates the inter-
band term in this limit the total damping rate also de-
creases sharply as the magnon wavevector is increased
for low scattering rates. For higher scattering rates, the
electron spectral functions are sufficiently broadened that
the overlap of intraband states does not decrease appre-
ciably as the states are separated by finite wavevector
(q · ∂εn,k/∂k < h̄γ generally holds over the Fermi sur-
face). Therefore, the intraband contribution is largely in-
dependent of magnon wavevector at high scattering rates.

The interband contribution to damping involves scat-
tering between states in different bands, separated by the
magnon wavevector q. Isolating the interband damping
contribution reveals that these contributions are insensi-
tive to the magnon wavevector at higher scattering rates
where they form the dominant contribution to damp-
ing (see Fig. 3). To understand these observations we
again compare the spectral broadening h̄γ to the quasi-

particle energy difference ∆m,k+q

n,k = εm,k+q − εn,k. The
quasiparticle energy difference may be approximated as

∆m,k

n,k +q · ∂∆m,k

n,k /∂k where the first term is the uniform
mode limit. The interband energy spacings are effec-
tively modulated by the product of the magnon wavevec-
tor and the slopes of the bands. At high scattering rates
when the spectral broadening excedes the vertical band
spacings this energy modulation is unimportant and the
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damping rate is independent of the magnon wavevector.
At low scattering rates when the spectral broadening is
less than many of the band spacings this modulation can
alter the interband energy spacings enough to allow or
forbid generation of these electron-hole pairs. For Fe,
Co, and Ni, this produces a modest increase in the inter-
band damping rate at low scattering rates as the magnon
wavevector increases. However, this effect is unimportant
to the total damping rate, which remains dominated by
the intraband terms at low scattering rates.

Lastly, we describe the numerical methods employed
in this study. Converged ground state electron densities
were first obtained via the linear-augmented-plane-wave
method. The Perdew-Wang functional for exchange-
correlation within the local spin density approximation
was implemented. Many details of the ground state den-
sity convergence process are given in [23]. Densities were
then expanded into Kohn-Sham orbitals using a scalar-
relativistic spin-orbit interaction with the magnetiza-
tion aligned along the experimentally determined mag-
netocrystalline anisotropy easy axis. The Kohn-Sham
energies were artificially broadened through the ad hoc

introduction of an electron lifetime. Matrix elements of
the torque operator Γ− = [σ−,Hso] were evaluated sim-
ilarly to the spin-orbit matrix elements [24]. (σ− is the
spin lowering operator and Hso is the spin-orbit Hamil-
tonian.) The product of the matrix elements and the
weighting function were integrated over k-space using the
special points method with a fictitious smearing of the
Fermi surface for numerical stability. Convergence re-
quired sampling the full Brillouin zone with 1603 k-points
for iron and nickel, and 1602 x 100 points for cobalt.

In summary, we have calculated the intrinsic spin-orbit

contribution to precession damping in bulk transition
metal ferromagnets for small amplitude magnons with
finite wavelengths. Results of the calculations do not con-
tradict the common-practice assumption that damping is
a local phenomenon. For transition metals, at scattering
rates corresponding to room temperature, we find that
the single-mode damping rate is essentially independent
of magnon wavevector for wavevectors between zero and
1 % of the Brillouin zone edge (wavelengths compara-
ble to domain wall widths). It is not until low temper-
atures in the most pure samples that non-local effects
become significant. At these scattering rates, damping
rates decreased by as much as an order of magnitude as
the magnon wavevector was increased. The insensitivity
of damping rate to magnon wavevector at high scatter-
ing rates versus the strong sensitivity at low scattering
rates can be explained in terms of band structure effects.
Due to electron spectral broadening at high scattering
rates the energy conservation constraint during magnon
decay is effectively relaxed, making the damping rate in-
dependent of magnon wavevector. The minimal spectral
broadening at low scattering rates – seen only in very
pure and cold samples – greatly restricts the possible in-
traband scattering processes, lowering the damping rate.
The prediction of attenuated damping at low scattering
rates and non-zero magnon wavevectors is of little prac-
tical importance, but could provide an accessible test of
the torque-correlation model. Specifically, this might be
testable in ferromagnetic semiconductors such as GaM-
nAs for which many spin-wave resonances have been ex-
perimentally observed at low temperatures [25].
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